Northcott's theorem on heights II. The quadratic case

by

WOLFGANG M. SCHMIDT (Boulder, Colo.)

1. Introduction. The distribution of algebraic points in projective space $\mathbb{P}^{n}(A)$, where *A* is the field of algebraic numbers, is best described in terms of their height. When *K* is an algebraic number field and *P* a point in $\mathbb{P}^n(K)$, let $H_K(P)$ be the multiplicative field height as defined in [8], [11], [12], [13] or [14]. When $P = (\alpha_0 : \ldots : \alpha_n)$ lies in $\mathbb{P}^n(A)$, let $K = \mathbb{Q}(P)$ be the field obtained from \mathbb{Q} by adjoining the ratios α_i/α_j ($0 \leq i, j \leq n; \alpha_j \neq 0$), and set $\mathcal{H}(P) = H_K(P)$. Note that $\mathcal{H}(P)$ is the *d*th power of the absolute height $H(P)$ as defined in the literature, where $d = \deg \mathbb{Q}(P)$.

Given a field *K*, let $N(K, n, X)$ be the number of points $P \in \mathbb{P}^n(K)$ with $H_K(P) \leq X$. Given *d*, let $\mathcal{N}(d, n, X)$ be the number of points $P \in \mathbb{P}^n(A)$ with deg $\mathbb{Q}(P) = d$ and $\mathcal{H}(P) \leq X$.

Schanuel [11] had proved an asymptotic formula

(1.1)
$$
N(K, n, X) = c_1(K, n)X^{n+1} + \begin{cases} O(X \log X) & \text{when } d = n = 1, \\ O_{Kn}(X^{n+1-(1/d)}) & \text{otherwise.} \end{cases}
$$

The constant $c_1(K, n)$ was explicitly given by Schanuel; like all constants in this paper, it is positive. Further $d = \deg K$, and the constant implicit in $O_{Kn}(\ldots)$ depends on *K* and *n* only. On the other hand, the quantity $\mathcal{N}(d, n, X)$ is finite by Northcott's Theorem [10] but its estimation is more difficult. In the first part [13] of the present series we showed that for given *d*, *n* and $X > X_0(d, n)$,

(1.2)
$$
c_2(d,n)X^{\max(d+1,n+1)} < \mathcal{N}(d,n,X) < c_3(d,n)X^{d+n}.
$$

(In fact, we dealt with the more general situation where the condition $\mathbb{Q}(P)$: \mathbb{Q} = *d* was replaced by $[k(P):k]=d$, where *k* is a given algebraic number field.) In the present paper we will obtain more information in the case when $d = 2$.

Supported in part by NSF grant DMS-9108581.

^[343]

Let $N'(K, n, X)$ be the number of points $P \in \mathbb{P}^n(K)$ with $\mathbb{Q}(P) = K$ and $H_K(P) \leq X$. (Note that $\mathcal{H}(P) = H_K(P)$ for such points.) It is easily seen that $N'(K, n, X)$ satisfies the same asymptotic formula (1.1) as $N(K, n, X)$. Since

(1.3)
$$
\mathcal{N}(d,n,X) = \sum_{K} N'(K,n,X),
$$

where the sum is over all number fields *K* of degree *d*, it is tempting to take the sum over the right hand side of (1.1). However, in order to do so, one needs to know the implied constants in $O_{Kn}(\ldots)$. (One also needs information on the collection of all fields of given degree *d*; this information is readily available only for $d = 2$, when the fields are parametrized by their discriminant.)

In the present paper we will obtain a more precise version of (1.1) for quadratic fields *K*. Our work will also lead to a more explicit form of a classical asymptotic formula of Dirichlet on ideals with bounded norm in a given quadratic number field. (This formula was later extended to arbitrary fields by Dedekind.)

Let *K* be a quadratic number field with discriminant Δ , class number *h*, and with *w* roots of unity. In the case when *K* is real, so that $\Delta > 0$, let $\varepsilon > 1$ be the fundamental unit. Set

(1.4)
$$
R = \begin{cases} 1 & \text{when } \Delta < 0, \\ \log \varepsilon & \text{when } \Delta > 0, \end{cases}
$$

(1.5)
$$
\lambda = \begin{cases} 2\pi & \text{when } \Delta < 0, \\ 4 & \text{when } \Delta > 0. \end{cases}
$$

Finally, for $X > 0$, let $Z(K, X)$ be the number of nonzero integral ideals a in *K* with norm $\mathfrak{N}(\mathfrak{a}) \leq X$. Dirichlet's asymptotic formula says that when *K* is fixed and $X \to \infty$, then

$$
Z(K, X) \sim \frac{\lambda hR}{w|\Delta|^{1/2}} X.
$$

It is easily seen that the error term here is $O_K(X^{1/2})$. In fact, the exponent 1*/*2 can be reduced, but we will not be concerned with this here. Rather we will estimate the implied constant in O_K .

THEOREM 1.

$$
Z(K, X) = \frac{\lambda hR}{w|\Delta|^{1/2}} X + O((XhR \log^+(hR))^{1/2}).
$$

Here the implied constant in $O(...)$ is absolute, and $log^+ x =$ $\max(1, \log x)$. In fact, all the constants which will occur in the sequel in $O(\ldots)$ or in \ll will depend only on occasional parameters *n*, *m*, *l*, *σ*, *α*, *δ*, but will be independent of the field *K*.

Schanuel's constant $c_1(K, n)$ occurring in (1.1), in the case of a quadratic field K , is given by

(1.6)
$$
c_1(K,n) = \frac{\nu h R}{w \zeta_K(n+1)} \left(\frac{\lambda}{|\Delta|^{1/2}}\right)^{n+1},
$$

where ζ_K is the Dedekind zeta function of K and where

(1.7)
$$
\nu = \begin{cases} 1 & \text{when } \Delta < 0, \\ n+1 & \text{when } \Delta > 0. \end{cases}
$$

We now introduce

(1.8)
$$
c_1^*(K, n) = |\Delta|^{-n/2} (hR \log^+(hR))^{1/2}.
$$

Theorem 2. *For a quadratic field K*,

$$
N'(K, n, X) = c_1(K, n)X^{n+1} + O(c_1^*(K, n)X^{n+(1/2)}).
$$

This leads also to an estimate for $N(K, n, X)$. For the points counted by $N(K, n, X)$ but not by $N'(K, n, X)$ are points *P* with $\mathbb{Q}(P) = \mathbb{Q}$, i.e., with $P \in \mathbb{P}^n(\mathbb{Q})$ and $H_K(P) = H_{\mathbb{Q}}(P)^2 \leq X$. Therefore

$$
N(K, n, X) = N'(K, n, X) + N(\mathbb{Q}, n, X^{1/2}) = N'(K, n, X) + O(X^{(n+1)/2}).
$$

Write

$$
\mathcal{N}(2, n, X) = \mathcal{N}^{-}(2, n, X) + \mathcal{N}^{+}(2, n, X),
$$

where $\mathcal{N}^-(2,n,X)$, $\mathcal{N}^+(2,n,X)$ is the number of points $P \in \mathbb{P}^n(A)$ with $\deg \mathbb{Q}(P) = 2$ and $\mathcal{H}(P) \leq X$, and where the discriminant $\Delta(\mathbb{Q}(P))$ is < 0 or > 0 , respectively.

THEOREM 3. *When* $n \geq 3$, *then*

$$
\mathcal{N}^{\pm}(2,n,X) = c_5^{\pm}(n)X^{n+1} + O(X^{n+(1/2)})
$$

 $with\ certain\ constants\ c_5^+(n),\ c_5^-(n)\ defined\ in\ Section\ 8.$ *Here and below, the relations hold with superscript* + *throughout*, *or superscript − throughout. Further when* $n = 2$,

$$
\mathcal{N}^{\pm}(2,2,X) = c_6^{\pm} X^3 \log X + O(X^3 \sqrt{\log X})
$$

with

$$
c_6^+ = \frac{48}{\zeta(3)^2}
$$
, $c_6^- = \frac{4\pi^2}{\zeta(3)^2}$,

and when $n = 1$,

$$
\mathcal{N}^{\pm}(2,1,X) = c_7^{\pm} X^3 + O(X^2 \log X)
$$

with

$$
c_7^+ = \frac{40}{9\zeta(3)}, \quad c_7^- = \frac{32}{9\zeta(3)}.
$$

The theorem shows that for $d = 2$, the lower bounds in (1.2) are near the truth. We expect this to be true in general. In fact Gao Xia will soon publish results for *d >* 2.

Next, we consider nonzero quadratic forms

(1.9)
$$
f(x_0,...,x_n) = \sum_{0 \le i \le j \le n} a_{ij} x_i x_j
$$

with rational coefficients. The form is called *decomposable* if it is the product of two linear forms with algebraic coefficients. When *f* is decomposable, of two linear forms with algebraic coefficients. When f is decomposable,
say $f = ll'$ with $l(\mathbf{x}) = \sum_{i=0}^{n} \alpha_i x_i$, $l'(\mathbf{x}) = \sum_{i=0}^{n} \alpha'_i x_i$, then by unique factorization the (unordered) pair of points $P = (\alpha_0 : \ldots : \alpha_n)$, $P' =$ $(\alpha'_0 : \ldots : \alpha'_n)$ in $\mathbb{P}^n(A)$ is uniquely determined by *f*. We have $\mathbb{Q}(P)$ = $\mathbb{Q}(P') = K(f)$, say, with $K(f)$ either a quadratic or the rational field.

Let $\mathcal{Z}(n, X)$ be the number of decomposable quadratic forms with coefficients $a_{ij} \in \mathbb{Z}$ having $|a_{ij}| \leq X \ (0 \leq i \leq j \leq n)$. We write

$$
\mathcal{Z}(n, X) = \mathcal{Z}^-(n, X) + \mathcal{Z}^+(n, X) + \mathcal{Z}^0(n, X),
$$

where \mathcal{Z}^- , \mathcal{Z}^+ , \mathcal{Z}^0 respectively count only those forms for which $K(f)$ is imaginary quadratic, real quadratic, or the rational field. Since every form in 1 or 2 variables is decomposable, the interesting cases are when $n \geq 2$.

Theorem 4. *We have*

$$
\mathcal{Z}^{\pm}(2, X) = c_8^{\pm}(2)X^3 \log X + O(X^3 \sqrt{\log X}),
$$

$$
\mathcal{Z}^{\pm}(n, X) = c_8^{\pm}(n)X^{n+1} + O(X^{n+(1/2)}) \quad when \ n \ge 3.
$$

On the other hand, for $n > 2$,

$$
\mathcal{Z}^0(n, X) = c_8^0(n)X^{n+1}\log X + O(X^{n+1}).
$$

In particular, $\mathcal{Z}(n, X) \sim c_9(n) X^{n+1} \log X$ for *n* ≥ 2. It is somewhat surprising that when $n \geq 3$, the number $\mathcal{Z}^0(n,X)$ is of larger order of magnitude than $\mathcal{Z}^-(n, X)$ or $\mathcal{Z}^+(n, X)$. Our proof will imply fairly explicit values for the constants $c_8^{\pm}(n)$.

The form *f* could also be written as

$$
f = \sum_{i,j=0}^{n} b_{ij} x_i x_j
$$

with $b_{ij} = b_{ji}$. The form f is decomposable precisely when the symmetric matrix (b_{ij}) has rank \leq 2. Therefore $\mathcal{Z}(n, X)$ may be interpreted as the number of symmetric $(n + 1) \times (n + 1)$ -matrices with rank ≤ 2 such that $b_{ii} \in \mathbb{Z}, |b_{ii}| \leq X$, and $2b_{ij} \in \mathbb{Z}, 2|b_{ij}| \leq X$ for $i \neq j$. Of particular interest is the number $\mathcal{Z}(2, X)$, which counts symmetric 3×3 -matrices. By a slight generalization of our method it would be possible to obtain a complete

analog of Theorem 4 for the number $\mathcal{Z}_1(n,X) = \mathcal{Z}_1^-(n,X) + \mathcal{Z}_1^+(n,X) +$ $\mathcal{Z}_1^0(n,X)$, say, where $\mathcal{Z}_1(n,X)$ is the number of symmetric matrices (b_{ij}) of rank ≤ 2 and order $n+1$ with $b_{ij} \in \mathbb{Z}$, $|b_{ij}| \leq X$ (0 ≤ *i*, *j* ≤ *n*). Many other variations of Theorem 4 could be given.

For the number $\mathcal{Z}_2(n,X)$ of singular $(n+1) \times (n+1)$ -matrices (b_{ij}) (not necessarily symmetric) with $b_{ij} \in \mathbb{Z}$, $|b_{ij}| \leq X$, Katznelson [7] gave an asymptotic formula $\mathcal{Z}_2(n,X) \sim c_{10}(n)X^{n^2+n} \log X$, so that in particular $\mathcal{Z}_2(2,X) \sim c_{10}(3)X^3 \log X.$

There are two directions in which one could try to generalize Theorem 4. On the one hand, one could consider decomposable forms of degree *d* (rather than $d = 2$); this leads essentially to questions (formulated at the beginning) on heights of points of degree *d*. On the other hand, one could consider symmetric matrices of rank $\leq d$ (¹).

In the appendix we will treat certain sums over *L*-series which will be needed in the proofs of Theorems 3 and 4.

2. The number of lattice points in certain regions. Let *Λ* be a lattice in \mathbb{R}^l of determinant det *Λ*, and let *S* be a compact set in \mathbb{R}^l of volume $V(S)$. Under suitable conditions, the cardinality of $\Lambda \cap S$ is about *V* (*S*)*/*det*Λ*. To make this precise, one needs information both on *Λ* and on *S*. The "shape" of *Λ* is roughly described by the successive minima $\lambda_1 \leq \ldots \leq \lambda_l$ of *Λ*, as defined by Minkowski. Here λ_i is least such that *Λ* contains *i* linearly independent points with Euclidean norm $\leq \lambda_i$. We have

$$
(2.1) \t\t c_{11}(l) \leq \lambda_1 \dots \lambda_l / \det \Lambda \leq c_{12}(l),
$$

according to Minkowski. (See, e.g., Cassels [2, Ch. VIII] or Siegel [17, Theorem 16.) *S* will be said to be *of class m* if every line intersects *S* in the union of at most *m* intervals and single points, and if the same is true of the projections of *S* on any linear subspace. In particular, *S* is convex when it is of class 1.

Lemma 1. *Suppose S is of class m*, *and it lies in the compact ball of radius r and center* **0***. Let* Λ *be a lattice, and* N *the cardinality of* $\Lambda \cap S$ *. Then if*

 $\lambda_{l-1} < r$

$$
(2.2)
$$

we have

$$
N = \frac{V(S)}{\det A} + O\left(\frac{\lambda_l r^{l-1}}{\det A}\right).
$$

⁽¹) Added in proof. For general matrices of fixed rank, see Y. Katznelson, *Integral matrices of fixed rank* (preprint). For symmetric matrices of fixed rank, see A. Eskin and Y. Katznelson, *Singular symmetric matrices*, Duke Math. J., to appear.

The implicit constant in O(*. . .*) *depends only on l*, *m*, *in agreement with the convention made in the introduction.*

Proof. There are independent lattice points g_1, \ldots, g_l with $g_i \in \lambda_i \mathcal{B}$ $(i = 1, \ldots, l)$, where β is the closed unit ball. In fact (see [2, p. 135, Lemma 8]), there is a basis $\mathbf{b}_1, \ldots, \mathbf{b}_l$ of *Λ* with $\mathbf{b}_i \in i\lambda_i \mathcal{B}$ ($i = 1, \ldots, l$). Let τ be the linear map with $\tau(b_i) = e_i$, where $e_i = (0, \ldots, 1, \ldots, 0)$ (with 1 in the *i*th component). Thus $\tau(A) = \mathbb{Z}^l$ and $\tau(B) = \mathcal{E}$, where *E* is an ellipsoid of volume $V(\mathcal{E}) = V(\mathcal{B})/\det A$. Now $e_i \in i\lambda_i \mathcal{E}$, therefore $(i\lambda_i)^{-1}e_i \in \mathcal{E}$ $(i = 1, \ldots, l)$, so that $\mathcal E$ has major axes of lengths $a_1 \leq \ldots \leq a_l$ with $a_i \gg \lambda_{l-i+1}^{-1}$ $(i = 1, \ldots, l)$. Therefore, the orthogonal projection of \mathcal{E} on any *i*-dimensional subspace has volume

(2.3)
$$
\ll a_{l-i+1} \dots a_l \ll (a_1 \dots a_{l-i})^{-1} V(\mathcal{E}) \ll \lambda_{i+1} \dots \lambda_l V(\mathcal{E})
$$

$$
\ll \lambda_{i+1} \dots \lambda_l / \det \Lambda.
$$

Now *N* is the cardinality of $\mathbb{Z}^n \cap \mathcal{T}$ where $\mathcal{T} = \tau(\mathcal{S})$. According to Davenport [3].

(2.4)
$$
|N - V(T)| \ll \max_{\mathcal{T}'} V(\mathcal{T}'),
$$

where the maximum is over the orthogonal projections \mathcal{T}' of $\mathcal T$ on the coordinate planes of dimension $\langle l \rangle$, and where the volume of the 0-dimensional projection is understood to be 1. Here we have used the fact that *T* is of class *m*. Note that $V(T) = V(S)/\text{det }A$. Moreover, $S \subset r\mathcal{B}$, therefore $\mathcal{T} \subset r\mathcal{E}$, and any *i*-dimensional projection \mathcal{T}'_i has

$$
V(\mathcal{T}'_i) \ll r^i \lambda_{i+1} \dots \lambda_l / \det \Lambda \leq \lambda_l r^{l-1} / \det \Lambda
$$

by (2.3) , (2.2) . The lemma follows.

We now give a variation on Lemma 1 valid in \mathbb{R}^2 .

LEMMA 2. Suppose $S \subset \mathbb{R}^2$ is of class *m*, and contains the origin. Sup*pose it lies in the compact disc of radius r* and center **0***. Let* $\Lambda \subset \mathbb{R}^2$ be a *lattice, and* N' *the number of nonzero lattice points in* S *. Then*

(2.5)
$$
N' = V(S)/\det A + O(r/\lambda_1).
$$

Note that we do not stipulate a condition (2.2).

P r o o f. When $r > \lambda_1$, the assertion follows from the preceding lemma, since $N - N' = 1 \le r/\lambda_1$ in this case. When $r < \lambda_1$, there is no nonzero lattice point in *S*, so that $N' = 0$. Further $V(S)/\text{det } A \ll r^2/\lambda_1 \lambda_2 < r/\lambda_1$, since $r < \lambda_1 \leq \lambda_2$.

LEMMA 3. Let $S \subseteq \mathbb{R}^{2n+2}$ where $n \geq 1$. Suppose that S is of class m *and contained in the compact ball of radius r and center* **0***. Write points* $\boldsymbol{x} \in \mathbb{R}^{2n+2}$ *as* $\boldsymbol{x} = (\boldsymbol{x}_0, \dots, \boldsymbol{x}_n)$ *with each* $\boldsymbol{x}_i \in \mathbb{R}^2$. Let *Λ* be a lattice in \mathbb{R}^2

with minima λ_1, λ_2 *. Then the number* N^* *of points* $x \in S$ *such that each* $x_i \in A$ (*i* = 0, . . . , *n*), and x_0, \ldots, x_n span \mathbb{R}^2 , has

(2.6)
$$
N^* = \frac{V(S)}{(\det A)^{n+1}} + O\left(\frac{r^{2n+1}}{\lambda_1 (\det A)^n}\right).
$$

The constant in $O(\ldots)$ *depends only on n, m.*

Proof. Suppose first that

$$
\lambda_2 > r.
$$

Then any points $\mathbf{x}_0, \ldots, \mathbf{x}_n$ with $(\mathbf{x}_0, \ldots, \mathbf{x}_n) \in \mathcal{S}$ and $\mathbf{x}_i \in \Lambda$ $(i = 0, \ldots, n)$ have Euclidean norm $\leq r < \lambda_2$, and therefore are colinear. We obtain N^* $= 0$. The relation (2.6) is valid since

$$
V(\mathcal{S})/\det \Lambda \ll r^{2n+2}/\det \Lambda < r^{2n+1}\lambda_2/\det \Lambda \ll r^{2n+1}/\lambda_1
$$

by (2.7), (2.1).

Next, suppose that

$$
\lambda_2 \le r.
$$

Let $\Lambda^* = \Lambda \times \ldots \times \Lambda$ in \mathbb{R}^{2n+2} . Then det $\Lambda^* = (\det \Lambda)^{n+1}$ and the successive minima λ_i^* of Λ^* are easily seen to be

$$
\lambda_i^* = \begin{cases} \lambda_1 & \text{when } 1 \le i \le n+1, \\ \lambda_2 & \text{when } n+1 < i \le 2n+2. \end{cases}
$$

We write

$$
N^* = N_1 - N_2,
$$

where N_1 is the number of $\mathbf{x} = (\mathbf{x}_0, \dots, \mathbf{x}_n) \in \Lambda^* \cap \mathcal{S}$, and N_2 is the number of those $(n + 1)$ -tuples among them for which x_0, \ldots, x_n do not span \mathbb{R}^2 . We apply Lemma 1 with $l = 2n + 2$ and see that

$$
N_1 = \frac{V(S)}{(\det A)^{n+1}} + O\left(\frac{\lambda_2 r^{2n+1}}{(\det A)^{n+1}}\right) = \frac{V(S)}{(\det A)^{n+1}} + O\left(\frac{r^{2n+1}}{\lambda_1 (\det A)^n}\right),
$$

since $\lambda_{2n+1}^* = \lambda_2 \le r$, and by (2.1). As for N_2 , it counts the point $(\mathbf{0}, \dots, \mathbf{0})$, as well as points $(\mathbf{x}_0, \ldots, \mathbf{x}_n) \neq (\mathbf{0}, \ldots, \mathbf{0})$ with $\mathbf{x}_0, \ldots, \mathbf{x}_n$ colinear. For the latter, we lose only a factor $n + 1$ if we assume that $x_0 \neq \mathbf{0}$, and x_1, \ldots, x_n are multiples of x_0 . Now x_0 lies in the disc $\mathcal{B} \subset \mathbb{R}^2$ of radius *r*. By Lemma 1 with $l = 2$, the number of possibilities for $x_0 \neq 0$ is

$$
(\pi r^2/\det \Lambda) + O(1 + \lambda_2 r/\det \Lambda) \ll r^2/\det \Lambda
$$

by (2.8), and since $r^2 \geq \lambda_1 \lambda_2 \gg \det \Lambda$ by (2.1). Each x_i ($i = 1, \ldots, n$) lies in the segment *S* of points spanned by x_0 having Euclidean norm $\leq r$. Since $V(S) = 0$, we see from Lemma 1 that the number of possibilities for each x_i ($i = 1, \ldots, n$) is $\ll \lambda_2 r/\text{det } A$. Thus

$$
N_2 \ll 1 + \frac{\lambda_2^n r^{n+2}}{(\det \Lambda)^{n+1}} \ll \frac{\lambda_2 r^{2n+1}}{(\det \Lambda)^{n+1}} \ll \frac{r^{2n+1}}{\lambda_1 (\det \Lambda)^{n}}
$$

by (2.1) , (2.8) , on noting that

$$
1 \ll (\lambda_1 \lambda_2 / \det \Lambda)^{n+1} \le (\lambda_2^2 / \det \Lambda)^{n+1} \le \lambda_2^n r^{n+2} / (\det \Lambda)^{n+1}.
$$

The lemma follows by combining our estimates for *N*¹ and *N*2.

3. Estimates for a given ideal class. The case $\Delta < 0$. Let K be a quadratic number field of discriminant *∆ <* 0. We may consider *K* to be embedded in \mathbb{C} . With $\alpha \in K$ we associate the point

$$
\widehat{\alpha} = (\text{Re }\alpha, \text{Im }\alpha) \in \mathbb{R}^2.
$$

As α runs through the integers of *K*, then $\widehat{\alpha}$ runs through a lattice $\Lambda \subset \mathbb{R}^2$ of determinant $\frac{1}{2}|\Delta|^{1/2}$. As α runs through a nonzero ideal $\mathfrak a$ of K , then $\widehat{\alpha}$ runs through a lattice $\Lambda(\mathfrak{a})$ with det $\Lambda(\mathfrak{a}) = \frac{1}{2} |\Delta|^{1/2} \mathfrak{N}(\mathfrak{a})$. Denote the successive minima of $\Lambda(\mathfrak{a})$ by $\lambda_1(\mathfrak{a})$, $\lambda_2(\mathfrak{a})$.

Let $\mathfrak C$ be an ideal class of *K*. We define $\mathfrak N(\mathfrak C)$ to be the minimum of $\mathfrak N(\mathfrak c)$ over all integral ideals c in C. It is well known that $\mathfrak{N}(\mathfrak{C}) \leq |\Delta|^{1/2}$ (see, e.g., Hecke [6, Satz 96]). The ideal class $\overline{\mathfrak{C}}$ consisting of ideals $\overline{\mathfrak{c}}$ with $\mathfrak{c} \in \mathfrak{C}$ (where the bar indicates complex conjugation) is the inverse of \mathfrak{C} , so that $\mathfrak{N}(\mathfrak{C}^{-1}) = \mathfrak{N}(\overline{\mathfrak{C}}) = \mathfrak{N}(\mathfrak{C}).$

Now let \mathfrak{a} be an ideal lying in the ideal class \mathfrak{A} . When $\alpha \neq 0$ lies in \mathfrak{a} , then $(\alpha) = \mathfrak{ab}$ with \mathfrak{b} integral in \mathfrak{A}^{-1} , so that $|\alpha|^2 = \mathfrak{N}(\alpha) \geq \mathfrak{N}(\mathfrak{a}) \mathfrak{N}(\mathfrak{A}^{-1}) =$ $\mathfrak{N}(\mathfrak{a})\mathfrak{N}(\mathfrak{A})$, and

(3.1)
$$
\lambda_1(\mathfrak{a}) \geq (\mathfrak{N}(\mathfrak{a})\mathfrak{N}(\mathfrak{A}))^{1/2}.
$$

Again let α be in the class \mathfrak{A} , and write $Z_1(\mathfrak{a}, X)$ for the number of nonzero elements $\alpha \in \mathfrak{a}$ with $\mathfrak{N}(\alpha) \leq X \mathfrak{N}(\mathfrak{a})$.

Lemma 4.

$$
Z_1(\mathfrak{a}, X) = 2\pi X / |\Delta|^{1/2} + O(X^{1/2}) \mathfrak{N}(\mathfrak{A})^{1/2}).
$$

Proof. $Z_1(\mathfrak{a}, X)$ is the number of nonzero $\widehat{\alpha} \in A(\mathfrak{a})$ with $|\widehat{\alpha}|^2 \leq X\mathfrak{N}(\mathfrak{a})$. By Lemma 2 with $r = (X\mathfrak{N}(\mathfrak{a}))^{1/2}$,

$$
Z_1(\mathfrak{a},X)=(\pi X \mathfrak{N}(\mathfrak{a})/\text{det}\,A(\mathfrak{a}))+O(r/\lambda_1(\mathfrak{a})).
$$

Substituting det $\Lambda(\mathfrak{a}) = \frac{1}{2} |\Delta|^{1/2} \mathfrak{N}(\mathfrak{a})$, the value of *r*, as well as (3.1), we obtain the desired result.

Let $n > 0$ and write points in \mathbb{R}^{2n+2} as $\widehat{\boldsymbol{\alpha}} = (\widehat{\alpha}_0, \dots, \widehat{\alpha}_n)$ with each $\widehat{\alpha}_i \in$ \mathbb{R}^2 . With $\boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_n)$ in K^{n+1} we associate the point $\widehat{\boldsymbol{\alpha}} = (\widehat{\alpha}_0, \dots, \widehat{\alpha}_n)$. Let S be a compact set in \mathbb{R}^{2n+2} contained in the unit ball centered at the origin. Further suppose that S is of class m as defined in Section 2. For $t > 0$, let *tS* be the set of points $t\hat{\alpha}$ with $\hat{\alpha} \in S$. When α is a nonzero ideal in *K*, let $Z_2(\mathfrak{a}, \mathcal{S}, X)$ be the number of nonzero $\alpha = (\alpha_0, \ldots, \alpha_n) \in K^{n+1}$ with each $\alpha_i \in \mathfrak{a}$, such that $P = (\alpha_0 : \ldots : \alpha_n)$ has $\mathbb{Q}(P) = K$, and such that

(3.2)
$$
\widehat{\boldsymbol{\alpha}} = (\widehat{\alpha}_0, \dots, \widehat{\alpha}_n) \in (X \mathfrak{N}(\mathfrak{a}))^{1/2} \mathcal{S}.
$$

Lemma 5. *When* a *is in the ideal class* A,

$$
Z_2(\mathfrak{a}, \mathcal{S}, X) = V(\mathcal{S})(2X/|\Delta|^{1/2})^{n+1} + O\bigg(\frac{X^{n+(1/2)}}{|\Delta|^{n/2}\mathfrak{N}(\mathfrak{A})^{1/2}}\bigg).
$$

In agreement with the convention made in the introduction, *the implied constant in* $O(\ldots)$ *depends only on n, m.*

Proof. $Z_2(\mathfrak{a}, \mathcal{S}, X)$ is the number of $(\widehat{\alpha}_0, \ldots, \widehat{\alpha}_n)$ with (3.2), such that each $\hat{\alpha}_i \in A(\mathfrak{a})$, and such that $\hat{\alpha}_0, \ldots, \hat{\alpha}_n$ span \mathbb{R}^2 . We apply Lemma 3 with S replaced by $(X\mathfrak{N}(\mathfrak{a}))^{1/2}S$, and with $r = (X\mathfrak{N}(\mathfrak{a}))^{1/2}$. We obtain

$$
Z_2(\mathfrak{a},\mathcal{S},X)=V(\mathcal{S})\frac{(X\mathfrak{N}(\mathfrak{a}))^{n+1}}{(\det\Lambda(\mathfrak{a}))^{n+1}}+O\bigg(\frac{(X\mathfrak{N}(\mathfrak{a}))^{n+(1/2)}}{\lambda_1(\mathfrak{a})(\det\Lambda(\mathfrak{a}))^n}\bigg).
$$

The lemma follows after we substitute det $\Lambda(\mathfrak{a}) = \frac{1}{2} |\Delta|^{1/2} \mathfrak{N}(\mathfrak{a})$ and (3.1).

4. Estimates for a given ideal class. The case $\Delta > 0$. Let K be a quadratic number field with discriminant $\Delta > 0$. Let ε be the fundamental unit with $\varepsilon > 1$, and set $R = \log \varepsilon$. Then $R \gg 1$ with an absolute implied constant. Define t and $u > 0$ by

(4.1)
$$
t = [R] + 1, \quad \log u = R/t,
$$

where [] denotes the integer part. Then

(4.2)
$$
u^t = \varepsilon \quad \text{and} \quad 1 \ll \log u \le 1.
$$

With $\alpha \in K$ we associate the point

$$
\widehat{\alpha} = (\alpha, \alpha') \in \mathbb{R}^2,
$$

where α' is the conjugate of α . As α runs through the integers of K, then $\widehat{\alpha}$ runs through a lattice $\Lambda \subset \mathbb{R}^2$ of determinant $\Delta^{1/2}$. As α runs through a nonzero ideal **a**, then $\hat{\alpha}$ runs through a lattice $\Lambda(\mathfrak{a})$ with det $\Lambda(\mathfrak{a})$ = $\Delta^{1/2}\mathfrak{N}(\mathfrak{a})$.

Let $v = \sqrt{u}$, so that $1 \ll \log v$ by (4.2), and

$$
(4.3) \t\t v-1 \gg 1.
$$

Let τ be the linear map $\mathbb{R}^2 \to \mathbb{R}^2$ with $\tau(\alpha, \alpha') = (v^{-1}\alpha, v\alpha')$. Then *Λ*(\mathfrak{a}, j) := τ^{j} *Λ*(\mathfrak{a}) (for $j \in \mathbb{Z}$) is a lattice with det *Λ*(\mathfrak{a}, j) = det *Λ*(\mathfrak{a}) = $\Delta^{1/2} \mathfrak{N}(\mathfrak{a})$. Its first minimum is given by

(4.4)
$$
\lambda_1(\mathfrak{a},j) = \min_{\alpha \in \mathfrak{a} \setminus \{\mathbf{0}\}} (v^{-2j}|\alpha|^2 + v^{2j}|\alpha'|^2)^{1/2}.
$$

352 W. M. Schmidt

Given
$$
\boldsymbol{\alpha} = (\alpha_0, ..., \alpha_n) \in K^{n+1} \setminus \{\mathbf{0}\}\text{, set } \boldsymbol{\alpha}' = (\alpha'_0, ..., \alpha'_n) \text{ and}
$$

 $\psi(\boldsymbol{\alpha}) = |\boldsymbol{\alpha}|/|\boldsymbol{\alpha}'|,$

where $|\alpha| = \max(|\alpha_0|, \ldots, |\alpha_n|)$. After scalar multiplication by ε , we have $\psi(\varepsilon \alpha) = |\varepsilon/\varepsilon'| \psi(\alpha) = \varepsilon^2 \psi(\alpha)$. There is a unique integer *s* with ε^{-1} < $\psi(\varepsilon^s \alpha) \leq \varepsilon$. In view of the unit *−*1, there are exactly two units *η* such that (4.5) $\varepsilon^{-1} < \psi(\eta \alpha) \leq \varepsilon.$

The interval $\varepsilon^{-1} < x \leq \varepsilon$ is the disjoint union of the 2*t* intervals $u^{j-1} < x$ $≤ u^j$ with $-t < j \leq t$.

We now consider the set $S(\mathfrak{a},j)$ of nonzero $(\alpha_0,\ldots,\alpha_n) \in K^{n+1}$ with $\alpha_i \in \mathfrak{a}$ ($0 \leq i \leq n$) and $u^{j-1} < \psi(\mathfrak{a}) \leq u^j$. This set is in 1-1 correspondence with the set $\widehat{S}(\mathfrak{a},j)$ of points $(\widehat{\alpha}_0,\ldots,\widehat{\alpha}_n) \in \mathbb{R}^{2n+2}$ with $\widehat{\alpha}_i \in \Lambda(\mathfrak{a})$ $(0 \leq i \leq n)$ and with $u^{j-1} < \psi(\hat{\alpha}) \leq u^j$, where for $\hat{\alpha} = (\hat{\alpha}_0, \dots, \hat{\alpha}_n) =$ $(\alpha_0, \alpha'_0, \ldots, \alpha_n, \alpha'_n)$ we set $\psi(\widehat{\mathbf{\alpha}}) = |\mathbf{\alpha}|/|\mathbf{\alpha}'|$ with $\mathbf{\alpha} = (\alpha_0, \ldots, \alpha_n)$ and $\alpha' = (\alpha'_0, \ldots, \alpha'_n)$. Let $\tau^* = \tau \times \ldots \times \tau$ be the map of \mathbb{R}^{2n+2} with $\tau^*(\alpha, \alpha') =$ $(v^{-1}\alpha, v\alpha')$, i.e., $\tau^*(\alpha_0, \alpha'_0, \ldots, \alpha_n, \alpha'_n) = (v^{-1}\alpha_0, v\alpha'_0, \ldots, v^{-1}\alpha_n, v\alpha'_n)$. We have $\psi(\tau^*\hat{\alpha}) = v^{-2}\psi(\hat{\alpha}) = u^{-1}\psi(\hat{\alpha})$. Therefore $\hat{\hat{S}}(\mathfrak{a},j) := \tau^{*j}\hat{S}(\mathfrak{a},j)$ consists of points $\hat{\alpha} = (\hat{\alpha}_0, \dots, \hat{\alpha}_n)$ with

$$
\widehat{\alpha}_i \in \Lambda(\mathfrak{a}, j) \quad (i = 0, \dots, n) \quad \text{and} \quad u^{-1} < \psi(\widehat{\mathfrak{a}}) \leq 1.
$$

Now let *n* = 0, let **a** be a nonzero ideal, and $-t < j \le t$. Write $Z_1(\mathfrak{a}, j, X)$ for the number of nonzero $\alpha \in \mathfrak{A}$ with $\alpha \in \mathfrak{a}$, $|\alpha \alpha'| \leq X \mathfrak{N}(\mathfrak{a})$ and $u^{j-1} <$ $\psi(\alpha) \leq u^j$.

Lemma 6.

$$
Z_1(\mathfrak{a},j,X) = (2RX/t\Delta^{1/2}) + O(X^{1/2}\mathfrak{N}(\mathfrak{a})^{1/2}/\lambda_1(\mathfrak{a},j)).
$$

P r o o f. The set of $\hat{\alpha} = (\alpha, \alpha') \in \mathbb{R}^2$ with $|\alpha \alpha'| \leq X \Re(\mathfrak{a})$ is invariant under *τ*. Therefore $Z_1(\mathfrak{a}, j, X)$ is the number of $\widehat{\alpha} \in A(\mathfrak{a}, j)$ with

 $0 < |\alpha \alpha'| \leq X \Re(\mathfrak{a})$ and $u^{-1} < \psi(\widehat{\alpha}) \leq 1$.

These two inequalities define a set *S* in \mathbb{R}^2 . For $\widehat{\alpha} \in \mathcal{S}$, we have $|\alpha| \leq |\alpha'| <$ $u|\alpha|$, so that both $|\alpha|, |\alpha'| < (uX\mathfrak{N}(\mathfrak{a}))^{1/2}$, and *S* is contained in a disc of radius $r \ll (X\mathfrak{N}(\mathfrak{a}))^{1/2}$. Further *S* is of some class $m \ll 1$ (in fact $m = 2$). Although S is not closed, it is easily seen that Lemma 2 still applies, and we get

$$
Z_1(\mathfrak{a},j,X) = (V(\mathcal{S})/\det \Lambda(\mathfrak{a},j)) + O(r/\lambda_1(\mathfrak{a},j)).
$$

Since det $\Lambda(\mathfrak{a},j) = \Delta^{1/2}\mathfrak{N}(\mathfrak{a})$, and since, as is seen by an easy calculation, $V(S) = 2X\mathfrak{M}(\mathfrak{a})\log u = 2XR\mathfrak{M}(\mathfrak{a})/t$, the lemma follows.

Let $n > 0$ and write points in \mathbb{R}^{2n+2} as $\hat{\boldsymbol{\alpha}} = (\hat{\alpha}_0, \dots, \hat{\alpha}_n)$ where each $\hat{\alpha}_i = (\alpha_i, \alpha'_i) \in \mathbb{R}^2$, or else as $\hat{\alpha} = (\alpha, \alpha')$ with $\alpha = (\alpha_0, \ldots, \alpha_n)$, $\alpha' =$ $(\alpha'_0, \ldots, \alpha'_n)$. With $\boldsymbol{\alpha} = (\alpha_0, \ldots, \alpha_n) \in K^{n+1}$ we associate the point $\hat{\boldsymbol{\alpha}} =$

 $(\widehat{\alpha}_0,\ldots,\widehat{\alpha}_n)$. Let *S* be a closed set in \mathbb{R}^{2n+2} such that the points $\widehat{\alpha}$ = (α, α') in *S* have $|\alpha| |\alpha'| \leq 2$, and that *S* is invariant under transformations $(\alpha, \alpha') \mapsto (t^{-1}\alpha, t\alpha')$ with $t > 0$. For $x > 1$ let $\mathcal{S}(x)$ be the intersection of *S* with $x^{-1} < \psi(\hat{\alpha}) \le 1$. Points $\hat{\alpha} \in \mathcal{S}(x)$ have $|\alpha|^2 \le 2$, $|\alpha'|^2 \le 2x$, so that $S(x)$ lies in a ball of radius $r \ll x^{1/2}$. Let $V(S(x))$ be the volume of $S(x)$; by the invariance property of *S* we have $V(S(x)) = V(S(e)) \log x$. We will finally suppose that the closure of $S(x)$ is of class m.

For a nonzero ideal $\mathfrak a$ and for $-t < j \leq t$, let $Z_2(\mathfrak a, j, \mathcal S, X)$ be the number of $\alpha = (\alpha_0, \ldots, \alpha_n)$ with $\alpha_i \in \mathfrak{a}$ $(i = 0, \ldots, n)$ such that $P = (\alpha_0 : \ldots : \alpha_n)$ has $\mathbb{Q}(P) = K$, and such that

$$
\widehat{\boldsymbol{\alpha}} \in (X\mathfrak{N}(\mathfrak{a}))^{1/2}S
$$
 and $u^{j-1} < \psi(\mathfrak{a}) \leq u^j$.

Lemma 7.

$$
Z_2(\mathfrak{a},j,\mathcal{S},X) = \frac{RV(\mathcal{S}(e))}{t} \bigg(\frac{X}{\Delta^{1/2}}\bigg)^{n+1} + O\bigg(\frac{X^{n+(1/2)}\mathfrak{N}(\mathfrak{a})^{1/2}}{\Delta^{n/2}\lambda_1(\mathfrak{a},j)}\bigg).
$$

P r o o f. By what we have seen above, $Z_2(\mathfrak{a},j, \mathcal{S}, X)$ is the same as the number of points $\hat{\alpha} = (\hat{\alpha}_0, \dots, \hat{\alpha}_n)$ in $\Lambda(\mathfrak{a}, j) \times \dots \times \Lambda(\mathfrak{a}, j)$ such that $\widehat{\alpha}_0, \ldots, \widehat{\alpha}_n$ span \mathbb{R}^2 , and which lie in the set \mathcal{S}' defined by

$$
(\widehat{\alpha}_0,\ldots,\widehat{\alpha}_n) \in (X\mathfrak{N}(\mathfrak{a}))^{1/2}\mathcal{S}
$$
 and $u^{-1} < \psi(\widehat{\mathfrak{a}}) \leq 1$.

S' lies in a ball of radius $r \ll (X \mathfrak{N}(\mathfrak{a}))^{1/2}$ and has volume $V(S') =$ $(X\mathfrak{N}(\mathfrak{a}))^{n+1}(\log u)V(\mathcal{S}(e))$. Lemma 3 gives

$$
Z_2(\mathfrak{a},j,\mathcal{S},X)=\frac{V(\mathcal{S}')}{(\det \Lambda(\mathfrak{a},j))^{n+1}}+O\bigg(\frac{r^{2n+1}}{(\det \Lambda(\mathfrak{a},j))^{n}\lambda_1(\mathfrak{a},j)}\bigg).
$$

If we substitute our value for $V(S')$ and det $\Lambda(\mathfrak{a},j) = \Delta^{1/2}\mathfrak{N}(\mathfrak{a})$, as well as the estimate for *r*, and the relation $\log u = R/t$ from (4.1), we obtain the assertion of the lemma.

Let $\mathfrak C$ be an ideal class. Let $\mathfrak c_1, \mathfrak c_2, \ldots$ be the integral ideals in $\mathfrak C$ ordered so that $\mathfrak{N}(\mathfrak{c}_1) \leq \mathfrak{N}(\mathfrak{c}_2) \leq \ldots$ We set

(4.6)
$$
\mathfrak{N}(\mathfrak{C}) = \left(\sum_{j=1}^{2t} \mathfrak{N}(\mathfrak{c}_j)^{-1/2}\right)^{-2}.
$$

This definition differs from the one when Δ < 0. It is easily seen that we still have $\mathfrak{N}(\mathfrak{C}^{-1}) = \mathfrak{N}(\overline{\mathfrak{C}}) = \mathfrak{N}(\mathfrak{C}).$

Lemma 8. *Let* a *lie in the ideal class* A*. Then*

(4.7)
$$
\sum_{j=1-t}^t 1/\lambda_1(\mathfrak{a},j) \ll (\mathfrak{N}(\mathfrak{a})\mathfrak{N}(\mathfrak{A}))^{-1/2}.
$$

This estimate takes the place of (3.1) in the case $\Delta < 0$.

Proof. Define $\mu_1(\mathfrak{a},j)$ as the minimum of $\max(v^{-j}|\alpha|, v^j|\alpha'|)$ for nonzero $\alpha \in \mathfrak{a}$. Since $\lambda_1(\mathfrak{a},j) \geq \mu_1(\mathfrak{a},j)$, it will suffice to estimate the sum (4.7) with μ_1 in place of λ_1 . Pick $\alpha = \alpha(\mathfrak{a}, j)$ with

$$
\mu_1(\mathfrak{a},j) = \max(v^{-j}|\alpha|, v^j|\alpha'|).
$$

We claim that for $1 - t \leq j \leq t$,

(4.8)
$$
\varepsilon^{-2} < \psi(\alpha(\mathfrak{a},j)) \leq \varepsilon^2.
$$

For if, say, $\psi(\alpha) > \varepsilon^2$, then

$$
v^{-j}|\alpha| > v^{-j} \varepsilon^2 |\alpha'| \geq v^j|(\varepsilon^{-1}\alpha)'|,
$$

since $\varepsilon^2 v^{-2j} \geq \varepsilon^2 v^{-2t} = \varepsilon = |(\varepsilon^{-1})'|$. Therefore

$$
\max(v^{-j}|\alpha|, v^{j}|\alpha'|) \ge v^{-j}|\alpha| > \max(v^{-j}|\varepsilon^{-1}\alpha|, v^{j}|(\varepsilon^{-1}\alpha)']).
$$

By the minimal property of $\alpha(j, \mathfrak{a})$, this cannot happen for $\alpha = \alpha(j, \mathfrak{a})$. Therefore $\psi(\alpha(\mathfrak{a},j)) \leq \varepsilon^2$. The lower bound in (4.8) is proved similarly.

Let $\alpha \in \mathfrak{a}$ be given with $\varepsilon^{-2} < \psi(\alpha) \leq \varepsilon^2$. We consider the sum

$$
\sum_{\substack{j\\ \alpha(\mathfrak{a},j)=\alpha}}^{j} (\mu_1(\mathfrak{a},j))^{-1} \leq \sum_{j\in\mathbb{Z}}^{j} \min(v^j|\alpha|^{-1},v^{-j}|\alpha'|^{-1}).
$$

Here $|\alpha| = v^{\xi}|\mathfrak{N}(\alpha)|^{1/2}$, $|\alpha'| = v^{-\xi}|\mathfrak{N}(\alpha)|^{1/2}$ for some ξ , so that the last sum becomes

$$
|\mathfrak{N}(\alpha)|^{-1/2} \sum_{j \in \mathbb{Z}} \min(v^{j-\xi}, v^{\xi-j}) \leq |\mathfrak{N}(\alpha)|^{-1/2} \cdot 2 \sum_{j=0}^{\infty} v^{-j}
$$

= $(2v/(v-1)) |\mathfrak{N}(\alpha)|^{-1/2} \ll |\mathfrak{N}(\alpha)|^{-1/2}$,

since $v-1 \gg 1$ by (4.3).

Suppose *s* distinct numbers $\alpha_1, \ldots, \alpha_s$ occur among the $\alpha(\mathfrak{a}, j)$ where $-t < j \leq t$, so that clearly $s \leq 2t$. Then

$$
\sum_{j=1-t}^t \mu_1(\mathfrak{a},j)^{-1} \ll \sum_{j=1}^s |\mathfrak{N}(\alpha_j)|^{-1/2}.
$$

We have $(\alpha_j) = \mathfrak{ab}_j$ where \mathfrak{b}_j is integral in \mathfrak{A}^{-1} . On the other hand, given $\mathfrak{b} \in \mathfrak{A}^{-1}$, there are precisely 4 elements α with $(\alpha) = \mathfrak{a}\mathfrak{b}$ and with ε^{-2} $\psi(\alpha) \leq \varepsilon^2$, because $\psi(\pm \varepsilon^s \alpha) = \varepsilon^{2s} \psi(\alpha)$. Therefore, with certain distinct $\mathfrak{b}_1, \ldots, \mathfrak{b}_{2t}$ in \mathfrak{A}^{-1} , the sum in (4.7) is

$$
\ll \mathfrak{N}(\mathfrak{a})^{-1/2} \sum_{j=1}^{2t} \mathfrak{N}(\mathfrak{b}_j)^{-1/2} \leq \mathfrak{N}(\mathfrak{a})^{-1/2} \mathfrak{N}(\mathfrak{A}^{-1})^{-1/2} = (\mathfrak{N}(\mathfrak{a}) \mathfrak{N}(\mathfrak{A}))^{-1/2},
$$

by the definition (4.6).

By (4.2), by taking the sum over $j, -t < j \leq t$, in Lemmas 6, 7, and using Lemma 8, we immediately get the next two lemmas.

LEMMA 9. Let $\mathfrak a$ *be an ideal in the class* $\mathfrak A$ *, and* $Z_1(\mathfrak a,X)$ *the number of nonzero* $\alpha \in \mathfrak{a}$ *with* $|\alpha\alpha'| \leq X\mathfrak{N}(\mathfrak{a})$ *and* $\varepsilon^{-1} < \psi(\alpha) \leq \varepsilon$ *. Then*

$$
Z_1(\mathfrak{a}, X) = 4RX/\Delta^{1/2} + O(X^{1/2}/\mathfrak{N}(\mathfrak{A})^{1/2}).
$$

LEMMA 10. Let $n > 0$, S a set in \mathbb{R}^{2n+2} as in Lemma 7, and a an ideal *in the class* \mathfrak{A} *. Let* $Z_2(\mathfrak{a}, \mathcal{S}, X)$ *be the number of* $\mathfrak{a} = (\alpha_0, \dots, \alpha_n)$ *with each* $\alpha_i \in \mathfrak{a}$, *with* $P = (\alpha_0 : \ldots : \alpha_n)$ *having* $\mathbb{Q}(P) = K$, *and with*

$$
\widehat{\alpha} \in (X\mathfrak{N}(\mathfrak{a}))^{1/2} \mathcal{S} \quad \text{and} \quad \varepsilon^{-1} < \psi(\mathfrak{a}) \leq \varepsilon.
$$

Then

$$
Z_2(\mathfrak{a}, \mathcal{S}, X) = 2RV(\mathcal{S}(e))(X/\Delta^{1/2})^{n+1} + O(X^{n+(1/2)}\Delta^{-n/2}\mathfrak{N}(\mathfrak{A})^{-1/2}).
$$

5. Proof of Theorem 1. Lemmas 4 and 9 may be combined to give

(5.1)
$$
Z_1(\mathfrak{a}, X) = \lambda RX / |\Delta|^{1/2} + O(X^{1/2}) \mathfrak{N}(\mathfrak{A})^{1/2}),
$$

where *R*, λ are given by (1.4), (1.5). Note that the definitions of $Z_1(\mathfrak{a}, X)$ and $\mathfrak{N}(\mathfrak{A})$ are somewhat different when Δ < 0 and when Δ > 0.

LEMMA 11. Let $\mathfrak C$ *be an ideal class, and define* $Z_3(\mathfrak C,X)$ *to be the number of integral ideals* $c \in \mathfrak{C}$ *with* $\mathfrak{N}(c) \leq X$ *. Then*

(5.2)
$$
Z_3(\mathfrak{C}, X) = \lambda RX / (w\Delta^{1/2}) + O(X^{1/2}/\mathfrak{N}(\mathfrak{C})^{1/2}),
$$

where w is the number of roots of 1 *of the underlying quadratic number field K.*

P r o o f. Let $\mathfrak{A} = \mathfrak{C}^{-1}$ and fix \mathfrak{a} in \mathfrak{A} . When $\mathfrak{c} \in \mathfrak{C}$ with $\mathfrak{N}(\mathfrak{c}) \leq X$, then $\mathfrak{a}\mathfrak{c}$ is a principal ideal (α) with $\alpha \in \mathfrak{a}, \alpha \neq 0$, and $|\mathfrak{N}(\alpha)| \leq X \mathfrak{N}(\mathfrak{a})$. Conversely, when $\alpha \in \mathfrak{a}, \alpha \neq 0$ and $|\mathfrak{N}(\alpha)| \leq X \mathfrak{N}(\mathfrak{a})$, then $(\alpha) = \mathfrak{a} \mathfrak{c}$ with integral $\mathfrak{c} \in \mathfrak{C}$ having $\mathfrak{N}(\mathfrak{c}) \leq X$.

If Δ < 0, then α is determined by c up to the *w* roots of 1. Thus Lemma 11 follows from Lemma 4 and the definition of $Z_1(\mathfrak{a}, X)$. When *∆* > 0, we may pick *α* with $ε^{-1}$ < $ψ(α) ≤ ε$, and this will determine *α* up to multiplication by ± 1 , so that we will have $w = 2$ choices for α . Now Lemma 11 follows from Lemma 9 and the definition of $Z_1(\mathfrak{a}, X)$ in the case $\Delta > 0$.

The proof of Theorem 1 is now easily completed by taking the sum over the ideal classes in (5.2). All that is needed is the estimate

(5.3)
$$
\sum_{\mathfrak{C}} \mathfrak{N}(\mathfrak{C})^{-1/2} \ll (hR \log^+ hR)^{1/2}.
$$

When Δ < 0, the sum on the left here is over *h* terms $\mathfrak{N}(\mathfrak{c}_i)^{-1/2}$, with distinct nonzero integral ideals c_i . We may suppose that $\mathfrak{N}(c_1) \leq \ldots \leq \mathfrak{N}(c_h)$. The number of integral ideals c with $\mathfrak{N}(\mathfrak{c}) = u$ is at most $\tau(u)$, the number of positive divisors of *u*. Since

$$
\sum_{u=1}^{x} \tau(u) \sim x \log x
$$

(see [5, Theorem 315]), we may conclude that $\mathfrak{N}(\mathfrak{c}_i) \gg i/\log^+ i$. Therefore

$$
\sum_{\mathfrak{C}} \mathfrak{N}(\mathfrak{C})^{-1/2} = \sum_{i=1}^h \mathfrak{N}(\mathfrak{c}_i)^{-1/2} \ll \sum_{i=1}^h (i^{-1} \log^+ i)^{1/2} \ll (h \log^+ h)^{1/2}.
$$

When $\Delta > 0$, each $\mathfrak{N}(\mathfrak{C})^{-1/2}$ is by (4.6) a sum of 2t terms $\mathfrak{N}(\mathfrak{c}_i)^{-1/2}$ with distinct integral ideals c_i in \mathfrak{C} . Therefore the sum in (5.3) is a sum of $2th$ terms $\mathfrak{N}(\mathfrak{c}_i)^{-1/2}$. By the argument used above and since $t \ll R$ by (4.1), it is

$$
\ll (2th \log^+(2th))^{1/2} \ll (Rh \log^+ Rh)^{1/2}.
$$

6. Möbius inversion. In order not to have to interrupt our main argument below, we begin with the following definition. Given a nonzero ideal b, let $\langle \mathfrak{b} \rangle$ be its ideal class. Given an ideal class \mathfrak{A} , set

(6.1)
$$
\mathfrak{L}_n(\mathfrak{A}) = \sum_{\mathfrak{b}} \mathfrak{N}(\mathfrak{A}\langle \mathfrak{b} \rangle)^{-1/2} \mathfrak{N}(\mathfrak{b})^{-n-1/2},
$$

where the sum is over integral ideals $\mathfrak b$ of the underlying quadratic field *K*. Since there are only *h* ideal classes, the term $\mathfrak{N}(\mathfrak{A}\langle \mathfrak{b}\rangle)^{-1/2}$ is bounded, and the sum will be convergent for $n > 0$, which we will suppose. Incidentally, it is easily seen, but will not be used here, that $\mathfrak{N}(\mathfrak{A}\langle \mathfrak{b}\rangle)^{-1/2} \leq \mathfrak{N}(\mathfrak{A})^{-1/2}\mathfrak{N}(\mathfrak{b})^{1/2}$, so that when $n \geq 2$ we have

$$
\mathfrak{L}_n(\mathfrak{A}) \leq \mathfrak{N}(\mathfrak{A})^{-1/2} \sum_{\mathfrak{b}} \mathfrak{N}(\mathfrak{b})^{-n} \ll \mathfrak{N}(\mathfrak{A})^{-1/2}.
$$

Lemmas 5, 10 may be combined to give

(6.2)
$$
Z_2(\mathfrak{a}, \mathcal{S}, X) = V_0(\mathcal{S})R(X/|\Delta|^{1/2})^{n+1} + O(X^{n+(1/2)}|\Delta|^{-n/2}\mathfrak{N}(\mathfrak{A})^{-1/2}),
$$

where R is given by (1.4) , and

(6.3)
$$
V_0(\mathcal{S}) = \begin{cases} 2^{n+1}V(\mathcal{S}) & \text{when } \Delta < 0, \\ 2V(\mathcal{S}(e)) & \text{when } \Delta > 0. \end{cases}
$$

Note that the hypotheses on *S* are not the same in the cases $\Delta < 0$ and Δ > 0. Further recall that *Z*₂(α, *S*, *X*) is the number of nonzero α = $(\alpha_0, \ldots, \alpha_n) \in K^{n+1}$ such that

(i)
$$
\alpha_i \in \mathfrak{a}
$$
 $(i = 0, ..., n)$,
(ii) $\mathbb{Q}(P) = K$ where $P = (\alpha_0 : ... : \alpha_n)$,

- (iii) $\widehat{\alpha} \in (X\mathfrak{N}(\mathfrak{a}))^{1/2}S$,
- (iv) when $\Delta > 0$, additionally $\varepsilon^{-1} < \psi(\alpha) \leq \varepsilon$.

Let $Z_4(\mathfrak{a}, \mathcal{S}, X)$ be the number of nonzero $\alpha \in K^{n+1}$ satisfying (i'), (ii), (iii), (iv) , where (i') is the condition

(i') $\alpha_0, \ldots, \alpha_n$ generate the ideal \mathfrak{a} .

Lemma 12. *When* a *lies in the ideal class* A,

$$
Z_4(\mathfrak{a}, \mathcal{S}, X) = (V_0(\mathcal{S})R/\zeta_K(n+1))(X/|\Delta|^{1/2})^{n+1} + O(X^{n+(1/2)}|\Delta|^{-n/2}\mathfrak{L}_n(\mathfrak{A})).
$$

P r o o f. When $\alpha_0, \ldots, \alpha_n$ satisfy (i), they generate an ideal $\mathfrak{a} \mathfrak{b}$ where \mathfrak{b} is integral. Then (iii) may be written as $\hat{\alpha} \in (X/\mathfrak{N}(\mathfrak{b}))^{1/2}\mathfrak{N}(\mathfrak{ab})^{1/2}S$. Therefore every α counted by $Z_2(\mathfrak{a}, \mathcal{S}, X)$ is counted by $Z_4(\mathfrak{a}\mathfrak{b}, \mathcal{S}, X/\mathfrak{N}(\mathfrak{b}))$ for some integral b, and

$$
Z_2(\mathfrak{a}, \mathcal{S}, X) = \sum_{\mathfrak{b}} Z_4(\mathfrak{ab}, \mathcal{S}, X/\mathfrak{N}(\mathfrak{b})).
$$

Let *µ* be the Möbius function on nonzero integral ideals of *K*, so that μ (α b) = $\mu(\mathfrak{a})\mu(\mathfrak{b})$ when \mathfrak{a} , \mathfrak{b} are coprime, and $\mu(\mathfrak{p}) = -1$, $\mu(\mathfrak{p}^2) = \mu(\mathfrak{p}^3) = \ldots = 0$ when $\mathfrak p$ is a prime ideal. Möbius inversion gives

(6.4)
$$
Z_4(\mathfrak{a}, \mathcal{S}, X) = \sum_{\mathfrak{b}} \mu(\mathfrak{b}) Z_2(\mathfrak{a}\mathfrak{b}, \mathcal{S}, X/\mathfrak{N}(\mathfrak{b})).
$$

 $By (6.2),$

$$
Z_2(\mathfrak{ab}, \mathcal{S}, X/\mathfrak{N}(\mathfrak{b})) = V_0(\mathcal{S})R(X/\mathfrak{N}(\mathfrak{b})|\Delta|^{1/2})^{n+1} + O(X^{n+(1/2)}|\Delta|^{-n/2}\mathfrak{N}(\langle \mathfrak{ab} \rangle)^{-1/2}\mathfrak{N}(\mathfrak{b})^{-n-1/2}).
$$

Since $\langle \mathfrak{a}\mathfrak{b}\rangle = \mathfrak{A}\langle \mathfrak{b}\rangle$ for $\mathfrak{a} \in \mathfrak{A}$, and since $\sum_{\mathfrak{b}} \mu(\mathfrak{b}) \mathfrak{N}(\mathfrak{b})^{-n-1} = 1/\zeta_K(n+1)$, the lemma is a consequence of (6.4) , (6.1) .

7. Proof of Theorem 2. Let S be a closed set in \mathbb{R}^{2n+2} as described in Sections 3, 4. Thus when *∆ <* 0 we suppose that *S* is contained in the ball of radius 1 centered at the origin, and is of class *m*. We now make the further assumption that *S* contains the origin in its interior, and that $\phi(\mathcal{S}) \subseteq \mathcal{S}$ for any linear transformation $\phi : (\widehat{\alpha}_0, \ldots, \widehat{\alpha}_n) \mapsto (\phi(\widehat{\alpha}_0), \ldots, \phi(\widehat{\alpha}_n))$, where ϕ is a linear transformation of \mathbb{R}^2 which is an orthogonal map followed by a homothetic map $\hat{\alpha} \mapsto t\hat{\alpha}$ with $0 \le t \le 1$. When $\lambda \in K$ with $|\lambda| \le 1$, then $\hat{\alpha} \mapsto \hat{\lambda} \hat{\alpha}$ where $\alpha \in K$ comes from a map ϕ as above, and therefore $\hat{\alpha} \in \mathcal{S}$ implies $(\widehat{\lambda} \widehat{\alpha}) \in S$. In general, when $\alpha \in K^{n+1}$, then

(7.1)
$$
\widehat{\alpha} \in \mathcal{S} \quad \text{implies} \quad (\widehat{\lambda \alpha}) \in |\lambda| \mathcal{S}.
$$

When $\Delta > 0$, we suppose that *S* is contained in the set $|\alpha| |\alpha'| \leq 2$, and it contains **0** in its interior. We will further suppose that when $(\alpha, \alpha') \in S$,

then so is $(t\alpha, t'\alpha')$ provided $t, t' \in \mathbb{R}$ have $|tt'| \leq 1$. This amply yields the invariance property described in Section 4. Moreover, when $\alpha \in K^{n+1}$ with $\hat{\alpha} \in \mathcal{S}$ and when $|\mathfrak{N}(\lambda)| = |\lambda \lambda'| \leq 1$, then $(\widehat{\lambda \alpha}) \in \mathcal{S}$. In general, $\alpha \in K^{n+1}$ and

(7.2)
$$
\widehat{\alpha} \in \mathcal{S} \quad \text{implies} \quad (\widehat{\lambda \alpha}) \in |\mathfrak{N}(\lambda)|^{1/2} \mathcal{S}.
$$

As in Section 4, we will suppose that the intersection (denoted by $S(x)$) of *S* and $x^{-1} < \psi(\boldsymbol{\alpha}) \leq 1$ has closure of class *m*.

Given $\alpha \in K^{n+1}$, let $H^{\mathcal{S}}_{\infty}(\alpha)$ be the least positive *t* with $\widehat{\alpha} \in t\mathcal{S}$. From $(7.1), (7.2)$ we conclude that

(7.3)
$$
H_{\infty}^{S}(\lambda \alpha) = |\mathfrak{N}(\lambda)|^{1/2} H_{\infty}^{S}(\alpha).
$$

Again, when $\alpha \in K^{n+1}$, and $\alpha \neq 0$, let α be the ideal generated by $\alpha_0, \ldots, \alpha_n$, and set

$$
H^{\mathcal{S}}(\boldsymbol{\alpha})=(H^{\mathcal{S}}_{\infty}(\boldsymbol{\alpha}))^2/\mathfrak{N}(\mathfrak{a}).
$$

By (7.3), and since $\lambda \alpha$ induces the ideal (λ)α, it is clear that $H^S(\lambda \alpha)$ = $H^{\mathcal{S}}(\alpha)$, so that we can define a height $H^{\mathcal{S}}(P)$ of points $P \in \mathbb{P}^n(K)$.

It is well known (see, e.g., [14, p. 11]) that when Δ < 0 the field height is $H_K(\mathbf{\alpha}) = |\mathbf{\alpha}|^2 / \mathfrak{N}(\mathbf{\mathfrak{a}})$, so that $H_K(\mathbf{\alpha}) = H^{\mathcal{S}_0^-}(\mathbf{\alpha})$ with \mathcal{S}_0^- the set in \mathbb{R}^{2n+2} of points $(\xi_0, \eta_0, \ldots, \xi_n, \eta_n)$ with $\xi_i^2 + \eta_i^2 \le 1$ $(i = 0, \ldots, n)$. Here $V(\mathcal{S}_0^-)$ = π^{n+1} , and

(7.4)
$$
V_0(\mathcal{S}_0^-) = (2\pi)^{n+1} = \lambda^{n+1} = \nu \lambda^{n+1} \quad (\Delta < 0)
$$

by (6.3), (1.5), (1.7).

When $\Delta > 0$, the field height is $H_K(\mathbf{\alpha}) = |\mathbf{\alpha}| |\mathbf{\alpha}'| / \mathfrak{N}(\mathbf{\alpha}) = H^{\mathcal{S}_0^+}(\mathbf{\alpha})$, with S_0^+ the set $|\alpha| |\alpha'| \leq 1$. Here $S_0^+(e)$ is further restricted by $e^{-1} < |\alpha|/|\alpha'| \leq$ 1, and a computation gives $V(S_0^+(e)) = \frac{1}{2}(n+1) \cdot 4^{n+1}$. Therefore

(7.5)
$$
V_0(\mathcal{S}_0^+) = (n+1) \cdot 4^{n+1} = \nu \lambda^{n+1} \quad (\Delta > 0)
$$

by (6.3), (1.5), (1.7).

Let $Z_5(K, S, X)$ be the number of points $P \in \mathbb{P}^n(K)$ with $\mathbb{Q}(P) = K$ and $H^{\mathcal{S}}(P) \leq X$.

THEOREM 2a.

$$
Z_5(K, S, X) = \frac{hR}{w\zeta_K(n+1)} V_0(S)(X/|\Delta|^{1/2})^{n+1} + O(X^{n+(1/2)}|\Delta|^{-n/2}(hR\log^+ hR)^{1/2}).
$$

Now $N'(K, n, X)$ is $Z_5(K, \mathcal{S}_0, X)$ with the set $\mathcal{S}_0 = \mathcal{S}_0^{\pm}$ described above. Theorem 2 follows on using (7.4), (7.5).

Proof of Theorem 2a. When $P = (\alpha_0 : \ldots : \alpha_n) \in \mathbb{P}^n(K)$, the ideal **a** generated by $\alpha_0, \ldots, \alpha_n$ depends on *P* up to multiplication by a principal ideal, and therefore the ideal class $\mathfrak A$ of $\mathfrak a$ depends only on P . Let

 $Z_6(\mathfrak{A}, \mathcal{S}, X)$ be the number of points $P \in \mathbb{P}^n(K)$ with $\mathbb{Q}(P) = K$ of height $H^{\mathcal{S}}(P) \leq X$ belonging to the class \mathfrak{A} .

In the class $\mathfrak A$ pick an ideal $\mathfrak a$. Then when *P* belongs to the class $\mathfrak A$, we may write $P = (\alpha_0 : \ldots : \alpha_n)$ where $\alpha_0, \ldots, \alpha_n$ generate **a**. We have $H^{\mathcal{S}}(P) = (H^{\mathcal{S}}_{\infty}(\alpha))^2 / \mathfrak{N}(\mathfrak{a}),$ so that $H^{\mathcal{S}}(P) \leq X$ is the same as $H^{\mathcal{S}}_{\infty}(\alpha) \leq$ $(X\mathfrak{N}(\mathfrak{a}))^{1/2}$, and this is the same as $\widehat{\alpha} \in (X\mathfrak{N}(\mathfrak{a}))^{1/2}S$. When $\Delta < 0$, then α generating α is determined by P up to multiplication by roots of 1, so that

(7.6)
$$
Z_6(\mathfrak{A}, \mathcal{S}, X) = \frac{1}{w} Z_4(\mathfrak{a}, \mathcal{S}, X).
$$

When $\Delta > 0$, α may be chosen with $\varepsilon^{-1} < \psi(\alpha) \leq \varepsilon$, and is then unique up to a factor ± 1 , so that (by the definition of $Z_4(\mathfrak{a}, \mathcal{S}, X)$ in this case) again (7.6) holds. Now $Z_4(\mathfrak{a}, \mathcal{S}, X)$ may be estimated by Lemma 12.

Theorem 2a follows by taking the sum over the ideal classes \mathfrak{A} . The main term is certainly correct. The error term will follow once we have shown that

$$
\sum_{\mathfrak{A}} \mathfrak{L}_n(\mathfrak{A}) \ll (hR \log^+ hR)^{1/2};
$$

here the sum is over all ideal classes \mathfrak{A} . But by the definition (6.1),

$$
\sum_{\mathfrak{A}}\mathfrak{L}_n(\mathfrak{A})=\Big(\sum_{\mathfrak{A}}\mathfrak{N}(\mathfrak{A})^{-1/2}\Big)\Big(\sum_{\mathfrak{b}}\mathfrak{N}(\mathfrak{b})^{-n-1/2}\Big).
$$

The first factor is $\ll (hR \log^+ hR)^{1/2}$ by (5.3), and the second factor is

$$
\zeta_K\left(n+\frac{1}{2}\right) \le \sum_{x=1}^{\infty} \tau(x) x^{-n-1/2} \ll 1,
$$

where $\tau(x)$ is the number of divisors of x.

8. Proof of Theorem 3. Let *S* be a closed set in \mathbb{R}^{2n+2} as specified in Section 7. More precisely, write $S = S^-$ if it is of the type specified for Δ < 0, and $\mathcal{S} = \mathcal{S}^+$ if it is of the type specified for $\Delta > 0$. Let $H^{\mathcal{S}^+}(P)$ [or $H^{S^-}(P)$ be the height of a point $P \in \mathbb{P}^n(A)$ where $\mathbb{Q}(P)$ is real quadratic (with discriminant $\Delta > 0$) [or imaginary quadratic (with $\Delta < 0$)]. With either the + or - sign, let $Z_7^{\pm}(\mathcal{S}^{\pm}, X)$ be the number of points $P \in \mathbb{P}^n(A)$ where $\mathbb{Q}(P)$ is quadratic with $\pm \Delta > 0$ and with $H^{\mathcal{S}^{\pm}}(P) \leq X$. In what follows, for simplicity of notation, S will be a set of type S^+ when dealing with Z_7^+ , and of type S^- when dealing with Z_7^- .

THEOREM 3a. *When* $n \geq 3$, *then*

(8.1)
$$
Z_7^{\pm}(\mathcal{S}, X) = c_{13}^{\pm}(\mathcal{S})X^{n+1} + O(X^{n+(1/2)})
$$

with certain constants $c_{13}^+(\mathcal{S})$, $c_{13}^-(\mathcal{S})$ *defined below. When* $n = 2$, *then*

(8.2)
$$
Z_7^{\pm}(\mathcal{S}, X) = c_{14}^{\pm}(\mathcal{S})X^3 \log X + O(X^3 \sqrt{\log X}),
$$

where

$$
(8.3) \t c_{14}^+(\mathcal{S}) = V(\mathcal{S}(e))/(2\zeta(3)^2), \t c_{14}^-(\mathcal{S}) = 4V(\mathcal{S})/(\pi \zeta(3)^2).
$$

Since $\mathcal{N}^{\pm}(2,n,X) = Z_7^{\pm}(S_0^{\pm},X)$, and since by what we said in §7, $V(\mathcal{S}_0^+(e)) = 96, V(\mathcal{S}_0^-) = \pi^3$ for $n = 2$, we obtain the cases $n \geq 2$ of Theorem 3. The case $n = 1$ of that theorem will be dealt with in the next section.

Proof of Theorem 3a. It will be convenient to parametrize quadratic number fields by their discriminant *∆*. Let *D* be the set of fundamental discriminants, i.e., the set of integers which arise as the discriminant of a quadratic number field. It is well known ([6, $\S 29$]) that $\mathcal{D} = \mathcal{D}_0 \cup \mathcal{D}_1$, where

$$
\mathcal{D}_0 = \{ \Delta = 4d \mid d \equiv 2 \text{ or } 3 \pmod{4}, d \text{ square free} \},\
$$

$$
\mathcal{D}_1 = \{ \Delta \mid \Delta \equiv 1 \pmod{4}, \Delta \text{ square free}, \Delta \neq 1 \}.
$$

For $\Delta \in \mathcal{D}$ we will write $h = h(\Delta)$, $R = R(\Delta)$, $w = w(\Delta)$, etc., for the class number, regulator (as defined in (1.4)), number of roots of unity, etc., of the quadratic field with discriminant Δ . Also, with $Z_5(K, S, X)$ the quantity introduced in the last section, we will write $Z_5(\Delta, \mathcal{S}, X) = Z_5(K, \mathcal{S}, X)$ where K is the field with discriminant Δ . Now if \mathcal{D}^+ , \mathcal{D}^- consist respectively of positive and negative elements of *D*, then

$$
Z_{7}^{\pm}(\mathcal{S},X)=\sum_{\Delta\in\mathcal{D}^{\pm}}Z_{5}^{\pm}(\Delta,\mathcal{S},X).
$$

Suppose initially that $n \geq 3$. Since, as is well known (see, e.g., [16]), buppose initially that $n \ge 3$. Since, as is well known (see, e.g., [10]),
 $hR \ll |\Delta|^{1/2+\delta}$ for $\delta > 0$, the sum $\sum |\Delta|^{-n/2} (hR \log^+ hR)^{1/2}$ over $\Delta \in \mathcal{D}$ is convergent. From Theorem 2a we may infer that (8.1) holds with

$$
c_{13}^{\pm}(\mathcal{S}) = V_0(\mathcal{S}) \sum_{\Delta \in \mathcal{D}^{\pm}} \frac{h(\Delta)R(\Delta)}{w(\Delta)\zeta_{\Delta}(n+1)|\Delta|^{(n+1)/2}}.
$$

Here we used the fact that the infinite sum in the definition of $c_{13}^{\pm}(\mathcal{S})$ is clearly convergent when $n \geq 3$.

This same sum is divergent when $n = 2$. When $n = 2$ we will use the fact that for a point $P \in \mathbb{P}^n(A)$ with $\mathbb{Q}(P)$ of degree *d*, the discriminant Δ of $\mathbb{Q}(P)$ has

$$
(8.4) \t\t | \Delta | \le d^d H_K(P)^{2d-2}
$$

(Silverman [18, Theorem 2]). In our case, $d = 2$, so that $|\Delta| \leq 4H_K(P)^2$. The hypothesis that *S* is contained in the ball of radius 1 when Δ < 0, and is contained in $|\alpha| |\alpha'| \leq 2$ when $\Delta > 0$, implies that $H_K(P) \leq c_{15} H^S(P)$. Therefore $H^{\mathcal{S}}(P) \leq X$ yields

$$
|\Delta| \le c_{16} X^2.
$$

Setting

$$
(8.5) \t\t Y = c_{16} X^2,
$$

and denoting the intersection of *D* or \mathcal{D}^{\pm} with $|\Delta| \leq Y$ by $\mathcal{D}(Y)$ or $\mathcal{D}^{\pm}(Y)$, we may infer from Theorem 2a that in the case $n = 2$ we have

(8.6)
$$
Z_7^{\pm}(\mathcal{S}, X) = A^{\pm} X^3 + O(BX^{5/2}),
$$

where

$$
A^{\pm} = V_0(\mathcal{S}) \sum_{\Delta \in \mathcal{D}^{\pm}(Y)} \frac{hR}{w(\Delta)\zeta_{\Delta}(3)|\Delta|^{3/2}},
$$

$$
B = \sum_{\Delta \in \mathcal{D}(Y)} |\Delta|^{-1} (hR \log^+ hR)^{1/2}.
$$

We first turn to the evaluation of A^{\pm} . Let $\left(\frac{\Delta}{l}\right)$ be the Kronecker symbol, and

$$
L(s, \Delta) = \sum_{l=1}^{\infty} \left(\frac{\Delta}{l}\right) l^{-s}
$$

the *L*-function belonging to the quadratic field with discriminant *∆*. Then

$$
\zeta_{\Delta}(s) = \zeta(s)L(s,\Delta)
$$

(Hecke [6, (137)]). Further

$$
\frac{\lambda hR}{w|\Delta|^{1/2}} = L(1,\Delta)
$$

by [6, (145)], our definition (1.5) of *λ*, and Hecke's definition of *κ* [6, p. 156]. Therefore

$$
\frac{hR}{w\zeta\Delta(3)|\Delta|^{3/2}} = \frac{L(1,\Delta)}{\lambda\zeta(3)|\Delta|L(3,\Delta)}.
$$

In the appendix it will be shown that

(8.7)
$$
\sum_{\Delta \in \mathcal{D}^{\pm}(T)} L(1, \Delta) / L(3, \Delta) = (2\zeta(3))^{-1}T + O(T^{7/10+\delta}).
$$

Partial summation gives

$$
\sum_{\Delta \in \mathcal{D}^{\pm}(Y)} L(1, \Delta) / (L(3, \Delta)|\Delta|) = (2\zeta(3))^{-1} \log Y + O(1).
$$

A combination of our equations yields

$$
A^{\pm} = \frac{V_0(\mathcal{S})}{2\zeta(3)^2 \lambda} (\log Y + O(1)) = \frac{V_0(\mathcal{S})}{\zeta(3)^2 \lambda} \log X + O(1)
$$

by (8.5), and since $V_0(\mathcal{S}) \ll 1$.

When dealing with A^+ , we have $V_0(S) = 2V(S(e))$, $\lambda = 4$ by (6.3), (1.5), and when dealing with A^- we have $V_0(S) = 8V(S)$, $\lambda = 2\pi$. Therefore

(8.8)
$$
A^{\pm} = c_{14}^{\pm}(\mathcal{S}) \log X + O(1)
$$

with $c_{14}^{\pm}(\mathcal{S})$ given by (8.3).

Let us turn to the quantity *B*. Since $hR \ll |\Delta|$ (in fact $\ll |\Delta|^{1/2+\delta}$),

$$
B \ll (\log^+ Y)^{1/2} \sum_{\Delta \in \mathcal{D}(Y)} |\Delta|^{-3/8} ((hR)^{1/2} |\Delta|^{-5/8}),
$$

and by Cauchy's inequality this is

$$
\ll (\log^+ Y)^{1/2} \Big(\sum_{|\Delta| \in \mathcal{D}(Y)} |\Delta|^{-3/4} \Big)^{1/2} \Big(\sum_{\Delta \in \mathcal{D}(Y)} hR|\Delta|^{-5/4} \Big)^{1/2}.
$$

The first sum on the right hand side is $\ll Y^{1/4}$. On the other hand, for $T > 1$ we have

$$
\sum_{\Delta \in \mathcal{D}(T)} hR \ll T^{3/2}
$$

(see, e.g., Siegel [16], or the discussion in our appendix), and partial summation yields

$$
\sum_{\Delta \in \mathcal{D}(Y)} hR/|\Delta|^{5/4} \ll Y^{1/4}.
$$

We may conclude that

(8.9)
$$
B \ll Y^{1/4} (\log^+ Y)^{1/2} \ll X^{1/2} (\log X)^{1/2}.
$$

The estimate (8.2) now follows from (8.6) , (8.8) , (8.9) .

9. The case $n = 1$ of **Theorem 3.** This case is easy and is independent of what has been done above. With the exception of $(0:1)$, every point of ^{p1} is of the type $(1 : α)$. When *α* is quadratic, it satisfies a unique equation $f(\alpha) = 0$, where

$$
f(x) = ax^2 + bx + c
$$

is a polynomial in $\mathbb{Z}[x]$ with $a > 0$, $gcd(a, b, c) = 1$, which is irreducible over $\mathbb Q$. When **a** is the fractional ideal generated by 1, α , then it follows from Gauss' Lemma that $\mathfrak{N}(\mathfrak{a}) = a^{-1}$, and therefore

$$
H_K(1:\alpha) = a \max(1, |\alpha|) \max(1, |\alpha'|),
$$

where α' is the conjugate of α . The right hand side here is called the *Mahler measure* of *α*.

Suppose $\mathbb{Q}(\alpha)$ is imaginary quadratic. Then $c > 0$, $b^2 < 4ac$ and $|\alpha| =$ $|a'|$, so that $H_K(1 : \alpha) = \max(|a|, |c|)$. Therefore $\mathcal{N}^-(2, 1, X)$ is twice the number of irreducible polynomials $f(x)$ with

(9.1)
$$
0 < a \le X, \quad 0 < c \le X, \quad |b| < 2\sqrt{ac},
$$

and with $gcd(a, b, c) = 1$. Since there are no reducible polynomials with negative discriminant, $\mathcal{N}^-(2,1,X)$ *is twice the number of primitive integer points* (a, b, c) *in the region* \mathcal{R}^- *given by* (9.1); here a point is *primitive* if its coordinates are coprime. The region \mathcal{R}^- has volume $(16/9)X^3$, and it is contained in a ball of radius $\ll X$. Thus when $X \geq 1$, the number of integer points in this region is $(16/9)X^3 + O(X^2)$. This follows, e.g., from Davenport's inequality (2.4) . By Möbius inversion, the number of primitive integer points in the region is $((16/9)\zeta(3))X^3 + O(X^2)$. We may conclude that

$$
\mathcal{N}^{-}(2,1,X) = ((32/9)\zeta(3))X^3 + O(X^2).
$$

Suppose $\mathbb{Q}(\alpha)$ is real quadratic. Then $b^2 > 4ac$ and

$$
H_K(1:\alpha) = \max(|a|, |c|, |a\alpha|, |a\alpha'|)
$$

=
$$
\max\left(|a|, |c|, \frac{1}{2}|b + \sqrt{b^2 - 4ac}|, \frac{1}{2}|b - \sqrt{b^2 - 4ac}| \right).
$$

Thus $H_K(\alpha) \leq X$ means that $|a| \leq X$, $|c| \leq X$, and $|b|$ + $\overline{b^2 - 4ac} \leq 2X$. This last condition is the same as $b^2 - 4ac \leq (2X - |b|)^2$, or $|b| \leq X + (ac/X)$, so that

(9.2)
$$
0 < a \le X
$$
, $|c| \le X$, $b^2 > 4ac$, $|b| \le X + (ac/X)$.

There are only few reducible polynomials with coefficients in this range: for if $f(x) = (ux + v)(u'x + v')$, then (as is well known—in fact it follows from (10.6) below)

$$
\max(|u|,|v|)\max(|u'|,|v'|)\ll \max(|a|,|b|,|c|)<2X.
$$

Given nonnegative integers ν , ν' with $\nu + \nu' = [\log 2X]$, the number of integers u, v, u', v' with $\max(|u|, |v|) \ll e^{\nu}$, $\max(|u'|, |v'|) \ll e^{\nu'}$ is $\ll e^{2\nu + 2\nu'}$ $\ll X^2$. Taking the sum over pairs *ν*, *ν*', we obtain $\ll X^2 \log X$ reducible polynomials. Therefore up to a summand $O(X^2 \log X)$, our $\mathcal{N}^+(2,1,X)$ is twice the number of primitive integer points in the region \mathcal{R}^+ given by (9.2). We obtain

$$
\mathcal{N}^+(2,1,X) = 2V/\zeta(3) + O(X^2 \log X),
$$

where *V* is the volume of \mathcal{R}^+ . Write $\mathcal{R}^+ = \mathcal{R}^+_1 \cup \mathcal{R}^+_2$ with $\mathcal{R}^+_1, \mathcal{R}^+_2$ containing

points with $c \leq 0$ and $c > 0$, respectively. Setting $c_1 = -c$, we have

$$
V(\mathcal{R}_1^+) = 2 \int_0^X \int_0^X (X - (ac_1/X)) da \, dc_1 = (3/2)X^3,
$$

$$
V(\mathcal{R}_2^+) = 2 \int_0^X \int_0^X (X + (ac/X) - 2\sqrt{ac}) da \, dc = (13/18)X^3.
$$

Therefore $V = V(\mathcal{R}_1^+) + V(\mathcal{R}_2^+) = (20/9)X^3$. The case $n = 1$ of Theorem 3 follows.

10. Proof of Theorem 4. Given a nonzero quadratic form as in (1.9), with rational coefficients a_{ij} , let $H(f)$ be the height of its coefficient vector. Proportional forms have the same height. Let $Z_8(n, X)$ be the number of nonzero decomposable quadratic forms as above with height $H(f) \leq X$, where proportional forms are counted as one. As was pointed out in the introduction, when *f* is decomposable, it determines a field $K(f)$. Let $Z_8^-(n, X)$, $Z_8^+(n, X)$, $Z_8^0(n, X)$ respectively count only those of the forms counted by $Z_8(n, X)$ where $K(f)$ is imaginary quadratic, real quadratic, or the rational field.

THEOREM 4a.

$$
Z_8^{\pm}(2, X) = c_{17}^{\pm}(2)X^3 \log X + O(X^3 \sqrt{\log X}),
$$

\n
$$
Z_8^{\pm}(n, X) = c_{17}^{\pm}(n)X^{n+1} + O(X^{n+(1/2)})
$$
 when $n \ge 3$,
\n
$$
Z_8^0(n, X) = c_{17}^0(n)X^{n+1} \log X + O(X^{n+1})
$$
 when $n \ge 2$.

This easily implies Theorem 4. For when *f* has coefficients $a_{ij} \in \mathbb{Z}$ with $|a_{ij}| \leq X$, then uniquely $f = tf^*$ where *t* is natural and f^* has coprime coefficients $a_{ij}^* \in \mathbb{Z}$. Now

$$
H(f^*) = \max_{i,j} |a_{ij}^*| = t^{-1} \max_{i,j} |a_{ij}| \le t^{-1} X,
$$

so that (since Z_8 counts $\pm f^*$ as one, but $\mathcal Z$ counts $\pm f$ separately)

(10.1)
$$
\mathcal{Z}^{\pm}(n,X) = 2 \sum_{t=1}^{\infty} Z_8^{\pm}(n,X/t).
$$

When $t \leq X$, we may apply Theorem 4a to $Z_8^{\pm}(n, X/t)$, and when $t > X$ we have $Z_8^{\pm}(n, X/t) = 0$. Thus, e.g., when $n = 2$, we have

$$
\mathcal{Z}^{\pm}(2,X) = 2c_{17}^{\pm}(2) \sum_{t=1}^{X} (X/t)^3 \log(X/t) + O\left(\sum_{t=1}^{X} (X/t)^3 \sqrt{\log X}\right)
$$

$$
= 2\zeta(3)c_{17}^{\pm}(2)X^3 \log X + O(X^3\sqrt{\log X}).
$$

Therefore the first assertion of Theorem 4 holds with $c_8^{\pm}(2) = 2\zeta(3)c_{17}^{\pm}(2)$. The other cases of Theorem 4 follow similarly.

Proof of Theorem 4a. We begin with the quantities $Z_8^{\pm}(n,X)$. Let P , P' be the pair of points associated with the quadratic form f , as exhibited in the introduction, so that $\mathbb{Q}(P) = \mathbb{Q}(P') = K(f)$ is quadratic. We may represent P, P' as $(\alpha_0 : \ldots : \alpha_n)$, $(\alpha'_0 : \ldots : \alpha'_n)$, where $\alpha_i, \alpha'_i \in K(f)$ and *α*^{*i*} is the conjugate of *α*^{*i*} (0 \le *i* \le *n*). Then *f* is proportional to, and may be α_i is the conjugate of α_i ($0 \le i \le n$). Then f is proportional to, and may be supposed to be equal to ll' with $l(\boldsymbol{x}) = \sum_{i=0}^n \alpha_i x_i$, $l'(\boldsymbol{x}) = \sum_{i=0}^n \alpha'_i x_i$. Let a be the ideal generated in $K(f)$ by $\alpha_0, \ldots, \alpha_n$, and \mathfrak{a}' be the ideal generated $\inf K(f)$ by $\alpha'_0, \ldots, \alpha'_n$. Further let u be the ideal generated by the coefficients a_{ij} of *f*. By Gauss' Lemma, $\mathfrak{u} = \mathfrak{a} \mathfrak{a}'$, so that with $K = K(f)$, the respective norms have $\mathfrak{N}_{\mathbb{Q}}(\mathfrak{u})^2 = \mathfrak{N}_K(\mathfrak{u}) = \mathfrak{N}_K(\mathfrak{a})\mathfrak{N}_K(\mathfrak{a}') = \mathfrak{N}_K(\mathfrak{a})^2$. Therefore

$$
H(f) = \mathfrak{N}_K(\mathfrak{a})^{-1} \max_{k,j} |a_{kj}|.
$$

But

$$
a_{kj} = \begin{cases} \alpha_k \alpha'_k & \text{when } k = j, \\ \alpha_k \alpha'_j + \alpha_j \alpha'_k & \text{when } k \neq j, \end{cases}
$$

so that

$$
(10.2)\qquad H(f) = H^S(P)
$$

with a certain set $S \subset \mathbb{R}^{2n+2}$. Namely, when we deal with Z_8^+ , so that $K = K(f)$ is real, then $S = S_1^+$, say, is defined by

(10.3)
$$
|\alpha_k \alpha'_k| \le 1 \quad (0 \le k \le n),
$$

$$
|\alpha_k \alpha'_j + \alpha_j \alpha'_k| \le 1 \quad (0 \le j < k \le n).
$$

Clearly when $(\alpha, \alpha') \in S_1^+$ and $|tt'| \leq 1$, then also $(t\alpha, t'\alpha') \in S_1^+$. Furthermore, if *k*, *j* are chosen with $|\alpha| = |\alpha_k|$, $|\alpha'| = |\alpha'_j|$, then when $j \neq k$,

$$
|\alpha| |\alpha'| = |\alpha_k| |\alpha'_j| \le 1 + |\alpha_j \alpha'_k| \le 1 + |\alpha_k|^{-1} |\alpha'_j|^{-1} = 1 + |\alpha|^{-1} |\alpha'|^{-1},
$$

so that certainly $|\alpha| |\alpha'| < 2$. This is also true when $j = k$. If we deal with Z_8^- , so that $K = K(f)$ is imaginary quadratic, then α'_j is the complex conjugate of α_j , i.e., $\alpha'_j = \overline{\alpha}_j$, and (10.3) says that $|\alpha_k| \leq 1$ ($0 \leq k \leq n$) and $|2 \text{Re}(\alpha_k \overline{\alpha}_j)| \le 1$ ($0 \le j < k \le n$). Writing $\alpha_k = \xi_k + i\eta_k$ with real ξ_k , η_k , we see that (10.2) holds with $S = S_1^-$ given by

(10.4)
$$
\xi_k^2 + \eta_k^2 \le 1 \quad (0 \le k \le n),
$$

$$
2|\xi_k \xi_j + \eta_k \eta_j| \le 1 \quad (0 \le j < k \le n).
$$

To each form f there belong the two points P , P' . Therefore

$$
Z_8^{\pm}(n, X) = \frac{1}{2} Z_7^{\pm}(S_1^{\pm}, X).
$$

The first two assertions of Theorem 4a now follow from Theorem 3a. In fact, we have $c_{17}^{\pm}(n) = \frac{1}{2}c_{13}^{\pm}(S_1^{\pm})$ when $n \geq 3$, $c_{17}^{\pm}(2) = \frac{1}{2}c_{14}^{\pm}(S_1^{\pm})$ when $n = 2$.

We next turn to the quantity $Z_8^0(n, X)$. Our work here is independent of the rest of the paper. We may suppose that the coefficients a_{ij} of f are relatively prime integers. When *f* is reducible with $K(f) = \mathbb{Q}$, then $f = \mathbb{d}$ *l* relatively prime integers. When f is reducible with $K(f) = \mathcal{Q}$, then $f = u$
with $l = \sum \alpha_i x_i$, $l' = \sum \alpha'_i x_i$, where $\alpha = (\alpha_0, \dots, \alpha_n)$, $\alpha' = (\alpha'_0, \dots, \alpha'_n)$ are *primitive* points, i.e., points with coordinates in \mathbb{Z} , and without common factor. Writing

 $G(\boldsymbol{\alpha}, \boldsymbol{\alpha}') = \max(|\alpha_k \alpha'_k| (0 \le k \le n) \text{ and } |\alpha_k \alpha'_j + \alpha_j \alpha'_k| (0 \le j < k \le n)),$

we have to deal with pairs of primitive points α , α' with

$$
(10.5) \tG(\alpha, \alpha') \leq X.
$$

We have seen above that $G(\alpha, \alpha') \leq 1$, which is the same as (10.3), implies $|\alpha| |\alpha'| < 2$, so that in general

(10.6)
$$
\frac{1}{2}|\boldsymbol{\alpha}||\boldsymbol{\alpha}'| \leq G(\boldsymbol{\alpha},\boldsymbol{\alpha}') \leq 2|\boldsymbol{\alpha}||\boldsymbol{\alpha}'|.
$$

When $\alpha = \alpha'$ or $\alpha = -\alpha'$, we have $G(\alpha, \alpha') \geq \frac{1}{2}$ $\frac{1}{2}|\boldsymbol{\alpha}|^2$, so that (10.5) gives $|a_i| \ll X^{1/2}$. The number of such pairs is $\ll X^{(n+1)/2}$, which is negligible. (They correspond to quadratic forms f of rank 1.) When α , α' are not related as above, we note that the pair α , α' gives the same quadratic form as α' , α , and again we get the same quadratic form (up to a factor ± 1) if α or α' is replaced by minus itself. Therefore

(10.7)
$$
Z_8^0(n,X) = \frac{1}{8}Z_9(n,X) + O(X^{(n+1)/2}),
$$

where $Z_9(n, X)$ is the number of ordered pairs of primitive points $\boldsymbol{\alpha}, \boldsymbol{\alpha}'$ with (10.5) .

Now let $Z_{10}(n, X)$ be the number of (not necessarily primitive) ordered pairs of nonzero integer points α , α' with (10.5).

Lemma 13.

$$
Z_{10}(n, X) = c_{18}(n)X^{n+1}\log X + O(X^{n+1}).
$$

This lemma easily gives what we want: Indeed, each α , α' may uniquely be written as $\alpha = t\beta$, $\alpha' = t'\beta'$ with *t*, *t'* natural numbers and with β , β' primitive; and then $G(\beta, \beta') = G(\alpha, \alpha')/(tt')$. Therefore

$$
Z_{10}(n, X) = \sum_{t=1}^{\infty} \sum_{t'=1}^{\infty} Z_9(n, X/(tt')).
$$

Of course, the summands vanish when tt' is large, more precisely when t *tt*^{\prime} $>$ 2*X*, since *G*(β , β') $<$ 1/2 yields $|\beta| |\beta' |$ $<$ 1 by (10.6). Möbius inversion in both t, t' gives

(10.8)
$$
Z_9(n, X) = \sum_{t} \sum_{t'} \mu(t) \mu(t') Z_{10}(n, X/(tt')),
$$

where again we may restrict to summands with $tt' \leq 2X$. It is an easy exercise to deduce from Lemma 13 that

$$
Z_9(n, X) = (c_{18}(n)/\zeta(n+1)^2)X^{n+1}\log X + O(X^{n+1}),
$$

which in view of (10.7) gives the last assertion of Theorem 4a with $c_{17}^0(n) =$ $c_{18}(n)/(8\zeta(n+1)^2).$

Incidentally, in order to deal with $\mathcal{Z}^0(n,X)$ in Theorem 4, we could have avoided the twofold inversion (10.8) (but not a simple inversion) by considering pairs α, α' where just α is required to be primitive.

Finally, we turn to the proof of Lemma 13. Nonzero integer points α have $|\alpha| \geq 1$, so that $Z_{10}(n, X)$ is the number of integer points (α, α') in the set $\mathcal{T} \subset \mathbb{R}^{2n+2}$ given by

(10.9)
$$
G(\boldsymbol{\alpha}, \boldsymbol{\alpha}') \le X
$$
 and $|\boldsymbol{\alpha}| \ge 1, |\boldsymbol{\alpha}'| \ge 1.$

We will estimate $Z_{10}(n, X)$ using Davenport's inequality (2.4) . We will show that

(10.10)
$$
V(\mathcal{T}) = c_{18}(n)X^{n+1}\log X + O(X^{n+1})
$$

and

$$
(10.11)\t\t V(\mathcal{T}') \ll X^{n+1}
$$

for the projections \mathcal{T}' of $\mathcal T$ on the coordinate planes of dimensions $\langle 2n+2;$ and this clearly will yield the lemma.

In view of (10.9) and (10.6), $\mathcal T$ is contained in a ball of radius $\ll X$, so that (10.11) is certainly true for the projection on a plane of dimension $\leq n+1$ 1. Without loss of generality it will therefore suffice to prove (10.11) when *T 0* is the orthogonal projection of $\mathcal T$ on the coordinate plane $\Pi(l,m)$ consisting of points $(\alpha_0, ..., \alpha_l, 0, ..., 0, \alpha'_0, ..., \alpha'_m, 0, ..., 0)$ with $l \geq 0, m \geq 0$. In fact, we may suppose that

$$
(10.12) \t\t\t 0 \le l \le m \le n.
$$

Writing $\mathcal{T}'(l,m)$ for this projection, we will show that

(10.13)
$$
V(\mathcal{T}'(l,m))\begin{cases} = c_{19}(m)X^{m+1}\log X + O(X^{m+1}) & \text{when } l=m, \\ \ll X^{m+1} & \text{when } l < m. \end{cases}
$$

This will give both (10.11) (when $l + m < 2n$), as well as (10.10) (when $l = m = n$).

Points (α, α') in $T'(l,m)$ where $|\alpha| < 1$ or $|\alpha'| < 1$ make up a set of volume $\ll X^{m+1}$, since *T* lies in a ball of radius $\ll X$. Such points may be neglected in the estimation of $V(T'(l,m))$. Therefore $T'(m,m)$ may be replaced by $T''(m, m)$, consisting of $(\alpha, \alpha') \in \mathbb{R}^{m+1} \times \mathbb{R}^{m+1}$ with $G(\alpha, \alpha')$ \leq *X* and $|\alpha| \geq 1$, $|\alpha'| \geq 1$. Points $(\alpha, \alpha') \in \mathcal{T}'(l,m)$ certainly have $\frac{1}{2}|\alpha| |\alpha'|$ $≤ X$, so that for $l < m$ we note that $\mathcal{T}'(l,m) \subseteq \mathcal{T}''(l,m)$, consisting of $(\alpha, \alpha') \in \mathbb{R}^{l+1} \times \mathbb{R}^{m+1}$ with $\frac{1}{2}|\alpha| |\alpha'| \leq X$ and $|\alpha| \geq 1, |\alpha'| \geq 1$. Therefore it will suffice to prove (10.13) with $\mathcal{T}''(l,m)$ in place of $\mathcal{T}'(l,m)$. Here $\mathcal{T}''(l,m)$ consists of (α, α') with

$$
F(\alpha, \alpha') \leq X, \quad |\alpha| \geq 1, \ |\alpha'| \geq 1,
$$

where

$$
F(\boldsymbol{\alpha}, \boldsymbol{\alpha}') = \begin{cases} G(\boldsymbol{\alpha}, \boldsymbol{\alpha}') & \text{when } l = m, \\ \frac{1}{2} |\boldsymbol{\alpha}| |\boldsymbol{\alpha}'| & \text{when } l < m. \end{cases}
$$

Write $\alpha = r\beta$, $\alpha' = r'\beta'$ where $r > 0$, $r' > 0$ and $|\beta| = |\beta'| = 1$, so that $1/2 \leq F(\beta, \beta') \leq 2$. Let $d\beta$ be the *l*-dimensional volume element on the cube surface $\mathcal{C}(l)$ consisting of $\beta \in \mathbb{R}^{l+1}$ with $|\beta| = 1$. (This cube on the cube surface $C(t)$ consisting of $\beta \in \mathbb{R}^{n+1}$ with $|\beta| = 1$. (This cube has $2(l + 1)$ sides of volume 2^l , so that $\int_{\mathcal{C}(l)} d\beta = 2(l + 1) \cdot 2^l$.) We have $d\alpha = r^l dr d\beta$. Similarly, $d\alpha' = r'^m dr' d\beta'$. In terms of the coordinates *r*, *r'*, **β**, **β**^{*'*}, the set $\mathcal{T}''(l,m)$ is given by $r \geq 1$, $r' \geq 1$ and $rr'F(\mathbf{\beta}, \mathbf{\beta}') \leq X$. Thus when $X \geq 1$,

$$
V(\mathcal{T}''(l,m)) = \int_{\mathcal{C}(l)} d\beta \int_{\mathcal{C}(m)} d\beta' \int_{1}^{X/F} r^l dr \int_{1}^{X/(rF)} r'^m dr',
$$

where $F = F(\beta, \beta')$. The inner double integral is

$$
\begin{cases}\n((m+1)F^{m+1})^{-1}X^{m+1}\log X + O(X^{m+1}) & \text{when } l=m, \\
\ll X^{m+1} & \text{when } l < m.\n\end{cases}
$$

Therefore (10.13) holds with

$$
c_{19}(m) = (m+1)^{-1} \int_{C(m)} \int_{C(m)} F(\beta, \beta')^{-m-1} d\beta d\beta'.
$$

Appendix. Certain sums involving *L***-series.** As in Section 8, let

$$
L(s, \Delta) = \sum_{n=1}^{\infty} \left(\frac{\Delta}{n}\right) n^{-s}.
$$

Here $\left(\frac{\Delta}{n}\right)$ \mathbf{r} is the Kronecker symbol, defined for $\Delta \equiv 0$ or 1 (mod 4). Let \mathcal{D} be the set of fundamental discriminants, and $\mathcal{D}^+(X)$, $\mathcal{D}^-(X)$ respectively the set of numbers $\Delta \in \mathcal{D}$ with $0 < \Delta \leq X$ or $0 < -\Delta \leq X$. We will study sums of the type

$$
S^{\pm}(s, a, X) = \sum_{\Delta \in \mathcal{D}^{\pm}(X)} L(s, \Delta) / L(a, \Delta).
$$

Our goal in this appendix will be a proof of the following

PROPOSITION. *Suppose* $s = \sigma + it$, $a = \alpha + ib$ *with* $5/8 < \sigma < \alpha$ *and* $5/4 < \alpha$. Then for $\delta > 0$,

$$
S^{\pm}(s, a, X) = c_0(s, a)X + O(X^{\max(1/2 + \delta, 3/2 - (4/5)\sigma + \delta})
$$

with

$$
c_0(s,a) = \frac{1}{2}\zeta(2s)\prod_p(1-p^{-2}-p^{-2s-1}+p^{-2s-2}-p^{-s-a}+p^{-s-a-1}).
$$

Remarks. Here and below, the constants implicit in $O(\ldots)$ and in \ll may depend on δ , σ and α only. The case $s = 1$, $a = 3$ yields (8.7), since $c_0(1,3) = 1/(2\zeta(3))$. Presumably, our conditions on α and σ could be relaxed. Our method also shows that

$$
S^{\pm}(s, X) = \sum_{\Delta \in \mathcal{D}^{\pm}(X)} L(s, \Delta)
$$

has $S^{\pm}(s, X) \sim c_0(s)X$ with

$$
c_0(s) = \frac{1}{2}\zeta(2s)\prod_p(1-p^{-2}-p^{-2s-1}+p^{-2s-2}),
$$

and with an error term as in the proposition. Sums similar to $S^{\pm}(s, X)$ were studied by Goldfeld and Hoffstein [4]. (They take sums over $\Delta \in \mathcal{D}$ with $\Delta \equiv 1 \pmod{4}$ and $0 < \pm \Delta \leq X$, and with $\Delta \equiv 0 \pmod{4}$ and $0 <$ $\pm \Delta \leq 4X$. They only require that $\sigma \geq 1/2$. There is a slight mistake in their constant.) Since, as already noted in Section 8, $\lambda hR/w = |\Delta|^{1/2}L(1,\Delta)$, the sums $S^{\pm}(1, X)$ are related to sums

$$
\sum_{\Delta \in \mathcal{D}^{\pm}(X)} h(\Delta)R(\Delta).
$$

Asymptotic formulas for such sums, but in the context of quadratic forms, and with Δ only restricted by $\Delta \equiv 0$ or 1 (mod 4), had been conjectured by Gauss, and first proved by Lipschitz [9] in the case of summation over 0 < − Δ ≤ *X*, and by Siegel [15] over 0 < Δ ≤ *X*.

Our method will follow Siegel's.

We begin with a series of lemmas.

LEMMA 14. Let $\mathcal E$ consist of the integers which are congruent to 1, 5, 9, 13, 8, *or* 12 (mod 16)*.* Let $\mathcal{E}^{\pm}(Y)$ be the set of $E \in \mathcal{E}$ with $0 < \pm E \leq Y$. Given *natural l*, *set* $\overline{1}$ \mathbf{r}

$$
A_l^{\pm}(Y) = \sum_{E \in \mathcal{E}^{\pm}(Y)} \left(\frac{E}{l}\right).
$$

Then

- (i) $A_l^{\pm}(Y) \ll \min(Y, l^{1/2} \log^+ l)$ when *l* is not a square.
- (ii) *When* $l = u^2$ *, then*

(A1)
$$
A_l^{\pm}(Y) = u^{-1} \psi(u) \phi(u) Y + O(u),
$$

where φ is Euler's function and

$$
\psi(u) = \begin{cases} 3/8 & when u is odd, \\ 1/2 & when u is even. \end{cases}
$$

P r o o f. (i) When *^l* is odd, then *E l* \mathbf{r} is a character of modulus *l*, and this character is nontrivial when *l* is not a square. When E runs through a finite character is nontrivial when ι is not a square. When E run
set of consecutive integers, the corresponding sum $\sum (\frac{E}{I})$ $\left(\frac{E}{l}\right)$ is $\ll l^{1/2} \log^+ l$ by the Pólya–Vinogradov inequality (see, e.g., $[1,$ Theorem 13.15]). Since $(l, 16) = 1$, the same is true when E runs through a finite set of consecutive elements of an arithmetic progression with common difference 16. Since *E* consists of 6 such progressions, the assertion follows.

Now let *l* be even. Write $\mathcal{E} = \mathcal{E}_0 \cup \mathcal{E}_1$, where \mathcal{E}_0 consists of integers $\equiv 8$ or 12 (mod 16), and \mathcal{E}_1 of integers $\equiv 1 \pmod{4}$. For *l* even and $E \in \mathcal{E}_0$, we have *E* $\left(\frac{E}{l}\right) = 0$. We therefore may restrict ourselves to $E \in \mathcal{E}_1$. Write $l = l_1 l_2$ where l_1 is a power of 2, and l_2 is odd. Following Siegel we observe that

$$
\varrho_1(E) = \left(\frac{4l_1}{E}\right) \left(\frac{E}{l_2}\right) \quad \text{and} \quad \varrho_2(E) = \left(\frac{-4l_1}{E}\right) \left(\frac{E}{l_2}\right)
$$

are nontrivial characters mod 4*l*, and that

$$
\frac{1}{2}(\varrho_1(E) + \varrho_2(E)) = \begin{cases} \left(\frac{E}{l}\right) & \text{when } E \in \mathcal{E}_1, \\ 0 & \text{otherwise.} \end{cases}
$$

A sum $\sum \varrho_i(E)$ (*i* = 1, 2), where *E* runs through a finite set of consecutive numbers, again is $\ll l^{1/2} \log^+ l$ by Pólya–Vinogradov. The assertion follows.

(ii) When $l = u^2$, then $A_l^{\pm}(Y)$ is the number of $E \in \mathcal{E}^{\pm}(Y)$ with (E, u) $= 1$. When *u* is odd, this is the number of integers *E* which lie in certain 6 residue classes (mod 16), which are coprime to *u* and lie in the interval $0 < \pm E \leq Y$. The number of such integers *E* in an interval of length 16*u* is $6\phi(u)$, so that $A_l^{\pm}(Y) = (6\phi(u)/16u)Y + O(u)$, giving (A1). When *u* is even, then $A_l^{\pm}(Y)$ is the number of integers $E \equiv 1 \pmod{4}$ with $(E, u) = 1$ lying in the interval $0 < \pm E \leq Y$. The number of such integers in an interval of length 2*u* is $\phi(u)$, so that $A_l^{\pm}(Y) = (\phi(u)/2u)Y + O(u)$, again yielding (A1).

 $\text{LEMMA } 15. \text{ Put } B_l^{\pm}(X) = \sum_{\Delta \in \mathcal{D}^{\pm}(X)} \left(\frac{\Delta}{l} \right)$ *l* \mathbf{r} *.*

(i) *When l is not a square*,

$$
B_l^{\pm}(X) \ll l^{1/4} (\log^+ l)^{1/2} X^{1/2}.
$$

(ii) *When* $l = u^2$,

(A2)
$$
B_l^{\pm}(X) = u^{-1}\psi(u)\phi(u) \Big(\sum_{\substack{q=1 \ (2u,q)=1}}^{\infty} \mu(q)q^{-2}\Big)X + O(X^{1/2}u).
$$

P r o o f. As in *§8*, write $\mathcal{D} = \mathcal{D}_0 \cup \mathcal{D}_1$, where \mathcal{D}_0 consists of fundamental discriminants $\Delta \equiv 0 \pmod{4}$ (i.e., $\Delta = 4E$ with $E \equiv 2 \text{ or } 3 \pmod{4}$, *E* square free), and \mathcal{D}_1 consists of fundamental discriminants $\Delta \equiv 1 \pmod{4}$ (i.e., $\Delta \equiv 1 \pmod{4}$, Δ square free, $\Delta \neq 1$). Now

$$
\sum_{\Delta \in \mathcal{D}_0^{\pm}(X)} \left(\frac{\Delta}{l}\right) = \sum_{\substack{0 \le \pm E \le X/4 \\ E \equiv 2 \text{ or } 3 \pmod{4} \\ E \text{ square free}}} \left(\frac{4E}{l}\right) = \sum_{q=1}^{\sqrt{X}} \mu(q) \sum_{\substack{0 \le \pm E \le X/4 \\ E \equiv 2 \text{ or } 3 \pmod{4} \\ q^2|E}} \left(\frac{4E}{l}\right).
$$

The outer sum is understood to be over integers q in $1 \leq q \leq$ *X*. The summands have $E = q^2 E'$ with *q* odd and $E' \equiv 2 \text{ or } 3 \pmod{4}$. We clearly may restrict ourselves to summands with $(l, q) = 1$. We therefore obtain

$$
\sum_{\substack{q=1\\ (2l,q)=1}}^{\sqrt{X}} \mu(q) \sum_{\substack{0<\pm E'\leq X/(4q^2)\\ E'\equiv 2 \text{ or } 3 \text{ (mod }4)}} \left(\frac{4E'}{l}\right),
$$

so that

$$
\sum_{\Delta \in \mathcal{D}_0^{\pm}(X)} \left(\frac{\Delta}{l}\right) = \sum_{\substack{q=1 \ (2l,q)=1}}^{\sqrt{X}} \mu(q) \sum_{\substack{0 \le \pm E \le X/q^2}} \left(\frac{E}{l}\right).
$$

√

A similar computation shows that this relation remains true if \mathcal{D}_0 , \mathcal{E}_0 are replaced by \mathcal{D}_1 , \mathcal{E}_1 . Taking the sum we get

$$
B_l^{\pm}(X) = \sum_{\substack{q=1 \ (2l,q)=1}}^{\sqrt{X}} \mu(q) \sum_{E \in \mathcal{E}^{\pm}(X/q^2)} \left(\frac{E}{l}\right).
$$

When *l* is not a square, the inner sum is $\ll \min(l^{1/2} \log^+ l, X/q^2)$ by Lemma 14, so that we get

$$
\ll \sum_{q=1}^{\infty} \min(l^{1/2} \log^+ l, X/q^2) \ll X^{1/2} l^{1/4} (\log^+ l)^{1/2}.
$$

When $l = u^2$, the inner sum is

X*[∞]*

$$
u^{-1}\psi(u)\phi(u)(X/q^2) + O(u)
$$

by the same lemma. Thus

$$
B_l^{\pm}(X) = u^{-1} \psi(u)\phi(u) \Big(\sum_{\substack{q=1 \ (2u,q)=1}}^{\sqrt{X}} \mu(q)q^{-2}\Big)X + O(X^{1/2}u),
$$

from which we easily get (A2).

We now introduce a parameter $Z > 1$, to be specified later.

LEMMA 16. (i) *When* $\sigma > 0$,

$$
L(s, \Delta) = L_1(s, \Delta, Z) + O(Z^{-\sigma} |\Delta|^{1/2} \log^+ |\Delta|)
$$

where

$$
L_1(s, \Delta, Z) = \sum_{n=1}^{Z} \left(\frac{\Delta}{n}\right) n^{-s}.
$$

(ii) *When* $a = \alpha + ib$, *with* $\alpha > 1$, *then* $|L(a, \Delta)| \gg 1$.

P r o o f. (i) We may suppose that Z is an integer. $\overline{}$ \mathbf{r}

$$
L(s, \Delta) - L_1(s, \Delta, Z) = \sum_{n > Z} \left(\frac{\Delta}{n}\right) n^{-s} = \sum_{n > Z} (s_n - s_{n-1}) n^{-s}
$$

with

$$
s_n := \sum_{j=1}^n \left(\frac{\Delta}{j}\right) \ll |\Delta|^{1/2} \log^+ |\Delta|
$$

by Pólya–Vinogradov. We get

$$
L(s, \Delta) - L_1(s, \Delta, Z) = \sum_{n > Z} s_n (n^{-s} - (n+1)^{-s}) - s_Z (Z+1)^{-s}
$$

$$
\ll |\Delta|^{1/2} (\log^+ |\Delta|) \Big(\Big(\sum_{n > Z} n^{-\sigma - 1} \Big) + Z^{-\sigma} \Big)
$$

$$
\ll Z^{-\sigma} |\Delta|^{1/2} \log^+ |\Delta|.
$$

(ii) follows from the product formula

$$
|L(a,\Delta)| = \prod_p \left| 1 - \left(\frac{\Delta}{p}\right) p^{-a} \right|^{-1} \ge \prod_p (1 + p^{-\alpha})^{-1} \gg 1.
$$

We now turn to the proof of the proposition. By Lemma 16,

$$
S^{\pm}(s,a,X) = \sum_{\Delta \in \mathcal{D}^{\pm}(X)} \frac{L(s,\Delta,Z)}{L(a,\Delta)} + O\Big(Z^{-\sigma} \sum_{\Delta=-X}^X |\Delta|^{1/2} \log^+ \Delta\Big),\,
$$

so that

(A3)
$$
S^{\pm}(s, a, X) = S_1^{\pm}(s, a, X, Z) + O(Z^{-\sigma} X^{3/2} \log X)
$$

where (in view of $L(a, \Delta)^{-1} = \sum_m \left(\frac{\Delta}{m}\right) \mu(m) m^{-a}),$

$$
\text{(A4) } S_1^{\pm}(s, a, X, Z) = \sum_{\Delta \in \mathcal{D}^{\pm}(X)} \left(\sum_{n=1}^{Z} \left(\frac{\Delta}{n} \right) n^{-s} \right) \left(\sum_{m=1}^{\infty} \left(\frac{\Delta}{m} \right) \mu(m) m^{-a} \right)
$$

Northcott's theorem on heights 373

$$
= \sum_{m=1}^{\infty} \mu(m) m^{-a} \sum_{n=1}^{Z} n^{-s} \sum_{\Delta \in \mathcal{D}^{\pm}(X)} \left(\frac{\Delta}{mn}\right).
$$

When *mn* is not a square, the inner sum is $\ll X^{1/2} (mn)^{1/4} (\log^+ mn)^{1/2}$ by Lemma 15. Therefore the terms with *mn* not a square contribute

$$
\ll X^{1/2} \Big(\sum_{m=1}^{\infty} m^{1/4-\alpha} (\log^+ m)^{1/2} \Big) \Big(\sum_{n=1}^Z n^{1/4-\sigma} (\log^+ n)^{1/2} \Big),
$$

and since $\alpha > 5/4$, this is

$$
\ll X^{1/2} \max(1, Z^{5/4-\sigma}) (\log^+ Z)^{3/2}.
$$

Thus

(A5)
$$
S_1^{\pm}(s, a, X, Z) = S_2^{\pm}(s, a, X, Z) + O(X^{1/2} \max(1, Z^{5/4-\sigma}) (\log^+ Z)^{3/2}),
$$

where $S_2^{\pm}(s, a, X, Z)$ is the sum of the terms where *mn* is a square.

When $mn = u^2$, the inner sum on the right hand side of $(A4)$ is again estimated by Lemma 15. We have

$$
u^{-1}m^{-a}n^{-s} = u^{-2s-1}m^{s-a}, \quad um^{-a}n^{-s} = u^{-2s+1}m^{s-a},
$$

so that

(A6)
$$
S_2^{\pm}(s, a, X, Z) = X S_3(s, a, Z) + O(X^{1/2} S_3^*(s, a, Z)),
$$

where

$$
S_3(s, a, Z) = \sum_{m=1}^{\infty} \mu(m) m^{s-a} \sum_{\substack{u=1 \ n|u^2}}^{\sqrt{mZ}} \psi(u) \phi(u) u^{-2s-1} \sum_{\substack{q=1 \ (2u,q)=1}}^{\infty} \mu(q) q^{-2},
$$

$$
S_3^*(s, a, Z) = \sum_{m=1}^{\infty} m^{\sigma-\alpha} \sum_{\substack{u=1 \ n|u^2}}^{\sqrt{mZ}} u^{-2\sigma+1} \ll \sum_{u=1}^{\infty} u^{1-2\sigma} \sum_{\substack{m|u^2 \ m \ge u^2/Z}} m^{\sigma-\alpha}.
$$

The number of divisors of u^2 is $\ll u^{\delta}$ for $\delta > 0$, so that the inner sum here is $\ll u^{\delta}$ min(1, $(Z/u^2)^{\alpha-\sigma}$), since $\alpha \geq \sigma$. Recalling that $\alpha > 1$, and choosing δ sufficiently small, we get

(A7)
$$
S_3^*(s, a, Z) \ll \sum_{u \le \sqrt{Z}} u^{1 - 2\sigma + \delta} + Z^{\alpha - \sigma} \sum_{u > \sqrt{Z}} u^{1 - 2\alpha + \delta}
$$

$$
\ll \max(1, Z^{1 - \sigma + \delta}).
$$

It remains for us to deal with $S_3(s, a, Z)$. Since

$$
\sum_{u>\sqrt{mZ}} \psi(u)\phi(u)u^{-2s-1} \ll \sum_{u>\sqrt{mZ}} u^{-2\sigma} \ll (mZ)^{1/2-\sigma},
$$

and since $\sum_{m} m^{1/2 - \alpha} \ll 1$, we have

(A8)
$$
S_3(s, a, Z) = c_0(s, a) + O(Z^{1/2-\sigma})
$$

with

$$
c_0(s, a) = \sum_{u=1}^{\infty} \psi(u)\phi(u)u^{-2s-1} \sum_{\substack{q=1 \ (2u,q)=1}}^{\infty} \mu(q)q^{-2} \sum_{m|u} \mu(m)m^{s-a}.
$$

Combining $(A3)$, $(A5)$, $(A6)$, $(A7)$, $(A8)$ we obtain

$$
S^{\pm}(s, a, X) = c_0(s, a)X + O(Z^{-\sigma} X^{3/2+\delta} + X^{1/2} Z^{\delta} \max(1, Z^{5/4-\sigma}) + X Z^{1/2-\sigma}).
$$

We now choose $Z = X^{4/5}$ to obtain the estimate of the proposition.

To evaluate $c_0(s, a)$ we note that

$$
\sum_{\substack{q=1 \ (2u,q)=1}}^{\infty} \mu(q) q^{-2} = \zeta(2)^{-1} \prod_{p|2u} (1-p^{-2})^{-1} = \zeta(2)^{-1} \varrho(u) \prod_{p|u} (1-p^{-2})^{-1},
$$

where $\varrho(u) = 1$ when *u* is even, $\varrho(u) = 4/3$ when *u* is odd. Note that $\psi(u)\varrho(u) = 1/2$ always. Therefore

$$
c_0(s,a) = (2\zeta(2))^{-1} \sum_{u=1}^{\infty} \phi(u)u^{-2s-1} \Big(\prod_{p|u} (1-p^{-2})^{-1}(1-p^{s-a})\Big).
$$

The function in u behind the \sum symbol is multiplicative, so that

$$
c_0(s, a) = (2\zeta(2))^{-1} \prod_p \left(1 + (1 - p^{-2})^{-1} (1 - p^{s-a}) \left(\sum_{\nu=1}^{\infty} \phi(p^{\nu}) / p^{\nu(2s+1)} \right) \right)
$$

\n
$$
= (2\zeta(2))^{-1}
$$

\n
$$
\times \prod_p (1 + (1 - p^{-2})^{-1} (1 - p^{-(a-s)}) (1 - p^{-2s})^{-1} (p - 1) p^{-2s-1})
$$

\n
$$
= \frac{1}{2} \zeta(2s) \prod_p ((1 - p^{-2}) (1 - p^{-2s}) + (1 - p^{-(a-s)}) (p - 1) p^{-2s-1})
$$

\n
$$
= \frac{1}{2} \zeta(2s) \prod_p (1 - p^{-2} - p^{-2s-1} + p^{-2s-2} - p^{-a-s} + p^{-a-s-1}).
$$

References

- [1] T. M. Apostol, *Introduction to Analytic Number Theory*, Springer, New York, 1976.
- [2] J. W. S. Cassels, *An Introduction to the Geometry of Numbers*, Grundlehren Math. Wiss. 99, Springer, 1959.
- [3] H. Davenport, *On a principle of Lipschitz*, J. London Math. Soc. 26 (1951), 179–183.
- [4] D. Goldfeld and J. Hoffstein, *Eisenstein series of* $\frac{1}{2}$ -integral weight and the *mean value of real Dirichlet L-series*, Invent. Math. 80 (1985), 185–208.
- [5] G. H. Hardy and E. M. Wright, *An Introduction to the Theory of Numbers*, 3rd ed., Clarendon Press, Oxford, 1954.
- [6] E. H e c k e, *Vorlesungen ¨uber die Theorie der algebraischen Zahlen*, Chelsea, 1948.
- [7] Y. R. Katznelson, *Asymptotics for singular integral matrices in convex domains and applications*, Ph.D. Dissertation, Stanford Univ., 1991.
- [8] S. L a n g, *Fundamentals of Diophantine Geometry*, Springer, 1983.
- [9] R. Lipschitz, Sitzungsber. Akad. Berlin, 1865, 174-185.
- [10] D. G. Northcott, *An inequality in the theory of arithmetic on algebraic varieties*, Proc. Cambridge Philos. Soc. 45 (1949), 502–509 and 510–518.
- [11] S. H. Schanuel, *Heights in number fields*, Bull. Soc. Math. France 107 (1979), 433–449.
- [12] W. M. S c hmi d t, *Diophantine Approximations and Diophantine Equations*, Lecture Notes in Math. 1467, Springer, 1991.
- [13] —, *Northcott's theorem on heights, I. A general estimate*, Monatsh. Math. 115 (1993), 169–181.
- [14] J.-P. S e r r e, *Lectures on the Mordell–Weil Theorem*, Vieweg, Braunschweig, 1988.
- [15] C. L. Siegel, *The average measure of quadratic forms with given determinant and signature*, Ann. of Math. 45 (1944), 667–685.
- [16] —, *Abschätzung von Einheiten*, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. 1969, 71–86.
- [17] —, *Lectures on the Geometry of Numbers*, rewritten by K. Chandrasekharan, Springer, 1988.
- [18] J. Silverman, *Lower bounds for height functions*, Duke Math. J. 51 (1984), 395– 403.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF COLORADO BOULDER, COLORADO 80309-0395 U.S.A.

Received on 4.8.1992 (2290)