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Northcott’s theorem on heights
II. The quadratic case
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Wolfgang M. Schmidt (Boulder, Colo.)

1. Introduction. The distribution of algebraic points in projective space
Pn(A), where A is the field of algebraic numbers, is best described in terms
of their height. When K is an algebraic number field and P a point in Pn(K),
let HK(P ) be the multiplicative field height as defined in [8], [11], [12], [13]
or [14]. When P = (α0 : . . . : αn) lies in Pn(A), let K = Q(P ) be the field
obtained from Q by adjoining the ratios αi/αj (0 ≤ i, j ≤ n;αj 6= 0), and
set H(P ) = HK(P ). Note that H(P ) is the dth power of the absolute height
H(P ) as defined in the literature, where d = degQ(P ).

Given a field K, let N(K,n,X) be the number of points P ∈ Pn(K) with
HK(P ) ≤ X. Given d, let N (d, n,X) be the number of points P ∈ Pn(A)
with degQ(P ) = d and H(P ) ≤ X.

Schanuel [11] had proved an asymptotic formula

N(K,n,X) = c1(K,n)Xn+1(1.1)

+
{
O(X logX) when d = n = 1,
OKn(Xn+1−(1/d)) otherwise.

The constant c1(K,n) was explicitly given by Schanuel; like all constants
in this paper, it is positive. Further d = degK, and the constant implicit
in OKn(. . .) depends on K and n only. On the other hand, the quantity
N (d, n,X) is finite by Northcott’s Theorem [10] but its estimation is more
difficult. In the first part [13] of the present series we showed that for given
d, n and X > X0(d, n),

(1.2) c2(d, n)Xmax(d+1,n+1) < N (d, n,X) < c3(d, n)Xd+n.

(In fact, we dealt with the more general situation where the condition [Q(P ) :
Q] = d was replaced by [k(P ) : k] = d, where k is a given algebraic number
field.) In the present paper we will obtain more information in the case when
d = 2.
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Let N ′(K,n,X) be the number of points P ∈ Pn(K) with Q(P ) = K and
HK(P ) ≤ X. (Note that H(P ) = HK(P ) for such points.) It is easily seen
that N ′(K,n,X) satisfies the same asymptotic formula (1.1) as N(K,n,X).
Since

(1.3) N (d, n,X) =
∑

K

N ′(K,n,X),

where the sum is over all number fields K of degree d, it is tempting to
take the sum over the right hand side of (1.1). However, in order to do
so, one needs to know the implied constants in OKn(. . .). (One also needs
information on the collection of all fields of given degree d; this information
is readily available only for d = 2, when the fields are parametrized by their
discriminant.)

In the present paper we will obtain a more precise version of (1.1) for
quadratic fields K. Our work will also lead to a more explicit form of a
classical asymptotic formula of Dirichlet on ideals with bounded norm in a
given quadratic number field. (This formula was later extended to arbitrary
fields by Dedekind.)

Let K be a quadratic number field with discriminant ∆, class number h,
and with w roots of unity. In the case when K is real, so that ∆ > 0, let
ε > 1 be the fundamental unit. Set

(1.4) R =
{

1 when ∆ < 0,
log ε when ∆ > 0,

(1.5) λ =
{

2π when ∆ < 0,
4 when ∆ > 0.

Finally, for X > 0, let Z(K,X) be the number of nonzero integral ideals a
in K with norm N(a) ≤ X. Dirichlet’s asymptotic formula says that when
K is fixed and X →∞, then

Z(K,X) ∼ λhR

w|∆|1/2X.

It is easily seen that the error term here is OK(X1/2). In fact, the exponent
1/2 can be reduced, but we will not be concerned with this here. Rather we
will estimate the implied constant in OK .

Theorem 1.

Z(K,X) =
λhR

w|∆|1/2X +O((XhR log+(hR))1/2).

Here the implied constant in O(. . .) is absolute, and log+ x =
max(1, log x). In fact, all the constants which will occur in the sequel in
O(. . .) or in � will depend only on occasional parameters n, m, l, σ, α, δ,
but will be independent of the field K.
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Schanuel’s constant c1(K,n) occurring in (1.1), in the case of a quadratic
field K, is given by

(1.6) c1(K,n) =
νhR

wζK(n+ 1)

(
λ

|∆|1/2
)n+1

,

where ζK is the Dedekind zeta function of K and where

(1.7) ν =
{ 1 when ∆ < 0,
n+ 1 when ∆ > 0.

We now introduce

(1.8) c∗1(K,n) = |∆|−n/2(hR log+(hR))1/2.

Theorem 2. For a quadratic field K,

N ′(K,n,X) = c1(K,n)Xn+1 +O(c∗1(K,n)Xn+(1/2)).

This leads also to an estimate for N(K,n,X). For the points counted by
N(K,n,X) but not by N ′(K,n,X) are points P with Q(P ) = Q, i.e., with
P ∈ Pn(Q) and HK(P ) = HQ(P )2 ≤ X. Therefore

N(K,n,X) = N ′(K,n,X) +N(Q, n,X1/2) = N ′(K,n,X) +O(X(n+1)/2).

Write

N (2, n,X) = N−(2, n,X) +N+(2, n,X),

where N−(2, n,X), N+(2, n,X) is the number of points P ∈ Pn(A) with
degQ(P ) = 2 and H(P ) ≤ X, and where the discriminant ∆(Q(P )) is < 0
or > 0, respectively.

Theorem 3. When n ≥ 3, then

N±(2, n,X) = c±5 (n)Xn+1 +O(Xn+(1/2))

with certain constants c+5 (n), c−5 (n) defined in Section 8. Here and below , the
relations hold with superscript + throughout , or superscript − throughout.
Further when n = 2,

N±(2, 2, X) = c±6 X
3 logX +O(X3

√
logX)

with

c+6 =
48
ζ(3)2 , c−6 =

4π2

ζ(3)2 ,

and when n = 1,

N±(2, 1, X) = c±7 X
3 +O(X2 logX)

with

c+7 =
40

9ζ(3)
, c−7 =

32
9ζ(3)

.
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The theorem shows that for d = 2, the lower bounds in (1.2) are near
the truth. We expect this to be true in general. In fact Gao Xia will soon
publish results for d > 2.

Next, we consider nonzero quadratic forms

(1.9) f(x0, . . . , xn) =
∑

0≤i≤j≤n
aijxixj

with rational coefficients. The form is called decomposable if it is the product
of two linear forms with algebraic coefficients. When f is decomposable,
say f = ll′ with l(x) =

∑n
i=0 αixi, l

′(x) =
∑n
i=0 α

′
ixi, then by unique

factorization the (unordered) pair of points P = (α0 : . . . : αn), P ′ =
(α′0 : . . . : α′n) in Pn(A) is uniquely determined by f . We have Q(P ) =
Q(P ′) = K(f), say, with K(f) either a quadratic or the rational field.

Let Z(n,X) be the number of decomposable quadratic forms with coef-
ficients aij ∈ Z having |aij | ≤ X (0 ≤ i ≤ j ≤ n). We write

Z(n,X) = Z−(n,X) + Z+(n,X) + Z0(n,X),

where Z−, Z+, Z0 respectively count only those forms for which K(f) is
imaginary quadratic, real quadratic, or the rational field. Since every form
in 1 or 2 variables is decomposable, the interesting cases are when n ≥ 2.

Theorem 4. We have

Z±(2, X) = c±8 (2)X3 logX +O(X3
√

logX),

Z±(n,X) = c±8 (n)Xn+1 +O(Xn+(1/2)) when n ≥ 3.

On the other hand , for n ≥ 2,

Z0(n,X) = c08(n)Xn+1 logX +O(Xn+1).

In particular, Z(n,X) ∼ c9(n)Xn+1 logX for n ≥ 2. It is somewhat
surprising that when n ≥ 3, the number Z0(n,X) is of larger order of
magnitude than Z−(n,X) or Z+(n,X). Our proof will imply fairly explicit
values for the constants c±8 (n).

The form f could also be written as

f =
n∑

i,j=0

bijxixj

with bij = bji. The form f is decomposable precisely when the symmetric
matrix (bij) has rank ≤ 2. Therefore Z(n,X) may be interpreted as the
number of symmetric (n + 1) × (n + 1)-matrices with rank ≤ 2 such that
bii ∈ Z, |bii| ≤ X, and 2bij ∈ Z, 2|bij | ≤ X for i 6= j. Of particular interest
is the number Z(2, X), which counts symmetric 3× 3-matrices. By a slight
generalization of our method it would be possible to obtain a complete
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analog of Theorem 4 for the number Z1(n,X) = Z−1 (n,X) + Z+
1 (n,X) +

Z0
1 (n,X), say, where Z1(n,X) is the number of symmetric matrices (bij) of

rank ≤ 2 and order n+ 1 with bij ∈ Z, |bij | ≤ X (0 ≤ i, j ≤ n). Many other
variations of Theorem 4 could be given.

For the number Z2(n,X) of singular (n + 1) × (n + 1)-matrices (bij)
(not necessarily symmetric) with bij ∈ Z, |bij | ≤ X, Katznelson [7] gave
an asymptotic formula Z2(n,X) ∼ c10(n)Xn2+n logX, so that in particular
Z2(2, X) ∼ c10(3)X3 logX.

There are two directions in which one could try to generalize Theorem 4.
On the one hand, one could consider decomposable forms of degree d (rather
than d = 2); this leads essentially to questions (formulated at the beginning)
on heights of points of degree d. On the other hand, one could consider
symmetric matrices of rank ≤ d (1).

In the appendix we will treat certain sums over L-series which will be
needed in the proofs of Theorems 3 and 4.

2. The number of lattice points in certain regions. Let Λ be a
lattice in Rl of determinant detΛ, and let S be a compact set in Rl of
volume V (S). Under suitable conditions, the cardinality of Λ ∩ S is about
V (S)/detΛ. To make this precise, one needs information both on Λ and
on S. The “shape” of Λ is roughly described by the successive minima
λ1 ≤ . . . ≤ λl of Λ, as defined by Minkowski. Here λi is least such that
Λ contains i linearly independent points with Euclidean norm ≤ λi. We
have

(2.1) c11(l) ≤ λ1 . . . λl/detΛ ≤ c12(l),

according to Minkowski. (See, e.g., Cassels [2, Ch. VIII] or Siegel [17, The-
orem 16].) S will be said to be of class m if every line intersects S in the
union of at most m intervals and single points, and if the same is true of the
projections of S on any linear subspace. In particular, S is convex when it
is of class 1.

Lemma 1. Suppose S is of class m, and it lies in the compact ball of
radius r and center 0. Let Λ be a lattice, and N the cardinality of Λ ∩ S.
Then if

(2.2) λl−1 ≤ r,
we have

N =
V (S)
detΛ

+O

(
λlr

l−1

detΛ

)
.

(1) Added in proof. For general matrices of fixed rank, see Y. Katzne l son, Inte-
gral matrices of fixed rank (preprint). For symmetric matrices of fixed rank, see A. Esk in
and Y. Katzne l son, Singular symmetric matrices, Duke Math. J., to appear.
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The implicit constant in O(. . .) depends only on l, m, in agreement with the
convention made in the introduction.

P r o o f. There are independent lattice points g1, . . . , gl with gi ∈ λiB
(i = 1, . . . , l), where B is the closed unit ball. In fact (see [2, p. 135,
Lemma 8]), there is a basis b1, . . . , bl of Λ with bi ∈ iλiB (i = 1, . . . , l).
Let τ be the linear map with τ(bi) = ei, where ei = (0, . . . , 1, . . . , 0)
(with 1 in the ith component). Thus τ(Λ) = Zl and τ(B) = E , where
E is an ellipsoid of volume V (E) = V (B)/detΛ. Now ei ∈ iλiE , therefore
(iλi)−1ei ∈ E (i = 1, . . . , l), so that E has major axes of lengths a1 ≤ . . . ≤ al
with ai � λ−1

l−i+1 (i = 1, . . . , l). Therefore, the orthogonal projection of E
on any i-dimensional subspace has volume

� al−i+1 . . . al � (a1 . . . al−i)−1V (E)� λi+1 . . . λlV (E)(2.3)

� λi+1 . . . λl/detΛ.

Now N is the cardinality of Zn ∩ T where T = τ(S). According to
Davenport [3],

(2.4) |N − V (T )| � max
T ′

V (T ′),
where the maximum is over the orthogonal projections T ′ of T on the coor-
dinate planes of dimension < l, and where the volume of the 0-dimensional
projection is understood to be 1. Here we have used the fact that T is
of class m. Note that V (T ) = V (S)/detΛ. Moreover, S ⊂ rB, therefore
T ⊂ rE , and any i-dimensional projection T ′i has

V (T ′i )� riλi+1 . . . λl/detΛ ≤ λlrl−1/detΛ

by (2.3), (2.2). The lemma follows.

We now give a variation on Lemma 1 valid in R2.

Lemma 2. Suppose S ⊂ R2 is of class m, and contains the origin. Sup-
pose it lies in the compact disc of radius r and center 0. Let Λ ⊂ R2 be a
lattice, and N ′ the number of nonzero lattice points in S. Then

(2.5) N ′ = V (S)/detΛ+O(r/λ1).

Note that we do not stipulate a condition (2.2).

P r o o f. When r ≥ λ1, the assertion follows from the preceding lemma,
since N − N ′ = 1 ≤ r/λ1 in this case. When r < λ1, there is no nonzero
lattice point in S, so that N ′ = 0. Further V (S)/detΛ � r2/λ1λ2 < r/λ1,
since r < λ1 ≤ λ2.

Lemma 3. Let S ⊆ R2n+2 where n ≥ 1. Suppose that S is of class m
and contained in the compact ball of radius r and center 0. Write points
x ∈ R2n+2 as x = (x0, . . . ,xn) with each xi ∈ R2. Let Λ be a lattice in R2
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with minima λ1, λ2. Then the number N∗ of points x ∈ S such that each
xi ∈ Λ (i = 0, . . . , n), and x0, . . . ,xn span R2, has

(2.6) N∗ =
V (S)

(detΛ)n+1 +O

(
r2n+1

λ1(detΛ)n

)
.

The constant in O(. . .) depends only on n, m.

P r o o f. Suppose first that

(2.7) λ2 > r.

Then any points x0, . . . ,xn with (x0, . . . ,xn) ∈ S and xi ∈ Λ (i = 0, . . . , n)
have Euclidean norm ≤ r < λ2, and therefore are colinear. We obtain N∗

= 0. The relation (2.6) is valid since

V (S)/detΛ� r2n+2/detΛ < r2n+1λ2/detΛ� r2n+1/λ1

by (2.7), (2.1).
Next, suppose that

(2.8) λ2 ≤ r.
Let Λ∗ = Λ× . . .×Λ in R2n+2. Then detΛ∗ = (detΛ)n+1 and the successive
minima λ∗i of Λ∗ are easily seen to be

λ∗i =
{
λ1 when 1 ≤ i ≤ n+ 1,
λ2 when n+ 1 < i ≤ 2n+ 2.

We write

N∗ = N1 −N2,

where N1 is the number of x = (x0, . . . ,xn) ∈ Λ∗∩S, and N2 is the number
of those (n + 1)-tuples among them for which x0, . . . ,xn do not span R2.
We apply Lemma 1 with l = 2n+ 2 and see that

N1 =
V (S)

(detΛ)n+1 +O

(
λ2r

2n+1

(detΛ)n+1

)
=

V (S)
(detΛ)n+1 +O

(
r2n+1

λ1(detΛ)n

)
,

since λ∗2n+1 = λ2 ≤ r, and by (2.1). As for N2, it counts the point (0, . . . ,0),
as well as points (x0, . . . ,xn) 6= (0, . . . ,0) with x0, . . . ,xn colinear. For the
latter, we lose only a factor n+ 1 if we assume that x0 6= 0, and x1, . . . ,xn
are multiples of x0. Now x0 lies in the disc B ⊂ R2 of radius r. By Lemma 1
with l = 2, the number of possibilities for x0 6= 0 is

(πr2/detΛ) +O(1 + λ2r/detΛ)� r2/detΛ

by (2.8), and since r2 ≥ λ1λ2 � detΛ by (2.1). Each xi (i = 1, . . . , n) lies
in the segment S of points spanned by x0 having Euclidean norm ≤ r. Since
V (S) = 0, we see from Lemma 1 that the number of possibilities for each
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xi (i = 1, . . . , n) is � λ2r/detΛ. Thus

N2 � 1 +
λn2 r

n+2

(detΛ)n+1 �
λ2r

2n+1

(detΛ)n+1 �
r2n+1

λ1(detΛ)n

by (2.1), (2.8), on noting that

1� (λ1λ2/detΛ)n+1 ≤ (λ2
2/detΛ)n+1 ≤ λn2 rn+2/(detΛ)n+1.

The lemma follows by combining our estimates for N1 and N2.

3. Estimates for a given ideal class. The case ∆ < 0. Let K be
a quadratic number field of discriminant ∆ < 0. We may consider K to be
embedded in C. With α ∈ K we associate the point

α̂ = (Reα, Imα) ∈ R2.

As α runs through the integers of K, then α̂ runs through a lattice Λ ⊂ R2 of
determinant 1

2 |∆|1/2. As α runs through a nonzero ideal a of K, then α̂ runs
through a lattice Λ(a) with detΛ(a) = 1

2 |∆|1/2N(a). Denote the successive
minima of Λ(a) by λ1(a), λ2(a).

Let C be an ideal class of K. We define N(C) to be the minimum of N(c)
over all integral ideals c in C. It is well known that N(C) ≤ |∆|1/2 (see,
e.g., Hecke [6, Satz 96]). The ideal class C consisting of ideals c with c ∈ C
(where the bar indicates complex conjugation) is the inverse of C, so that
N(C−1) = N(C) = N(C).

Now let a be an ideal lying in the ideal class A. When α 6= 0 lies in a,
then (α) = ab with b integral in A−1, so that |α|2 = N(α) ≥ N(a)N(A−1) =
N(a)N(A), and

(3.1) λ1(a) ≥ (N(a)N(A))1/2.

Again let a be in the class A, and write Z1(a, X) for the number of
nonzero elements α ∈ a with N(α) ≤ XN(a).

Lemma 4.

Z1(a, X) = 2πX/|∆|1/2 +O(X1/2/N(A)1/2).

P r o o f. Z1(a, X) is the number of nonzero α̂ ∈ Λ(a) with |α̂|2 ≤ XN(a).
By Lemma 2 with r = (XN(a))1/2,

Z1(a, X) = (πXN(a)/detΛ(a)) +O(r/λ1(a)).

Substituting detΛ(a) = 1
2 |∆|1/2N(a), the value of r, as well as (3.1), we

obtain the desired result.
Let n > 0 and write points in R2n+2 as α̂ = (α̂0, . . . , α̂n) with each α̂i ∈

R2. With α = (α0, . . . , αn) in Kn+1 we associate the point α̂ = (α̂0, . . . , α̂n).
Let S be a compact set in R2n+2 contained in the unit ball centered at the
origin. Further suppose that S is of class m as defined in Section 2. For



Northcott’s theorem on heights 351

t > 0, let tS be the set of points tα̂ with α̂ ∈ S. When a is a nonzero ideal
in K, let Z2(a,S, X) be the number of nonzero α = (α0, . . . , αn) ∈ Kn+1

with each αi ∈ a, such that P = (α0 : . . . : αn) has Q(P ) = K, and such
that

(3.2) α̂ = (α̂0, . . . , α̂n) ∈ (XN(a))1/2S.
Lemma 5. When a is in the ideal class A,

Z2(a,S, X) = V (S)(2X/|∆|1/2)n+1 +O

(
Xn+(1/2)

|∆|n/2N(A)1/2

)
.

In agreement with the convention made in the introduction, the implied con-
stant in O(. . .) depends only on n, m.

P r o o f. Z2(a,S, X) is the number of (α̂0, . . . , α̂n) with (3.2), such that
each α̂i ∈ Λ(a), and such that α̂0, . . . , α̂n span R2. We apply Lemma 3 with
S replaced by (XN(a))1/2S, and with r = (XN(a))1/2. We obtain

Z2(a,S, X) = V (S)
(XN(a))n+1

(detΛ(a))n+1 +O

(
(XN(a))n+(1/2)

λ1(a)(detΛ(a))n

)
.

The lemma follows after we substitute detΛ(a) = 1
2 |∆|1/2N(a) and (3.1).

4. Estimates for a given ideal class. The case ∆ > 0. Let K be a
quadratic number field with discriminant ∆ > 0. Let ε be the fundamental
unit with ε > 1, and set R = log ε. Then R � 1 with an absolute implied
constant. Define t and u > 0 by

(4.1) t = [R] + 1, log u = R/t,

where [ ] denotes the integer part. Then

(4.2) ut = ε and 1� log u ≤ 1.

With α ∈ K we associate the point

α̂ = (α, α′) ∈ R2,

where α′ is the conjugate of α. As α runs through the integers of K, then α̂
runs through a lattice Λ ⊂ R2 of determinant ∆1/2. As α runs through
a nonzero ideal a, then α̂ runs through a lattice Λ(a) with detΛ(a) =
∆1/2N(a).

Let v =
√
u, so that 1� log v by (4.2), and

(4.3) v − 1� 1.

Let τ be the linear map R2 → R2 with τ(α, α′) = (v−1α, vα′). Then
Λ(a, j) := τ jΛ(a) (for j ∈ Z) is a lattice with detΛ(a, j) = detΛ(a) =
∆1/2N(a). Its first minimum is given by

(4.4) λ1(a, j) = min
α∈a\{0}

(v−2j |α|2 + v2j |α′|2)1/2.
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Given α = (α0, . . . , αn) ∈ Kn+1 \ {0}, set α′ = (α′0, . . . , α
′
n) and

ψ(α) = |α|/|α′|,
where |α| = max(|α0|, . . . , |αn|). After scalar multiplication by ε, we have
ψ(εα) = |ε/ε′|ψ(α) = ε2ψ(α). There is a unique integer s with ε−1 <
ψ(εsα) ≤ ε. In view of the unit −1, there are exactly two units η such that

(4.5) ε−1 < ψ(ηα) ≤ ε.
The interval ε−1 < x ≤ ε is the disjoint union of the 2t intervals uj−1 < x
≤ uj with −t < j ≤ t.

We now consider the set S(a, j) of nonzero (α0, . . . , αn) ∈ Kn+1 with
αi ∈ a (0 ≤ i ≤ n) and uj−1 < ψ(α) ≤ uj . This set is in 1-1 correspon-
dence with the set Ŝ(a, j) of points (α̂0, . . . , α̂n) ∈ R2n+2 with α̂i ∈ Λ(a)
(0 ≤ i ≤ n) and with uj−1 < ψ(α̂) ≤ uj , where for α̂ = (α̂0, . . . , α̂n) =
(α0, α

′
0, . . . , αn, α

′
n) we set ψ(α̂) = |α|/|α′| with α = (α0, . . . , αn) and

α′ = (α′0, . . . , α
′
n). Let τ∗ = τ×. . .×τ be the map of R2n+2 with τ∗(α,α′) =

(v−1α, vα′), i.e., τ∗(α0, α
′
0, . . . , αn, α

′
n) = (v−1α0, vα

′
0, . . . , v

−1αn, vα
′
n). We

have ψ(τ∗α̂) = v−2ψ(α̂) = u−1ψ(α̂). Therefore ̂̂S(a, j) := τ∗jŜ(a, j) con-
sists of points α̂ = (α̂0, . . . , α̂n) with

α̂i ∈ Λ(a, j) (i = 0, . . . , n) and u−1 < ψ(α̂) ≤ 1.

Now let n = 0, let a be a nonzero ideal, and −t < j ≤ t. Write Z1(a, j,X)
for the number of nonzero α ∈ A with α ∈ a, |αα′| ≤ XN(a) and uj−1 <
ψ(α) ≤ uj .

Lemma 6.

Z1(a, j,X) = (2RX/t∆1/2) +O(X1/2N(a)1/2/λ1(a, j)).

P r o o f. The set of α̂ = (α, α′) ∈ R2 with |αα′| ≤ XN(a) is invariant
under τ . Therefore Z1(a, j,X) is the number of α̂ ∈ Λ(a, j) with

0 < |αα′| ≤ XN(a) and u−1 < ψ(α̂) ≤ 1.

These two inequalities define a set S in R2. For α̂ ∈ S, we have |α| ≤ |α′| <
u|α|, so that both |α|, |α′| < (uXN(a))1/2, and S is contained in a disc of
radius r � (XN(a))1/2. Further S is of some class m� 1 (in fact m = 2).
Although S is not closed, it is easily seen that Lemma 2 still applies, and
we get

Z1(a, j,X) = (V (S)/detΛ(a, j)) +O(r/λ1(a, j)).
Since detΛ(a, j) = ∆1/2N(a), and since, as is seen by an easy calculation,
V (S) = 2XN(a) log u = 2XRN(a)/t, the lemma follows.

Let n > 0 and write points in R2n+2 as α̂ = (α̂0, . . . , α̂n) where each
α̂i = (αi, α′i) ∈ R2, or else as α̂ = (α,α′) with α = (α0, . . . , αn), α′ =
(α′0, . . . , α

′
n). With α = (α0, . . . , αn) ∈ Kn+1 we associate the point α̂ =
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(α̂0, . . . , α̂n). Let S be a closed set in R2n+2 such that the points α̂ =
(α,α′) in S have |α| |α′| ≤ 2, and that S is invariant under transformations
(α,α′) 7→ (t−1α, tα′) with t > 0. For x > 1 let S(x) be the intersection of
S with x−1 < ψ(α̂) ≤ 1. Points α̂ ∈ S(x) have |α|2 ≤ 2, |α′|2 ≤ 2x, so that
S(x) lies in a ball of radius r � x1/2. Let V (S(x)) be the volume of S(x);
by the invariance property of S we have V (S(x)) = V (S(e)) log x. We will
finally suppose that the closure of S(x) is of class m.

For a nonzero ideal a and for −t < j ≤ t, let Z2(a, j,S, X) be the number
of α = (α0, . . . , αn) with αi ∈ a (i = 0, . . . , n) such that P = (α0 : . . . : αn)
has Q(P ) = K, and such that

α̂ ∈ (XN(a))1/2S and uj−1 < ψ(α) ≤ uj .
Lemma 7.

Z2(a, j,S, X) =
RV (S(e))

t

(
X

∆1/2

)n+1

+O

(
Xn+(1/2)N(a)1/2

∆n/2λ1(a, j)

)
.

P r o o f. By what we have seen above, Z2(a, j,S, X) is the same as the
number of points α̂ = (α̂0, . . . , α̂n) in Λ(a, j) × . . . × Λ(a, j) such that
α̂0, . . . , α̂n span R2, and which lie in the set S ′ defined by

(α̂0, . . . , α̂n) ∈ (XN(a))1/2S and u−1 < ψ(α̂) ≤ 1.

S ′ lies in a ball of radius r � (XN(a))1/2 and has volume V (S ′) =
(XN(a))n+1(log u)V (S(e)). Lemma 3 gives

Z2(a, j,S, X) =
V (S ′)

(detΛ(a, j))n+1 +O

(
r2n+1

(detΛ(a, j))nλ1(a, j)

)
.

If we substitute our value for V (S ′) and detΛ(a, j) = ∆1/2N(a), as well as
the estimate for r, and the relation log u = R/t from (4.1), we obtain the
assertion of the lemma.

Let C be an ideal class. Let c1, c2, . . . be the integral ideals in C ordered
so that N(c1) ≤ N(c2) ≤ . . . We set

(4.6) N(C) =
( 2t∑

j=1

N(cj)−1/2
)−2

.

This definition differs from the one when ∆ < 0. It is easily seen that we
still have N(C−1) = N(C) = N(C).

Lemma 8. Let a lie in the ideal class A. Then

(4.7)
t∑

j=1−t
1/λ1(a, j)� (N(a)N(A))−1/2.

This estimate takes the place of (3.1) in the case ∆ < 0.
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P r o o f. Define µ1(a, j) as the minimum of max(v−j |α|, vj |α′|) for
nonzero α ∈ a. Since λ1(a, j) ≥ µ1(a, j), it will suffice to estimate the sum
(4.7) with µ1 in place of λ1. Pick α = α(a, j) with

µ1(a, j) = max(v−j |α|, vj |α′|).
We claim that for 1− t ≤ j ≤ t,
(4.8) ε−2 < ψ(α(a, j)) ≤ ε2.

For if, say, ψ(α) > ε2, then

v−j |α| > v−jε2|α′| ≥ vj |(ε−1α)′|,
since ε2v−2j ≥ ε2v−2t = ε = |(ε−1)′|. Therefore

max(v−j |α|, vj |α′|) ≥ v−j |α| > max(v−j |ε−1α|, vj |(ε−1α)′|).
By the minimal property of α(j, a), this cannot happen for α = α(j, a).
Therefore ψ(α(a, j)) ≤ ε2. The lower bound in (4.8) is proved similarly.

Let α ∈ a be given with ε−2 < ψ(α) ≤ ε2. We consider the sum
∑

j
α(a,j)=α

(µ1(a, j))−1 ≤
∑

j∈Z
min(vj |α|−1, v−j |α′|−1).

Here |α| = vξ|N(α)|1/2, |α′| = v−ξ|N(α)|1/2 for some ξ, so that the last sum
becomes

|N(α)|−1/2
∑

j∈Z
min(vj−ξ, vξ−j) ≤ |N(α)|−1/2 · 2

∞∑

j=0

v−j

= (2v/(v − 1))|N(α)|−1/2 � |N(α)|−1/2,

since v − 1� 1 by (4.3).
Suppose s distinct numbers α1, . . . , αs occur among the α(a, j) where

−t < j ≤ t, so that clearly s ≤ 2t. Then
t∑

j=1−t
µ1(a, j)−1 �

s∑

j=1

|N(αj)|−1/2.

We have (αj) = abj where bj is integral in A−1. On the other hand, given
b ∈ A−1, there are precisely 4 elements α with (α) = ab and with ε−2 <
ψ(α) ≤ ε2, because ψ(±εsα) = ε2sψ(α). Therefore, with certain distinct
b1, . . . , b2t in A−1, the sum in (4.7) is

� N(a)−1/2
2t∑

j=1

N(bj)−1/2 ≤ N(a)−1/2N(A−1)−1/2 = (N(a)N(A))−1/2,

by the definition (4.6).
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By (4.2), by taking the sum over j, −t < j ≤ t, in Lemmas 6, 7, and
using Lemma 8, we immediately get the next two lemmas.

Lemma 9. Let a be an ideal in the class A, and Z1(a, X) the number of
nonzero α ∈ a with |αα′| ≤ XN(a) and ε−1 < ψ(α) ≤ ε. Then

Z1(a, X) = 4RX/∆1/2 +O(X1/2/N(A)1/2).

Lemma 10. Let n > 0, S a set in R2n+2 as in Lemma 7, and a an ideal
in the class A. Let Z2(a,S, X) be the number of α = (α0, . . . , αn) with each
αi ∈ a, with P = (α0 : . . . : αn) having Q(P ) = K, and with

α̂ ∈ (XN(a))1/2S and ε−1 < ψ(α) ≤ ε.
Then

Z2(a,S, X) = 2RV (S(e))(X/∆1/2)n+1 +O(Xn+(1/2)∆−n/2N(A)−1/2).

5. Proof of Theorem 1. Lemmas 4 and 9 may be combined to give

(5.1) Z1(a, X) = λRX/|∆|1/2 +O(X1/2/N(A)1/2),

where R, λ are given by (1.4), (1.5). Note that the definitions of Z1(a, X)
and N(A) are somewhat different when ∆ < 0 and when ∆ > 0.

Lemma 11. Let C be an ideal class, and define Z3(C, X) to be the number
of integral ideals c ∈ C with N(c) ≤ X. Then

(5.2) Z3(C, X) = λRX/(w∆1/2) +O(X1/2/N(C)1/2),

where w is the number of roots of 1 of the underlying quadratic number
field K.

P r o o f. Let A = C−1 and fix a in A. When c ∈ C with N(c) ≤ X, then ac
is a principal ideal (α) with α ∈ a, α 6= 0, and |N(α)| ≤ XN(a). Conversely,
when α ∈ a, α 6= 0 and |N(α)| ≤ XN(a), then (α) = ac with integral c ∈ C
having N(c) ≤ X.

If ∆ < 0, then α is determined by c up to the w roots of 1. Thus
Lemma 11 follows from Lemma 4 and the definition of Z1(a, X). When
∆ > 0, we may pick α with ε−1 < ψ(α) ≤ ε, and this will determine α
up to multiplication by ±1, so that we will have w = 2 choices for α. Now
Lemma 11 follows from Lemma 9 and the definition of Z1(a, X) in the case
∆ > 0.

The proof of Theorem 1 is now easily completed by taking the sum over
the ideal classes in (5.2). All that is needed is the estimate

(5.3)
∑

C

N(C)−1/2 � (hR log+ hR)1/2.

When∆ < 0, the sum on the left here is over h terms N(ci)−1/2, with distinct
nonzero integral ideals ci. We may suppose that N(c1) ≤ . . . ≤ N(ch). The
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number of integral ideals c with N(c) = u is at most τ(u), the number of
positive divisors of u. Since

x∑
u=1

τ(u) ∼ x log x

(see [5, Theorem 315]), we may conclude that N(ci)� i/ log+ i. Therefore

∑

C

N(C)−1/2 =
h∑

i=1

N(ci)−1/2 �
h∑

i=1

(i−1 log+ i)1/2 � (h log+ h)1/2.

When ∆ > 0, each N(C)−1/2 is by (4.6) a sum of 2t terms N(ci)−1/2 with
distinct integral ideals ci in C. Therefore the sum in (5.3) is a sum of 2th
terms N(ci)−1/2. By the argument used above and since t � R by (4.1), it
is

� (2th log+(2th))1/2 � (Rh log+Rh)1/2.

6. Möbius inversion. In order not to have to interrupt our main argu-
ment below, we begin with the following definition. Given a nonzero ideal b,
let 〈b〉 be its ideal class. Given an ideal class A, set

(6.1) Ln(A) =
∑

b

N(A〈b〉)−1/2N(b)−n−1/2,

where the sum is over integral ideals b of the underlying quadratic field K.
Since there are only h ideal classes, the term N(A〈b〉)−1/2 is bounded, and
the sum will be convergent for n > 0, which we will suppose. Incidentally, it is
easily seen, but will not be used here, that N(A〈b〉)−1/2 ≤ N(A)−1/2N(b)1/2,
so that when n ≥ 2 we have

Ln(A) ≤ N(A)−1/2
∑

b

N(b)−n � N(A)−1/2.

Lemmas 5, 10 may be combined to give

(6.2) Z2(a,S, X)

= V0(S)R(X/|∆|1/2)n+1 +O(Xn+(1/2)|∆|−n/2N(A)−1/2),

where R is given by (1.4), and

(6.3) V0(S) =
{

2n+1V (S) when ∆ < 0,
2V (S(e)) when ∆ > 0.

Note that the hypotheses on S are not the same in the cases ∆ < 0 and
∆ > 0. Further recall that Z2(a,S, X) is the number of nonzero α =
(α0, . . . , αn) ∈ Kn+1 such that

(i) αi ∈ a (i = 0, . . . , n),
(ii) Q(P ) = K where P = (α0 : . . . : αn),
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(iii) α̂ ∈ (XN(a))1/2S,
(iv) when ∆ > 0, additionally ε−1 < ψ(α) ≤ ε.

Let Z4(a,S, X) be the number of nonzero α ∈ Kn+1 satisfying (i′), (ii), (iii),
(iv), where (i′) is the condition

(i′) α0, . . . , αn generate the ideal a.

Lemma 12. When a lies in the ideal class A,

Z4(a,S, X) = (V0(S)R/ζK(n+ 1))(X/|∆|1/2)n+1

+O(Xn+(1/2)|∆|−n/2Ln(A)).

P r o o f. When α0, . . . , αn satisfy (i), they generate an ideal ab where b is
integral. Then (iii) may be written as α̂ ∈ (X/N(b))1/2N(ab)1/2S. Therefore
every α counted by Z2(a,S, X) is counted by Z4(ab,S, X/N(b)) for some
integral b, and

Z2(a,S, X) =
∑

b

Z4(ab,S, X/N(b)).

Let µ be the Möbius function on nonzero integral ideals ofK, so that µ(ab) =
µ(a)µ(b) when a, b are coprime, and µ(p) = −1, µ(p2) = µ(p3) = . . . = 0
when p is a prime ideal. Möbius inversion gives

(6.4) Z4(a,S, X) =
∑

b

µ(b)Z2(ab,S, X/N(b)).

By (6.2),

Z2(ab,S, X/N(b)) = V0(S)R(X/N(b)|∆|1/2)n+1

+O(Xn+(1/2)|∆|−n/2N(〈ab〉)−1/2N(b)−n−1/2).

Since 〈ab〉 = A〈b〉 for a ∈ A, and since
∑

b µ(b)N(b)−n−1 = 1/ζK(n + 1),
the lemma is a consequence of (6.4), (6.1).

7. Proof of Theorem 2. Let S be a closed set in R2n+2 as described in
Sections 3, 4. Thus when ∆ < 0 we suppose that S is contained in the ball of
radius 1 centered at the origin, and is of class m. We now make the further
assumption that S contains the origin in its interior, and that φ(S) ⊆ S
for any linear transformation φ : (α̂0, . . . , α̂n) 7→ (φ(α̂0), . . . , φ(α̂n)), where
φ is a linear transformation of R2 which is an orthogonal map followed by
a homothetic map α̂ 7→ tα̂ with 0 ≤ t ≤ 1. When λ ∈ K with |λ| ≤ 1, then
α̂ 7→ λ̂α where α ∈ K comes from a map φ as above, and therefore α̂ ∈ S
implies (λ̂α) ∈ S. In general, when α ∈ Kn+1, then

(7.1) α̂ ∈ S implies (λ̂α) ∈ |λ|S.
When ∆ > 0, we suppose that S is contained in the set |α| |α′| ≤ 2, and

it contains 0 in its interior. We will further suppose that when (α,α′) ∈ S,
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then so is (tα, t′α′) provided t, t′ ∈ R have |tt′| ≤ 1. This amply yields the
invariance property described in Section 4. Moreover, when α ∈ Kn+1 with
α̂ ∈ S and when |N(λ)| = |λλ′| ≤ 1, then (λ̂α) ∈ S. In general, α ∈ Kn+1

and

(7.2) α̂ ∈ S implies (λ̂α) ∈ |N(λ)|1/2S.
As in Section 4, we will suppose that the intersection (denoted by S(x)) of
S and x−1 < ψ(α) ≤ 1 has closure of class m.

Given α ∈ Kn+1, let HS∞(α) be the least positive t with α̂ ∈ tS. From
(7.1), (7.2) we conclude that

(7.3) HS∞(λα) = |N(λ)|1/2HS∞(α).

Again, when α ∈ Kn+1, and α 6= 0, let a be the ideal generated by
α0, . . . , αn, and set

HS(α) = (HS∞(α))2/N(a).
By (7.3), and since λα induces the ideal (λ)a, it is clear that HS(λα) =
HS(α), so that we can define a height HS(P ) of points P ∈ Pn(K).

It is well known (see, e.g., [14, p. 11]) that when ∆ < 0 the field height
is HK(α) = |α|2/N(a), so that HK(α) = HS

−
0 (α) with S−0 the set in R2n+2

of points (ξ0, η0, . . . , ξn, ηn) with ξ2
i + η2

i ≤ 1 (i = 0, . . . , n). Here V (S−0 ) =
πn+1, and

(7.4) V0(S−0 ) = (2π)n+1 = λn+1 = νλn+1 (∆ < 0)

by (6.3), (1.5), (1.7).
When ∆ > 0, the field height is HK(α) = |α| |α′|/N(a) = HS

+
0 (α), with

S+
0 the set |α| |α′| ≤ 1. Here S+

0 (e) is further restricted by e−1 < |α|/|α′| ≤
1, and a computation gives V (S+

0 (e)) = 1
2 (n+ 1) · 4n+1. Therefore

(7.5) V0(S+
0 ) = (n+ 1) · 4n+1 = νλn+1 (∆ > 0)

by (6.3), (1.5), (1.7).
Let Z5(K,S, X) be the number of points P ∈ Pn(K) with Q(P ) = K

and HS(P ) ≤ X.

Theorem 2a.

Z5(K,S, X) =
hR

wζK(n+ 1)
V0(S)(X/|∆|1/2)n+1

+O(Xn+(1/2)|∆|−n/2(hR log+ hR)1/2).

Now N ′(K,n,X) is Z5(K,S0, X) with the set S0 = S±0 described above.
Theorem 2 follows on using (7.4), (7.5).

P r o o f o f T h e o r e m 2a. When P = (α0 : . . . : αn) ∈ Pn(K), the
ideal a generated by α0, . . . , αn depends on P up to multiplication by a
principal ideal, and therefore the ideal class A of a depends only on P . Let
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Z6(A,S, X) be the number of points P ∈ Pn(K) with Q(P ) = K of height
HS(P ) ≤ X belonging to the class A.

In the class A pick an ideal a. Then when P belongs to the class A,
we may write P = (α0 : . . . : αn) where α0, . . . , αn generate a. We have
HS(P ) = (HS∞(α))2/N(a), so that HS(P ) ≤ X is the same as HS∞(α) ≤
(XN(a))1/2, and this is the same as α̂ ∈ (XN(a))1/2S. When ∆ < 0, then α

generating a is determined by P up to multiplication by roots of 1, so that

(7.6) Z6(A,S, X) =
1
w
Z4(a,S, X).

When ∆ > 0, α may be chosen with ε−1 < ψ(α) ≤ ε, and is then unique up
to a factor ±1, so that (by the definition of Z4(a,S, X) in this case) again
(7.6) holds. Now Z4(a,S, X) may be estimated by Lemma 12.

Theorem 2a follows by taking the sum over the ideal classes A. The main
term is certainly correct. The error term will follow once we have shown that∑

A

Ln(A)� (hR log+ hR)1/2;

here the sum is over all ideal classes A. But by the definition (6.1),
∑

A

Ln(A) =
(∑

A

N(A)−1/2
)(∑

b

N(b)−n−1/2
)
.

The first factor is � (hR log+ hR)1/2 by (5.3), and the second factor is

ζK

(
n+

1
2

)
≤
∞∑
x=1

τ(x)x−n−1/2 � 1,

where τ(x) is the number of divisors of x.

8. Proof of Theorem 3. Let S be a closed set in R2n+2 as specified
in Section 7. More precisely, write S = S− if it is of the type specified for
∆ < 0, and S = S+ if it is of the type specified for ∆ > 0. Let HS

+
(P ) [or

HS
−

(P )] be the height of a point P ∈ Pn(A) where Q(P ) is real quadratic
(with discriminant ∆ > 0) [or imaginary quadratic (with ∆ < 0)]. With
either the + or − sign, let Z±7 (S±, X) be the number of points P ∈ Pn(A)
where Q(P ) is quadratic with ±∆ > 0 and with HS

±
(P ) ≤ X. In what

follows, for simplicity of notation, S will be a set of type S+ when dealing
with Z+

7 , and of type S− when dealing with Z−7 .

Theorem 3a. When n ≥ 3, then

(8.1) Z±7 (S, X) = c±13(S)Xn+1 +O(Xn+(1/2))

with certain constants c+13(S), c−13(S) defined below. When n = 2, then

(8.2) Z±7 (S, X) = c±14(S)X3 logX +O(X3
√

logX),
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where

(8.3) c+14(S) = V (S(e))/(2ζ(3)2), c−14(S) = 4V (S)/(πζ(3)2).

Since N±(2, n,X) = Z±7 (S±0 , X), and since by what we said in §7,
V (S+

0 (e)) = 96, V (S−0 ) = π3 for n = 2, we obtain the cases n ≥ 2 of
Theorem 3. The case n = 1 of that theorem will be dealt with in the next
section.

P r o o f o f T h e o r e m 3a. It will be convenient to parametrize quad-
ratic number fields by their discriminant ∆. Let D be the set of fundamental
discriminants, i.e., the set of integers which arise as the discriminant of a
quadratic number field. It is well known ([6, §29]) that D = D0 ∪D1, where

D0 = {∆ = 4d | d ≡ 2 or 3 (mod 4), d square free},
D1 = {∆ | ∆ ≡ 1 (mod 4), ∆ square free, ∆ 6= 1}.

For ∆ ∈ D we will write h = h(∆), R = R(∆), w = w(∆), etc., for the class
number, regulator (as defined in (1.4)), number of roots of unity, etc., of the
quadratic field with discriminant ∆. Also, with Z5(K,S, X) the quantity
introduced in the last section, we will write Z5(∆,S, X) = Z5(K,S, X)
where K is the field with discriminant ∆. Now if D+, D− consist respectively
of positive and negative elements of D, then

Z±7 (S, X) =
∑

∆∈D±
Z±5 (∆,S, X).

Suppose initially that n ≥ 3. Since, as is well known (see, e.g., [16]),
hR � |∆|1/2+δ for δ > 0, the sum

∑ |∆|−n/2(hR log+ hR)1/2 over ∆ ∈ D
is convergent. From Theorem 2a we may infer that (8.1) holds with

c±13(S) = V0(S)
∑

∆∈D±

h(∆)R(∆)
w(∆)ζ∆(n+ 1)|∆|(n+1)/2

.

Here we used the fact that the infinite sum in the definition of c±13(S) is
clearly convergent when n ≥ 3.

This same sum is divergent when n = 2. When n = 2 we will use the
fact that for a point P ∈ Pn(A) with Q(P ) of degree d, the discriminant ∆
of Q(P ) has

(8.4) |∆| ≤ ddHK(P )2d−2

(Silverman [18, Theorem 2]). In our case, d = 2, so that |∆| ≤ 4HK(P )2.
The hypothesis that S is contained in the ball of radius 1 when ∆ < 0, and
is contained in |α| |α′| ≤ 2 when ∆ > 0, implies that HK(P ) ≤ c15H

S(P ).
Therefore HS(P ) ≤ X yields

|∆| ≤ c16X
2.
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Setting

(8.5) Y = c16X
2,

and denoting the intersection of D or D± with |∆| ≤ Y by D(Y ) or D±(Y ),
we may infer from Theorem 2a that in the case n = 2 we have

(8.6) Z±7 (S, X) = A±X3 +O(BX5/2),

where

A± = V0(S)
∑

∆∈D±(Y )

hR

w(∆)ζ∆(3)|∆|3/2 ,

B =
∑

∆∈D(Y )

|∆|−1(hR log+ hR)1/2.

We first turn to the evaluation of A±. Let
(
∆
l

)
be the Kronecker symbol,

and

L(s,∆) =
∞∑

l=1

(
∆

l

)
l−s

the L-function belonging to the quadratic field with discriminant ∆. Then

ζ∆(s) = ζ(s)L(s,∆)

(Hecke [6, (137)]). Further

λhR

w|∆|1/2 = L(1,∆)

by [6, (145)], our definition (1.5) of λ, and Hecke’s definition of κ [6, p. 156].
Therefore

hR

wζ∆(3)|∆|3/2 =
L(1,∆)

λζ(3)|∆|L(3,∆)
.

In the appendix it will be shown that

(8.7)
∑

∆∈D±(T )

L(1,∆)/L(3,∆) = (2ζ(3))−1T +O(T 7/10+δ).

Partial summation gives
∑

∆∈D±(Y )

L(1, ∆)/(L(3,∆)|∆|) = (2ζ(3))−1 log Y +O(1).

A combination of our equations yields

A± =
V0(S)

2ζ(3)2λ
(log Y +O(1)) =

V0(S)
ζ(3)2λ

logX +O(1)

by (8.5), and since V0(S)� 1.
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When dealing with A+, we have V0(S) = 2V (S(e)), λ = 4 by (6.3), (1.5),
and when dealing with A− we have V0(S) = 8V (S), λ = 2π. Therefore

(8.8) A± = c±14(S) logX +O(1)

with c±14(S) given by (8.3).
Let us turn to the quantity B. Since hR� |∆| (in fact � |∆|1/2+δ),

B � (log+ Y )1/2
∑

∆∈D(Y )

|∆|−3/8((hR)1/2|∆|−5/8),

and by Cauchy’s inequality this is

� (log+ Y )1/2
( ∑

|∆|∈D(Y )

|∆|−3/4
)1/2( ∑

∆∈D(Y )

hR|∆|−5/4
)1/2

.

The first sum on the right hand side is � Y 1/4. On the other hand, for
T > 1 we have ∑

∆∈D(T )

hR� T 3/2

(see, e.g., Siegel [16], or the discussion in our appendix), and partial sum-
mation yields

∑

∆∈D(Y )

hR/|∆|5/4 � Y 1/4.

We may conclude that

(8.9) B � Y 1/4(log+ Y )1/2 � X1/2(logX)1/2.

The estimate (8.2) now follows from (8.6), (8.8), (8.9).

9. The case n = 1 of Theorem 3. This case is easy and is independent
of what has been done above. With the exception of (0 : 1), every point of
P1 is of the type (1 : α). When α is quadratic, it satisfies a unique equation
f(α) = 0, where

f(x) = ax2 + bx+ c

is a polynomial in Z[x] with a > 0, gcd(a, b, c) = 1, which is irreducible
over Q. When a is the fractional ideal generated by 1, α, then it follows
from Gauss’ Lemma that N(a) = a−1, and therefore

HK(1 : α) = amax(1, |α|) max(1, |α′|),
where α′ is the conjugate of α. The right hand side here is called the Mahler
measure of α.
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Suppose Q(α) is imaginary quadratic. Then c > 0, b2 < 4ac and |α| =
|α′|, so that HK(1 : α) = max(|a|, |c|). Therefore N−(2, 1, X) is twice the
number of irreducible polynomials f(x) with

(9.1) 0 < a ≤ X, 0 < c ≤ X, |b| < 2
√
ac,

and with gcd(a, b, c) = 1. Since there are no reducible polynomials with
negative discriminant, N−(2, 1, X) is twice the number of primitive integer
points (a, b, c) in the region R− given by (9.1); here a point is primitive if
its coordinates are coprime. The region R− has volume (16/9)X3, and it
is contained in a ball of radius � X. Thus when X ≥ 1, the number of
integer points in this region is (16/9)X3 + O(X2). This follows, e.g., from
Davenport’s inequality (2.4). By Möbius inversion, the number of primitive
integer points in the region is ((16/9)ζ(3))X3 + O(X2). We may conclude
that

N−(2, 1, X) = ((32/9)ζ(3))X3 +O(X2).

Suppose Q(α) is real quadratic. Then b2 > 4ac and

HK(1 : α) = max(|a|, |c|, |aα|, |aα′|)

= max
(
|a|, |c|, 1

2
|b+

√
b2 − 4ac|, 1

2
|b−

√
b2 − 4ac|

)
.

Thus HK(α) ≤ X means that |a| ≤ X, |c| ≤ X, and |b|+√b2 − 4ac ≤ 2X.
This last condition is the same as b2−4ac ≤ (2X−|b|)2, or |b| ≤ X+(ac/X),
so that

(9.2) 0 < a ≤ X, |c| ≤ X, b2 > 4ac, |b| ≤ X + (ac/X).

There are only few reducible polynomials with coefficients in this range: for
if f(x) = (ux+ v)(u′x+ v′), then (as is well known—in fact it follows from
(10.6) below)

max(|u|, |v|) max(|u′|, |v′|)� max(|a|, |b|, |c|) < 2X.

Given nonnegative integers ν, ν′ with ν + ν′ = [log 2X], the number of
integers u, v, u′, v′ with max(|u|, |v|)� eν , max(|u′|, |v′|)� eν

′
is� e2ν+2ν′

� X2. Taking the sum over pairs ν, ν′, we obtain � X2 logX reducible
polynomials. Therefore up to a summand O(X2 logX), our N+(2, 1, X) is
twice the number of primitive integer points in the region R+ given by (9.2).
We obtain

N+(2, 1, X) = 2V/ζ(3) +O(X2 logX),

where V is the volume ofR+. WriteR+ = R+
1 ∪R+

2 withR+
1 ,R+

2 containing
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points with c ≤ 0 and c > 0, respectively. Setting c1 = −c, we have

V (R+
1 ) = 2

X∫
0

X∫
0

(X − (ac1/X)) da dc1 = (3/2)X3,

V (R+
2 ) = 2

X∫
0

X∫
0

(X + (ac/X)− 2
√
ac) da dc = (13/18)X3.

Therefore V = V (R+
1 ) + V (R+

2 ) = (20/9)X3. The case n = 1 of Theorem 3
follows.

10. Proof of Theorem 4. Given a nonzero quadratic form as in (1.9),
with rational coefficients aij , let H(f) be the height of its coefficient vec-
tor. Proportional forms have the same height. Let Z8(n,X) be the number
of nonzero decomposable quadratic forms as above with height H(f) ≤ X,
where proportional forms are counted as one. As was pointed out in the intro-
duction, when f is decomposable, it determines a field K(f). Let Z−8 (n,X),
Z+

8 (n,X), Z0
8 (n,X) respectively count only those of the forms counted by

Z8(n,X) where K(f) is imaginary quadratic, real quadratic, or the rational
field.

Theorem 4a.

Z±8 (2, X) = c±17(2)X3 logX +O(X3
√

logX),

Z±8 (n,X) = c±17(n)Xn+1 +O(Xn+(1/2)) when n ≥ 3,

Z0
8 (n,X) = c017(n)Xn+1 logX +O(Xn+1) when n ≥ 2.

This easily implies Theorem 4. For when f has coefficients aij ∈ Z with
|aij | ≤ X, then uniquely f = tf∗ where t is natural and f∗ has coprime
coefficients a∗ij ∈ Z. Now

H(f∗) = max
i,j
|a∗ij | = t−1 max

i,j
|aij | ≤ t−1X,

so that (since Z8 counts ±f∗ as one, but Z counts ±f separately)

(10.1) Z±(n,X) = 2
∞∑
t=1

Z±8 (n,X/t).

When t ≤ X, we may apply Theorem 4a to Z±8 (n,X/t), and when t > X
we have Z±8 (n,X/t) = 0. Thus, e.g., when n = 2, we have

Z±(2, X) = 2c±17(2)
X∑
t=1

(X/t)3 log(X/t) +O
( X∑
t=1

(X/t)3
√

logX
)

= 2ζ(3)c±17(2)X3 logX +O(X3
√

logX).
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Therefore the first assertion of Theorem 4 holds with c±8 (2) = 2ζ(3)c±17(2).
The other cases of Theorem 4 follow similarly.

P r o o f o f T h e o r e m 4a. We begin with the quantities Z±8 (n,X). Let
P , P ′ be the pair of points associated with the quadratic form f , as exhibited
in the introduction, so that Q(P ) = Q(P ′) = K(f) is quadratic. We may
represent P , P ′ as (α0 : . . . : αn), (α′0 : . . . : α′n), where αi, α′i ∈ K(f) and
α′i is the conjugate of αi (0 ≤ i ≤ n). Then f is proportional to, and may be
supposed to be equal to ll′ with l(x) =

∑n
i=0 αixi, l

′(x) =
∑n
i=0 α

′
ixi. Let a

be the ideal generated in K(f) by α0, . . . , αn, and a′ be the ideal generated
in K(f) by α′0, . . . , α

′
n. Further let u be the ideal generated by the coefficients

aij of f . By Gauss’ Lemma, u = aa′, so that with K = K(f), the respective
norms have NQ(u)2 = NK(u) = NK(a)NK(a′) = NK(a)2. Therefore

H(f) = NK(a)−1 max
k,j
|akj |.

But

akj =
{
αkα

′
k when k = j,

αkα
′
j + αjα

′
k when k 6= j,

so that

(10.2) H(f) = HS(P )

with a certain set S ⊂ R2n+2. Namely, when we deal with Z+
8 , so that

K = K(f) is real, then S = S+
1 , say, is defined by

(10.3)
|αkα′k| ≤ 1 (0 ≤ k ≤ n),

|αkα′j + αjα
′
k| ≤ 1 (0 ≤ j < k ≤ n).

Clearly when (α,α′) ∈ S+
1 and |tt′| ≤ 1, then also (tα, t′α′) ∈ S+

1 . Further-
more, if k, j are chosen with |α| = |αk|, |α′| = |α′j |, then when j 6= k,

|α| |α′| = |αk| |α′j | ≤ 1 + |αjα′k| ≤ 1 + |αk|−1|α′j |−1 = 1 + |α|−1|α′|−1,

so that certainly |α| |α′| < 2. This is also true when j = k. If we deal
with Z−8 , so that K = K(f) is imaginary quadratic, then α′j is the complex
conjugate of αj , i.e., α′j = αj , and (10.3) says that |αk| ≤ 1 (0 ≤ k ≤ n)
and |2 Re(αkαj)| ≤ 1 (0 ≤ j < k ≤ n). Writing αk = ξk + iηk with real ξk,
ηk, we see that (10.2) holds with S = S−1 given by

(10.4)
ξ2
k + η2

k ≤ 1 (0 ≤ k ≤ n),

2|ξkξj + ηkηj | ≤ 1 (0 ≤ j < k ≤ n).

To each form f there belong the two points P , P ′. Therefore

Z±8 (n,X) = 1
2Z
±
7 (S±1 , X).

The first two assertions of Theorem 4a now follow from Theorem 3a. In fact,
we have c±17(n) = 1

2c
±
13(S±1 ) when n ≥ 3, c±17(2) = 1

2c
±
14(S±1 ) when n = 2.
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We next turn to the quantity Z0
8 (n,X). Our work here is independent

of the rest of the paper. We may suppose that the coefficients aij of f are
relatively prime integers. When f is reducible with K(f) = Q, then f = ll′

with l =
∑
αixi, l′ =

∑
α′ixi, where α = (α0, . . . , αn), α′ = (α′0, . . . , α

′
n)

are primitive points, i.e., points with coordinates in Z, and without common
factor. Writing

G(α,α′) = max(|αkα′k| (0 ≤ k ≤ n) and |αkα′j + αjα
′
k| (0 ≤ j < k ≤ n)),

we have to deal with pairs of primitive points α, α′ with

(10.5) G(α,α′) ≤ X.
We have seen above that G(α,α′) ≤ 1, which is the same as (10.3),

implies |α| |α′| < 2, so that in general

(10.6) 1
2 |α| |α′| ≤ G(α,α′) ≤ 2|α| |α′|.

When α = α′ or α = −α′, we have G(α,α′) ≥ 1
2 |α|2, so that (10.5) gives

|αi| � X1/2. The number of such pairs is � X(n+1)/2, which is negligible.
(They correspond to quadratic forms f of rank 1.) When α, α′ are not
related as above, we note that the pair α, α′ gives the same quadratic form
as α′, α, and again we get the same quadratic form (up to a factor ±1) if
α or α′ is replaced by minus itself. Therefore

(10.7) Z0
8 (n,X) = 1

8Z9(n,X) +O(X(n+1)/2),

where Z9(n,X) is the number of ordered pairs of primitive points α, α′ with
(10.5).

Now let Z10(n,X) be the number of (not necessarily primitive) ordered
pairs of nonzero integer points α, α′ with (10.5).

Lemma 13.

Z10(n,X) = c18(n)Xn+1 logX +O(Xn+1).

This lemma easily gives what we want: Indeed, each α, α′ may uniquely
be written as α = tβ, α′ = t′β′ with t, t′ natural numbers and with β, β′

primitive; and then G(β,β′) = G(α,α′)/(tt′). Therefore

Z10(n,X) =
∞∑
t=1

∞∑

t′=1

Z9(n,X/(tt′)).

Of course, the summands vanish when tt′ is large, more precisely when
tt′ > 2X, since G(β,β′) < 1/2 yields |β| |β′| < 1 by (10.6). Möbius inversion
in both t, t′ gives

(10.8) Z9(n,X) =
∑
t

∑

t′
µ(t)µ(t′)Z10(n,X/(tt′)),
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where again we may restrict to summands with tt′ ≤ 2X. It is an easy
exercise to deduce from Lemma 13 that

Z9(n,X) = (c18(n)/ζ(n+ 1)2)Xn+1 logX +O(Xn+1),

which in view of (10.7) gives the last assertion of Theorem 4a with c017(n) =
c18(n)/(8ζ(n+ 1)2).

Incidentally, in order to deal with Z0(n,X) in Theorem 4, we could
have avoided the twofold inversion (10.8) (but not a simple inversion) by
considering pairs α,α′ where just α is required to be primitive.

Finally, we turn to the proof of Lemma 13. Nonzero integer points α

have |α| ≥ 1, so that Z10(n,X) is the number of integer points (α,α′) in
the set T ⊂ R2n+2 given by

(10.9) G(α,α′) ≤ X and |α| ≥ 1, |α′| ≥ 1.

We will estimate Z10(n,X) using Davenport’s inequality (2.4). We will show
that

(10.10) V (T ) = c18(n)Xn+1 logX +O(Xn+1)

and

(10.11) V (T ′)� Xn+1

for the projections T ′ of T on the coordinate planes of dimensions < 2n+2;
and this clearly will yield the lemma.

In view of (10.9) and (10.6), T is contained in a ball of radius � X, so
that (10.11) is certainly true for the projection on a plane of dimension ≤ n+
1. Without loss of generality it will therefore suffice to prove (10.11) when T ′
is the orthogonal projection of T on the coordinate plane Π(l,m) consisting
of points (α0, . . . , αl, 0, . . . , 0, α′0, . . . , α

′
m, 0, . . . , 0) with l ≥ 0, m ≥ 0. In

fact, we may suppose that

(10.12) 0 ≤ l ≤ m ≤ n.
Writing T ′(l,m) for this projection, we will show that

(10.13) V (T ′(l,m))
{

= c19(m)Xm+1 logX +O(Xm+1) when l = m,
� Xm+1 when l < m.

This will give both (10.11) (when l + m < 2n), as well as (10.10) (when
l = m = n).

Points (α,α′) in T ′(l,m) where |α| < 1 or |α′| < 1 make up a set of
volume � Xm+1, since T lies in a ball of radius � X. Such points may
be neglected in the estimation of V (T ′(l,m)). Therefore T ′(m,m) may be
replaced by T ′′(m,m), consisting of (α,α′) ∈ Rm+1 × Rm+1 with G(α,α′)
≤ X and |α| ≥ 1, |α′| ≥ 1. Points (α,α′) ∈ T ′(l,m) certainly have 1

2 |α| |α′|
≤ X, so that for l < m we note that T ′(l,m) ⊆ T ′′(l,m), consisting of
(α,α′) ∈ Rl+1×Rm+1 with 1

2 |α| |α′| ≤ X and |α| ≥ 1, |α′| ≥ 1. Therefore it
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will suffice to prove (10.13) with T ′′(l,m) in place of T ′(l,m). Here T ′′(l,m)
consists of (α,α′) with

F (α,α′) ≤ X, |α| ≥ 1, |α′| ≥ 1,

where

F (α,α′) =
{
G(α,α′) when l = m,
1
2 |α| |α′| when l < m.

Write α = rβ, α′ = r′β′ where r > 0, r′ > 0 and |β| = |β′| = 1,
so that 1/2 ≤ F (β,β′) ≤ 2. Let dβ be the l-dimensional volume element
on the cube surface C(l) consisting of β ∈ Rl+1 with |β| = 1. (This cube
has 2(l + 1) sides of volume 2l, so that

∫
C(l) dβ = 2(l + 1) · 2l.) We have

dα = rldrdβ. Similarly, dα′ = r′mdr′dβ′. In terms of the coordinates r, r′,
β, β′, the set T ′′(l,m) is given by r ≥ 1, r′ ≥ 1 and rr′F (β,β′) ≤ X. Thus
when X ≥ 1,

V (T ′′(l,m)) =
∫
C(l)

dβ
∫
C(m)

dβ′
X/F∫
1

rl dr

X/(rF )∫
1

r′m dr′,

where F = F (β,β′). The inner double integral is{
((m+ 1)Fm+1)−1Xm+1 logX +O(Xm+1) when l = m,
� Xm+1 when l < m.

Therefore (10.13) holds with

c19(m) = (m+ 1)−1
∫
C(m)

∫
C(m)

F (β,β′)−m−1 dβ dβ′.

Appendix. Certain sums involving L-series. As in Section 8, let

L(s,∆) =
∞∑
n=1

(
∆

n

)
n−s.

Here
(
∆
n

)
is the Kronecker symbol, defined for ∆ ≡ 0 or 1 (mod 4). Let D

be the set of fundamental discriminants, and D+(X), D−(X) respectively
the set of numbers ∆ ∈ D with 0 < ∆ ≤ X or 0 < −∆ ≤ X. We will study
sums of the type

S±(s, a,X) =
∑

∆∈D±(X)

L(s,∆)/L(a,∆).

Our goal in this appendix will be a proof of the following

Proposition. Suppose s = σ + it, a = α + ib with 5/8 < σ < α and
5/4 < α. Then for δ > 0,

S±(s, a,X) = c0(s, a)X +O(Xmax(1/2+δ,3/2−(4/5)σ+δ)
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with

c0(s, a) =
1
2
ζ(2s)

∏
p

(1− p−2 − p−2s−1 + p−2s−2 − p−s−a + p−s−a−1).

R e m a r k s. Here and below, the constants implicit in O(. . .) and in
� may depend on δ, σ and α only. The case s = 1, a = 3 yields (8.7),
since c0(1, 3) = 1/(2ζ(3)). Presumably, our conditions on α and σ could be
relaxed. Our method also shows that

S±(s,X) =
∑

∆∈D±(X)

L(s,∆)

has S±(s,X) ∼ c0(s)X with

c0(s) =
1
2
ζ(2s)

∏
p

(1− p−2 − p−2s−1 + p−2s−2),

and with an error term as in the proposition. Sums similar to S±(s,X)
were studied by Goldfeld and Hoffstein [4]. (They take sums over ∆ ∈ D
with ∆ ≡ 1 (mod 4) and 0 < ±∆ ≤ X, and with ∆ ≡ 0 (mod 4) and 0 <
±∆ ≤ 4X. They only require that σ ≥ 1/2. There is a slight mistake in their
constant.) Since, as already noted in Section 8, λhR/w = |∆|1/2L(1,∆), the
sums S±(1, X) are related to sums

∑

∆∈D±(X)

h(∆)R(∆).

Asymptotic formulas for such sums, but in the context of quadratic forms,
and with ∆ only restricted by ∆ ≡ 0 or 1 (mod 4), had been conjectured
by Gauss, and first proved by Lipschitz [9] in the case of summation over
0 < −∆ ≤ X, and by Siegel [15] over 0 < ∆ ≤ X.

Our method will follow Siegel’s.
We begin with a series of lemmas.

Lemma 14. Let E consist of the integers which are congruent to 1, 5, 9, 13,
8, or 12 (mod 16). Let E±(Y ) be the set of E ∈ E with 0 < ±E ≤ Y . Given
natural l, set

A±l (Y ) =
∑

E∈E±(Y )

(
E

l

)
.

Then

(i) A±l (Y )� min(Y, l1/2 log+ l) when l is not a square.
(ii) When l = u2, then

(A1) A±l (Y ) = u−1ψ(u)φ(u)Y +O(u),
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where φ is Euler’s function and

ψ(u) =
{

3/8 when u is odd ,
1/2 when u is even.

P r o o f. (i) When l is odd, then
(
E
l

)
is a character of modulus l, and this

character is nontrivial when l is not a square. When E runs through a finite
set of consecutive integers, the corresponding sum

∑(
E
l

)
is � l1/2 log+ l

by the Pólya–Vinogradov inequality (see, e.g., [1, Theorem 13.15]). Since
(l, 16) = 1, the same is true when E runs through a finite set of consecutive
elements of an arithmetic progression with common difference 16. Since E
consists of 6 such progressions, the assertion follows.

Now let l be even. Write E = E0 ∪ E1, where E0 consists of integers ≡ 8
or 12 (mod 16), and E1 of integers ≡ 1 (mod 4). For l even and E ∈ E0, we
have

(
E
l

)
= 0. We therefore may restrict ourselves to E ∈ E1. Write l = l1l2

where l1 is a power of 2, and l2 is odd. Following Siegel we observe that

%1(E) =
(

4l1
E

)(
E

l2

)
and %2(E) =

(−4l1
E

)(
E

l2

)

are nontrivial characters mod 4l, and that

1
2 (%1(E) + %2(E)) =

{(
E
l

)
when E ∈ E1,

0 otherwise.

A sum
∑
%i(E) (i = 1, 2), where E runs through a finite set of consecutive

numbers, again is� l1/2 log+ l by Pólya–Vinogradov. The assertion follows.
(ii) When l = u2, then A±l (Y ) is the number of E ∈ E±(Y ) with (E, u)

= 1. When u is odd, this is the number of integers E which lie in certain
6 residue classes (mod 16), which are coprime to u and lie in the interval
0 < ±E ≤ Y . The number of such integers E in an interval of length 16u is
6φ(u), so that A±l (Y ) = (6φ(u)/16u)Y +O(u), giving (A1). When u is even,
then A±l (Y ) is the number of integers E ≡ 1 (mod 4) with (E, u) = 1 lying
in the interval 0 < ±E ≤ Y . The number of such integers in an interval of
length 2u is φ(u), so that A±l (Y ) = (φ(u)/2u)Y +O(u), again yielding (A1).

Lemma 15. Put B±l (X) =
∑
∆∈D±(X)

(
∆
l

)
.

(i) When l is not a square,

B±l (X)� l1/4(log+ l)1/2X1/2.

(ii) When l = u2,

(A2) B±l (X) = u−1ψ(u)φ(u)
( ∞∑

q=1
(2u,q)=1

µ(q)q−2
)
X +O(X1/2u).
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P r o o f. As in §8, write D = D0 ∪D1, where D0 consists of fundamental
discriminants ∆ ≡ 0 (mod 4) (i.e., ∆ = 4E with E ≡ 2 or 3 (mod 4), E
square free), and D1 consists of fundamental discriminants ∆ ≡ 1 (mod 4)
(i.e., ∆ ≡ 1 (mod 4), ∆ square free, ∆ 6= 1). Now

∑

∆∈D±0 (X)

(
∆

l

)
=

∑

0<±E≤X/4
E≡2 or 3 (mod 4)
E square free

(
4E
l

)
=

√
X∑

q=1

µ(q)
∑

0<±E≤X/4
E≡2 or 3 (mod 4)

q2|E

(
4E
l

)
.

The outer sum is understood to be over integers q in 1 ≤ q ≤ √X. The
summands have E = q2E′ with q odd and E′ ≡ 2 or 3 (mod 4). We clearly
may restrict ourselves to summands with (l, q) = 1. We therefore obtain

√
X∑

q=1
(2l,q)=1

µ(q)
∑

0<±E′≤X/(4q2)
E′≡2 or 3 (mod 4)

(
4E′

l

)
,

so that
∑

∆∈D±0 (X)

(
∆

l

)
=

√
X∑

q=1
(2l,q)=1

µ(q)
∑

0<±E≤X/q2

E∈E0

(
E

l

)
.

A similar computation shows that this relation remains true if D0, E0 are
replaced by D1, E1. Taking the sum we get

B±l (X) =

√
X∑

q=1
(2l,q)=1

µ(q)
∑

E∈E±(X/q2)

(
E

l

)
.

When l is not a square, the inner sum is � min(l1/2 log+ l,X/q2) by
Lemma 14, so that we get

�
∞∑
q=1

min(l1/2 log+ l,X/q2)� X1/2l1/4(log+ l)1/2.

When l = u2, the inner sum is

u−1ψ(u)φ(u)(X/q2) +O(u)

by the same lemma. Thus

B±l (X) = u−1ψ(u)φ(u)
( √

X∑
q=1

(2u,q)=1

µ(q)q−2
)
X +O(X1/2u),

from which we easily get (A2).
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We now introduce a parameter Z > 1, to be specified later.

Lemma 16. (i) When σ > 0,

L(s,∆) = L1(s,∆,Z) +O(Z−σ|∆|1/2 log+ |∆|)
where

L1(s,∆,Z) =
Z∑
n=1

(
∆

n

)
n−s.

(ii) When a = α+ ib, with α > 1, then |L(a,∆)| � 1.

P r o o f. (i) We may suppose that Z is an integer.

L(s,∆)− L1(s,∆,Z) =
∑

n>Z

(
∆

n

)
n−s =

∑

n>Z

(sn − sn−1)n−s

with

sn :=
n∑

j=1

(
∆

j

)
� |∆|1/2 log+ |∆|

by Pólya–Vinogradov. We get

L(s,∆)− L1(s,∆,Z) =
∑

n>Z

sn(n−s − (n+ 1)−s)− sZ(Z + 1)−s

� |∆|1/2(log+ |∆|)
((∑

n>Z

n−σ−1
)

+ Z−σ
)

� Z−σ|∆|1/2 log+ |∆|.
(ii) follows from the product formula

|L(a,∆)| =
∏
p

∣∣∣∣1−
(
∆

p

)
p−a

∣∣∣∣
−1

≥
∏
p

(1 + p−α)−1 � 1.

We now turn to the proof of the proposition. By Lemma 16,

S±(s, a,X) =
∑

∆∈D±(X)

L(s,∆,Z)
L(a,∆)

+O
(
Z−σ

X∑

∆=−X
|∆|1/2 log+∆

)
,

so that

(A3) S±(s, a,X) = S±1 (s, a,X,Z) +O(Z−σX3/2 logX)

where (in view of L(a,∆)−1 =
∑
m

(
∆
m

)
µ(m)m−a),

S±1 (s, a,X,Z) =
∑

∆∈D±(X)

( Z∑
n=1

(
∆

n

)
n−s

)( ∞∑
m=1

(
∆

m

)
µ(m)m−a

)
(A4)
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=
∞∑
m=1

µ(m)m−a
Z∑
n=1

n−s
∑

∆∈D±(X)

(
∆

mn

)
.

When mn is not a square, the inner sum is � X1/2(mn)1/4(log+mn)1/2 by
Lemma 15. Therefore the terms with mn not a square contribute

� X1/2
( ∞∑
m=1

m1/4−α(log+m)1/2
)( Z∑

n=1

n1/4−σ(log+ n)1/2
)
,

and since α > 5/4, this is

� X1/2 max(1, Z5/4−σ)(log+ Z)3/2.

Thus

S±1 (s, a,X,Z) = S±2 (s, a,X,Z)(A5)

+O(X1/2 max(1, Z5/4−σ)(log+ Z)3/2),

where S±2 (s, a,X,Z) is the sum of the terms where mn is a square.
When mn = u2, the inner sum on the right hand side of (A4) is again

estimated by Lemma 15. We have

u−1m−an−s = u−2s−1ms−a, um−an−s = u−2s+1ms−a,

so that

(A6) S±2 (s, a,X,Z) = XS3(s, a, Z) +O(X1/2S∗3 (s, a, Z)),

where

S3(s, a, Z) =
∞∑
m=1

µ(m)ms−a
√
mZ∑
u=1
m|u2

ψ(u)φ(u)u−2s−1
∞∑
q=1

(2u,q)=1

µ(q)q−2,

S∗3 (s, a, Z) =
∞∑
m=1

mσ−α
√
mZ∑
u=1
m|u2

u−2σ+1 �
∞∑
u=1

u1−2σ
∑

m|u2

m≥u2/Z

mσ−α.

The number of divisors of u2 is � uδ for δ > 0, so that the inner sum here
is � uδ min(1, (Z/u2)α−σ), since α ≥ σ. Recalling that α > 1, and choosing
δ sufficiently small, we get

S∗3 (s, a, Z)�
∑

u≤
√
Z

u1−2σ+δ + Zα−σ
∑

u>
√
Z

u1−2α+δ(A7)

� max(1, Z1−σ+δ).
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It remains for us to deal with S3(s, a, Z). Since
∑

u>
√
mZ

ψ(u)φ(u)u−2s−1 �
∑

u>
√
mZ

u−2σ � (mZ)1/2−σ,

and since
∑
mm

1/2−α � 1, we have

(A8) S3(s, a, Z) = c0(s, a) +O(Z1/2−σ)

with

c0(s, a) =
∞∑
u=1

ψ(u)φ(u)u−2s−1
∞∑
q=1

(2u,q)=1

µ(q)q−2
∑

m|u
µ(m)ms−a.

Combining (A3), (A5), (A6), (A7), (A8) we obtain

S±(s, a,X) = c0(s, a)X

+O(Z−σX3/2+δ +X1/2Zδ max(1, Z5/4−σ) +XZ1/2−σ).

We now choose Z = X4/5 to obtain the estimate of the proposition.
To evaluate c0(s, a) we note that
∞∑
q=1

(2u,q)=1

µ(q)q−2 = ζ(2)−1
∏

p|2u
(1− p−2)−1 = ζ(2)−1%(u)

∏

p|u
(1− p−2)−1,

where %(u) = 1 when u is even, %(u) = 4/3 when u is odd. Note that
ψ(u)%(u) = 1/2 always. Therefore

c0(s, a) = (2ζ(2))−1
∞∑
u=1

φ(u)u−2s−1
(∏

p|u
(1− p−2)−1(1− ps−a)

)
.

The function in u behind the
∑

symbol is multiplicative, so that

c0(s, a) = (2ζ(2))−1
∏
p

(
1 + (1− p−2)−1(1− ps−a)

( ∞∑
ν=1

φ(pν)/pν(2s+1)
))

= (2ζ(2))−1

×
∏
p

(1 + (1− p−2)−1(1− p−(a−s))(1− p−2s)−1(p− 1)p−2s−1)

=
1
2
ζ(2s)

∏
p

((1− p−2)(1− p−2s) + (1− p−(a−s))(p− 1)p−2s−1)

=
1
2
ζ(2s)

∏
p

(1− p−2 − p−2s−1 + p−2s−2 − p−a−s + p−a−s−1).
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