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Factorisation in fractional powers

by

A. J. van der Poorten (Sydney, N.S.W.)

This note provides a uniform bound for the number of irreducible factors
of f(xq11 , . . . , x

qn
n ), where f is an irreducible polynomial defined over a field of

characteristic zero and not effectively just in one variable, and q1, . . . , qn are
arbitrary positive integers. The argument derives from that of Ritt [2], where
it arises in studying factorisation in the ring of exponential polynomials.

Let g(x1, . . . , xn) be a polynomial and let q1, . . . , qn be positive integers.
One says that a polynomial f(x1, . . . , xn) is primary in x1 if an identity
f(x1, . . . , xn) = g(xq11 , x2, . . . , xn) entails q1 = 1, and that f(x1, . . . , xn)
is primary (thus, in each of its variables) if an identity f(x1, . . . , xn) =
g(xq11 , . . . , x

qn
n ) entails q1 = · · · = qn = 1. We use the term monomial in

x1, . . . , xn for a rational function xa1
1 . . . xann with integral, but not necessar-

ily nonnegative, exponents.
Suppose that a polynomial f in several variables is the product of a

monomial and of a polynomial in some monomial z in those variables. In
that case, f is effectively just a polynomial in the one variable z; we will
refer to it in that way.

Theorem. Let f(x1, . . . , xn) be an irreducible primary polynomial of
multi-degree d1, . . . , dn defined over a field F of characteristic zero, and sup-
pose that f is not effectively just a polynomial in one variable. Then for each
i ∈ {1, . . . , n} there is a pair (i, j) with i 6= j ∈ {1, . . . , n} so that , viewed as
a polynomial in just xi and xj , the polynomial f(x1, . . . , xn) ≡ fi,j(xi, xj)
is not effectively just a polynomial in one variable. Moreover , f(x1, . . . , xn)
has a factorisation into irreducibles in the ring generated over the ground
field by all fractional powers of the variables x1, . . . , xn. The number of such
irreducible factors does not exceed min didj , with the minimum taken over
the pairs (i, j) described above.
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The core of the proof is the following proposition dealing with the seem-
ingly easier case of an irreducible primary polynomial in just two variables
defined over an algebraically closed field.

Proposition. Let f(x, y) be an irreducible primary polynomial of bi-
degree dx, dy defined over an algebraically closed field K of characteristic
zero. Suppose f(x, y) has at least three terms. Then f(x, y) has at most
dxdy factors over K in fractional powers of x and y.

P r o o f. Let p and q be an arbitrary pair of positive integers. We study
factorisations in K[x, y] of the polynomial f(xp, yq). Our plan is first to
refine the selection of the integers p and q, replacing them by integers p′

and q′, divisors of p and q respectively, so that f(xp
′
, yq

′
) has a primary

irreducible factor. We then bound the number of primary irreducible factors
of f(xp

′
, yq

′
).

Accordingly, let g(x, yq1) denote an irreducible factor of f(x, yq) so that
g(x, y) is primary in y. Further, let ζq be a qth root of unity and consider the
polynomial g(x, ζq1q y

q1) obtained by replacing y by ζqy. Since the substitu-
tion leaves f(x, yq) invariant it is evident that g(x, ζq1q y

q1) divides f(x, yq).
Suppose ζq1q 6= 1. It is immediate that the polynomials g(x, yq1) and

g(x, ζq1q y
q1) are distinct, and that they are coprime. For if not, there is a fac-

tor A(x, yq) of g(x, yq1), and that contradicts the irreducibility of g(x, yq1),
or the primality of g(x, y) in y.

It follows similarly that as we vary our choice of ζq we obtain q/(q, q1)
distinct and coprime polynomials g(x, ζq1q y

q1). We claim that their product
is f(x, yq), up to multiplication by a nonzero constant. Indeed, this product
is invariant under each substitution y 7→ ζqy, ζq a qth root of unity, and
so is a polynomial G(x, yq) which divides the polynomial f(x, yq). But then
G(x, y) divides f(x, y). Thus the irreducibility of f(x, y) entails our claim.
Conversely, because G(x, yq) is invariant under each substitution y 7→ ζq1y,
ζq1 a q1th root of unity, so is f(x, yq) up to multiplication by a constant.
Thus, because f(x, y) is primary, we learn that q1 divides q.

We have observed that, up to multiplication by a nonzero constant,
f(x, yq) is given by ∏

g(x, ζq/q1y
q1),

with the product running over the distinct (q/q1)th roots of unity ζq/q1 .
Moreover, we see that g(x, y) is primary (that is, also primary in x) since oth-
erwise this product representation contradicts the primality of f(x, y) in x.

By a similar argument, g(xp, y) is given, again up to multiplication by a
nonzero constant, by ∏

h(ζp/p1x
p1 , y),

with the polynomial h(x, y) irreducible and primary.
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By our construction, h(xp1 , y) is irreducible. Symmetry suggests that so
is h(x, yq1). Indeed, if b(x, y) is a proper factor of h(x, yq1) then b(xp1 , y)
is a proper factor of h(xp1 , yq1). Then

∏
h(ζp/p1x

p1 , yq1) = cg(xp, yq1), c
some nonzero constant, has a proper factor B(xp, y) =

∏
b(ζp/p1x

p1 , y).
This entails that B(x, y) is a proper factor of g(x, yq1), contradicting the
irreducibility of g(x, yq1).

Accordingly, we shall study the factor h(xp1 , yq1) in place of f(xp, yq).
The advantage gained is that both h(xp1 , y) and h(x, yq1) are irreducible.

It will be useful to notice that g(x, y) has bi-degree (q1/q)dx, dy and
therefore that h(x, y) has bi-degree (q1/q)dx, (p1/p)dy.

Suppose now that k(xp2 , yq2) is an irreducible factor of h(xp1 , yq1), with
k(x, y) primary. Repeating the opening argument shows that q2 divides q1

and that, with the product running over the (q1/q2)th roots of unity ζq1/q2 ,

K(xp2 , yq1) =
∏

k(xp2 , ζq1/q2y
q2)

divides h(xp1 , yq1). So K(xp2 , y) is a factor of the irreducible polynomial
h(xp1 , y); hence the two polynomials differ only by multiplication by a
nonzero constant.

It follows that p2 divides p1. Accordingly we make p2 = 1 by replacing
p by p/p2 and thus p1 by p1/p2 throughout. Of course, similarly, or by
symmetry, we may choose to make q2 = 1 by replacing q by q/q2 and thus
q1 by q1/q2 throughout. After these replacements, our choice of p and q is
now such that f(xp, yq) has an irreducible factor k(x, y), primary in both
variables.

By arguments already reported above, it follows that because k(x, y) is
primary the p1 polynomials k(ζp1x, y), as ζp1 runs through the p1th roots
of unity, are distinct and coprime and their product L(xp1 , y) is a factor of
h(xp1 , yq1). Thus L(x, y) is a factor of the irreducible polynomial h(x, yq1)
and must coincide with it up to multiplication by a nonzero constant.

Suppose that k(x, y) has bi-degree ∂x, ∂y. Then ∂x = (q1/q)dx because
that is the degree of h(x, yq1) in x. By symmetry we must also have ∂y =
(p1/p)dy. Above we saw that h(xp1 , y) is given by the product

∏
k(x, ζq1y),

up to multiplication by a nonzero constant. Hence q1∂x = p1(q1/q)dx. We
can conclude that p1 = q1.

For notational convenience we sometimes write p1 = q1 = t in the sequel.
We also note that we have shown that k(x, y) has bi-degree (t/q)dx, (t/p)dy.

Collecting our result thus far, we see that up to multiplication by a
nonzero constant, the polynomial f(xp, yq) is a product of pqt−1 polynomials
each of the shape k(ζpx, ζqy), with ζp a pth root of unity and ζq a qth root
of unity. Our adjusting the choice of p and q by setting p2 = q2 = 1 is
vindicated in that otherwise f(xp, yq) does not have a factor that is primary
in both its variables.
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It is immediate that f(xp, yq) has a factorisation in at most pqt−1 ir-
reducible polynomials. We recall that k(x, y) is one such factor and notice
that it follows that all the factors are primary.

Now we invoke the assumption that f(x, y) has at least three terms,
whence, being irreducible, it is not effectively just a polynomial in one vari-
able, that is, it is not the product of a polynomial in a monomial z in x and
y and of a monomial w in x and y.

We claim that k(x, y) has at least three terms cixαiyβi , i = 1, 2, 3, so
that the determinant ∣∣∣∣∣∣

α1 β1 1
α2 β2 1
α3 β3 1

∣∣∣∣∣∣
is nonzero. If not, then k(x, y) is of the shape wl(z) with l a polynomial over
K and w and z monomials in x and y. Thus by the product representation
above, f(xp, yq) is a polynomial which may be written as a product of a
power of w and of a polynomial in z, contradicting either its irreducibility
over K or that it has at least three terms.

Hence the 2× 2 determinant

∆ =
∣∣∣∣
α1 − α3 β1 − β3

α2 − α3 β2 − β3

∣∣∣∣
does not vanish. However, the bi-degree of k(x, y) is (t/q)dx, (t/p)dy.
It follows that the absolute value of this determinant does not exceed
(t2/(pq))dxdy. Indeed, without loss of generality, α1 ≥ α2 ≥ α3. If (β1 −
β3)(β2 − β3) ≥ 0 we are done. If not, then

|∆| = (α1 − α3)|β2 − β3|+ (α2 − α3)|β1 − β3| ≤ (q1/q)dx|β2 − β1|
and again we have our claim.

Now let ζ denote a primitive tth root of unity. Then with v = 0, 1, . . .
. . . , t− 1 the product of the t polynomials k(ζx, ζvy) yields the polynomial
h(xp1 , yq1) = h(xt, yt) up to multiplication by a nonzero constant. Because
k(x, y) is an irreducible factor of h(xp1 , yq1), for v = u, say, we must have
k(ζx, ζuy) = ck(x, y), with the constant c some power of ζ. This remark is(

α1 − α3 β1 − β3

α2 − α3 β2 − β3

)(
1
u

)
≡
(

0
0

)
(mod t).

It follows that ∣∣∣∣
α1 − α3 β1 − β3

α2 − α3 β2 − β3

∣∣∣∣ ≡ 0 (mod t),

so, given our bound on the absolute value of the determinant, we have shown
that

t ≤ t2

pq
dxdy which is pq ≤ tdxdy.
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Because t is a common divisor of p and q, this yields a bound on p and q
of the desired kind. Indeed, the bound for the number of irreducible fac-
tors of f(xp, yq) is pqt−1, and this is at most dxdy. Since that quantity is
independent of our choice of p and q this proves the Proposition.

Turning to the proof of the Theorem we first verify the opportunity
to select suitable pairs of variables xi = x and xj = xj(i) = y, say. We
write f(x1, . . . , xn) =

∑
fµxµ and observe that given the variable xi = x

there are triples of exponent vectors µ1, µ2 and µ3, say, so that the pair
µ1 − µ3, µ2 − µ3 is linearly independent and its coordinates belonging to
x are distinct. Because of that linear independence, there is some other
variable xj = y, say, so that disregarding all but the coordinates belonging
to x and y, the two exponent vectors remain linearly independent. Thus,
on viewing f(x1, . . . , xn) as a polynomial f(x, y) in just the two variables x
and y we see that f(x, y) retains the property that it is not the product of
a monomial and of a polynomial in a monomial in its variables. Of course it
must then have at least three terms.

Hence we may view f(x1, . . . , xn) as a polynomial f(x, y) in just two
variables over the field L of rational functions over F in the remaining n− 2
variables. Then f(x, y) is primary since the original polynomial is primary,
and it is irreducible over L, for, in effect by Gauß’s lemma, any factorisa-
tion of f(x, y) over L entails a factorisation of the irreducible polynomial
f(x1, . . . , xn) over the base field F.

As it is our ultimate object to find a bound, independent of (q1, . . . , qn),
on the number of irreducible factors of any polynomial f(xq11 , . . . , x

qn
n ) there

is no loss in our viewing f(x, y) as defined over the algebraic closure K of
the field L of rational functions over F in the n − 2 variables other than x
and y. For, plainly, our doing so can only increase the number of its possible
factors.

On the other hand, in order to apply the Proposition we must also show
that we do not need f(x, y) to be irreducible over K. To see we may do that,
suppose that

f(x, y) = f1(x, y) . . . fm(x, y),

with irreducible factors of respective bi-degrees d(1)
x , d

(1)
y , . . . , d

(m)
x , d

(m)
y . Be-

cause f(x, y) is irreducible over L, these factors over the algebraic closure
K of L must retain the property of not decomposing as the product of a
monomial in x and y and a polynomial in a monomial in x and y. For,
plainly, the fi are conjugate over some algebraic extension of L, and if one
were effectively just a polynomial in one variable then f would itself be ef-
fectively just a polynomial in one variable, contradicting the choice of x, y
from {x1, . . . , xn}. Hence, applied to each irreducible factor fi(x, y) over K,
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the Proposition shows that f(x, y) itself has at most

d(1)
x d(1)

y + · · ·+ d(m)
x d(m)

y ≤ (d(1)
x + · · ·+ d(m)

x )(d(1)
y + · · ·+ d(m)

y ) = dxdy

factors in fractional powers of x and y.
We now note that on returning to the original data we may renumber

the variables so that, say, x = x1 and y = x2. Then we will have shown that,
over K and hence a fortiori over F, f(x, y) = f(x, y, x3, . . . , xn) of bi-degree
dx, dy, has at most dxdy factors in fractional powers of x and y and in
x3, . . . , xn. This result is, of course, independent of the degrees d3, . . . , dn
of the remaining variables. It follows that we have this same bound for the
number of factors of f(x, y, xq33 , . . . , x

qn
n ), with arbitrary positive integers

q3, . . . , qn and once again in fractional powers of x and y and in x3, . . . , xn,
completing the proof of the Theorem.

R e m a r k s. First a few caveats. One would like to state the Theorem
for an arbitrary polynomial f , but it remains essential that f not have any
factor that is “essentially just a polynomial in a single variable”; hence our
insisting that f be irreducible. Equally, the restriction to characteristic zero
seems unfortunate. In the alternative situation one should note that the
present argument falters whenever distinct factors are claimed, and fails if
the characteristic divides t at the assertion that one obtains distinct divisors
of h(xt, yt). However, the fact that f(xl, yl) = (f(x, y))l for polynomials f
over the finite field Fl of l elements is, essentially, the only difficulty. In
those terms it is easy to see from the present argument, let alone the careful
details of [3], that only the restriction that the characteristic not divide t is
required to obtain for arbitrary characteristic a result similar to that of the
Theorem.

As said, our argument derives from that of Ritt [2]. A little more is
needed to obtain the results cited and demonstrated by Schinzel [3], see
pages 101–113, and attributed primarily to Gourin [1]. However, one can
see from our argument, in passing, the extra feature that f(xq11 , . . . , x

qn
n )

has a factorisation in distinct irreducibles and that each factor contains
every one of the variables.

I am grateful to Graham Everest whose questions about factorisation
in the ring of exponential polynomials led to my constructing the present
argument, and to the extensive advice of an anonymous referee which led to
my refining and correcting it.
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