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1. Introduction. Suppose that p is a prime which can be represented by
primitive integral binary quadratic forms of distinct nonsquare discriminants
d and d∗. Let G denote the genus of forms of discriminant d to which the
forms representing p belong. Assume that the parameters in a representation
of p by a binary quadratic form of discriminant d∗ are known. A criterion
which partitions G into subsets and uses the parameters in the above rep-
resentation to predict which subset contains the form(s) representing p is
called a predictive criterion.

For example, if p is a prime for which the Legendre symbols (2/p) and
(p/31) both have the value 1, then p is represented by positive-definite binary
quadratic forms of discriminants −124 and −248. In the case of discrimi-
nant −124, p is represented either by the form x2 + 31y2 or by the forms
5x2 ± 4xy + 7y2. As 25(5x2 ± 4xy + 7y2) = (x∓ 12y)2 + 31(2x± y)2, there
are integers H (= 1 or 5), M and N such that H2p = M2 + 31N2. The
(principal) genus of forms of discriminant −248 representing p consists of
the four forms x2 + 62y2, 2x2 + 31y2, 7x2 ± 2xy + 9y2. Given M and N we
can predict whether p is represented by one of x2 + 62y2, 2x2 + 31y2 or by
7x2 ± 2xy + 9y2, as follows:
{
M +N ≡ ±1 (mod 8)⇒ p is represented by x2 + 62y2 or 2x2 + 31y2,
M +N ≡ ±3 (mod 8)⇒ p is represented by 7x2 ± 2xy + 9y2;

see [15, p. 276].
The primary purpose of this paper is to show that an elementary tech-

nique of Dirichlet [9] yields predictive criteria for positive-definite binary
quadratic forms of discriminant −D (D > 0) when the Sylow 2-subgroup
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H2(−D) of the form class group H(−D) is cyclic of order 2k, where k ≥ 2,
for a suitable predicting discriminant −D∗.

In Section 2 we prove Theorem 1, which characterizes those D for which
H2(−D) is isomorphic to a cyclic group of order 2k, distinguishing the three
possibilities: (a) k = 0, (b) k = 1, (c) k ≥ 2.

In Section 3, for each of the twelve cases listed in Theorem 1(c), a suitable
discriminant −D∗ is defined and predictive criteria are given to determine
whether a prime represented by a form in the principal genus of discrim-
inant −D is in fact represented by a form which is a fourth power under
composition; see Theorem 2.

In Section 4, for each of the fifty discriminants −D (D > 0) for which
H(−D) is cyclic of order 4, a specific formulation of the appropriate predic-
tive criterion from Theorem 2 is presented.

An example in which a predictive criterion is applied successively to a
sequence of discriminants is given in Section 5. We then exhibit sequences of
discriminants for which the process of making successive predictions requires
knowing the parameters in only one representation of p.

The applicability of Dirichlet’s technique is not limited to the situation
where the Sylow 2-subgroup of H(−D) is cyclic of order ≥ 4. In Section 6
we present a case where the Sylow 2-subgroup has two cyclic factors each
of order ≥ 4, and Dirichlet’s technique produces a pair of predictive criteria
which together determine which one of four cosets of the principal genus
contains a form class representing the prime p.

The present research was motivated by the work of the first author in [15].
The focus of this earlier work was restricted to representability of primes by
forms of discriminant −4qr, where q is either 1 or a prime and r is a prime.
The concept of exclusive prediction, defined in [15, p. 266], is illustrated by
each of the fifty examples in Section 4. In these examples the predictive cri-
terion distinguishes between representability by the principal form, which is
the unique fourth power in the form class group, and the other (ambiguous)
form in the principal genus, which is not a fourth power. By contrast, in
the example given earlier in this introduction, both the forms x2 + 62y2 and
2x2 +31y2 are fourth powers under composition. This is associated with the
concept of inclusive prediction [15, p. 266].

Other approaches to predictive criteria can be found for example in [12]–
[14].

Throughout this paper we use the following notation:

Zm denotes the cyclic group of order m.
[a, b, c] denotes the form class containing the form ax2 + bxy + cy2.
H(−D) denotes the form class group of discriminant −D (D > 0)

under composition.
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h(−D) = |H(−D)| denotes the form class number of discriminant −D.
H2(−D) denotes the Sylow 2-subgroup of H(−D).
r2(H(−D)) denotes the 2-rank of H(−D), that is, the number k in

the decomposition H2(−D) ' Z2a1 × . . .×Z2ak , ai ≥ 1.
r4(H(−D)) denotes the 4-rank of H(−D), that is, the number of

factors Z2ai in this decomposition having ai ≥ 2.(
m
n

)
(sometimes written as (m/n)) denotes the Legendre–
Jacobi–Kronecker symbol as defined in [10, eqns. (5)
and (7)] for arbitrary integers m,n with n 6= 0.(

m
p

)
4 is the quartic residue symbol modulo a prime p ≡ 1

(mod 4) defined for an integer m satisfying
(
m
p

)
= 1 by(

m
p

)
4 =

(
n
p

)
, where n2 ≡ m (mod p).

vp(a) is the exponent of the largest power of the prime p di-
viding the nonzero integer a, symbolically, pvp(a) ‖ a.

Finally, we recall that a discriminant d is called a fundamental discrim-
inant if d/f2 is not a discriminant for any integer f > 1.

2. Characterization of the class groups H(−D) whose 2-part is
cyclic. Let D be a positive integer ≡ 0 or 3 (mod 4). We set

(2.1) D = 2mpm1
1 . . . pmss ,

where m is a nonnegative integer, p1, . . . , ps are s (≥ 0) distinct odd primes,
and m1, . . . ,ms are positive integers. As D ≡ 0 or 3 (mod 4) we have

(2.2)





m = 0, in which case
m1(p1 − 1)/2 + . . .+ms(ps − 1)/2 ≡ 1 (mod 2),

or
m ≥ 2.

In this section we characterize those class groups H(−D) whose 2-part is
(a) trivial, (b) (cyclic) of order 2, and (c) cyclic of order ≥ 4.

Theorem 1. (a) H2(−D) ' Z1 if and only if

(A) D = 2m (m = 2, 3, 4);
(B) D = pm1

1 (m1 (odd) ≥ 1, p1 ≡ 3 (mod 4));
(C) D = 4pm1

1 (m1 (odd) ≥ 1, p1 ≡ 3 (mod 4)).

(b) H2(−D) ' Z2 if and only if

(A) D = 2m (m = 5, 6);
(B) D = 4pm1

1 (m1 ≥ 1, p1 ≡ 5 (mod 8));
(C) D = 4pm1

1 (m1 (even) ≥ 2, p1 ≡ 3 (mod 8));
(D) D = 8pm1

1 (m1 ≥ 1, p1 ≡ 3, 5 (mod 8));
(E) D = 16pm1

1 (m1 (odd) ≥ 1, p1 ≡ 3 (mod 4));



218 J. B. Muskat et al.

(F) D = pm1
1 pm2

2 (m1 (odd) ≥ 1, m2 (odd) ≥ 1, p1 ≡ 3 (mod 4),
p2 ≡ 1 (mod 4), (p1/p2) = −1);

(G) D = pm1
1 pm2

2 (m1 (odd) ≥ 1, m2 (even) ≥ 2, p1 ≡ 3 (mod 4),
(p1/p2) = −1);

(H) D = 4pm1
1 pm2

2 (m1 (odd) ≥ 1, m2 (odd) ≥ 1, p1 ≡ 3 (mod 4),
p2 ≡ 1 (mod 4), (p1/p2) = −1);

(I) D = 4pm1
1 pm2

2 (m1 (odd) ≥ 1, m2 (even) ≥ 2, m2 ≥ 1,
p1 ≡ 3 (mod 4), (p1/p2) = −1).

(c) H2(−D) ' Z2k , for some k ≥ 2, if and only if

(A) D = 2m (m ≥ 7);
(B) D = 4pm1

1 (m1 ≥ 1, p1 ≡ 1 (mod 8));
(C) D = 4pm1

1 (m1 (even) ≥ 2, p1 ≡ 7 (mod 8));
(D) D = 8pm1

1 (m1 ≥ 1, p1 ≡ 1 (mod 8));
(E) D = 8pm1

1 (m1 (odd) ≥ 1, p1 ≡ 7 (mod 8));
(F) D = 8pm1

1 (m1 (even) ≥ 2, p1 ≡ 7 (mod 8));
(G) D = 16pm1

1 (m1 ≥ 1, p1 ≡ 1 (mod 4));
(H) D = 16pm1

1 (m1 (even) ≥ 2, p1 ≡ 3 (mod 4));
(I) D = pm1

1 pm2
2 (m1 (odd) ≥ 1, m2 ≥ 1, p1 ≡ 3 (mod 4),

p2 ≡ 1 (mod 4), (p1/p2) = 1);
(J) D = pm1

1 pm2
2 (m1 (odd) ≥ 1, m2 (even) ≥ 2,

p1 ≡ p2 ≡ 3 (mod 4), (p1/p2) = 1);
(K) D = 4pm1

1 pm2
2 (m1 (odd) ≥ 1, m2 ≥ 1, p1 ≡ 3 (mod 4),

p2 ≡ 1 (mod 4), (p1/p2) = 1);
(L) D = 4pm1

1 pm2
2 (m1 (odd) ≥ 1, m2 (even) ≥ 2,

p1 ≡ p2 ≡ 3 (mod 4), (p1/p2) = 1).

In preparation for the proof of Theorem 1 we state some well-known
results as Lemmas 2.1–2.3.

Lemma 2.1. Let D ≡ 0, 3 (mod 4) be a positive integer. Let t be the
number of distinct odd primes dividing D. Then

r2(H(−D)) =




t− 1 if D ≡ 3 (mod 4) or D ≡ 12 (mod 16);
t if D ≡ 4, 8 (mod 16) or D ≡ 16 (mod 32);
t+ 1 if D ≡ 0 (mod 32).

P r o o f. See for example [8, Proposition 3.11]. This result has its origins
in the work of Gauss [11, §§257–258].

Corollary 2.1. Let D ≡ 0, 3 (mod 4) be a positive integer. Then

r2(H(−D)) = 0⇔ D = 2m (m = 2, 3, 4), or(2.3)

D = pm1
1 or 4pm1

1 (pm1
1 ≡ 3 (mod 4));

r2(H(−D)) = 1⇔ D = 2m (m ≥ 5), or(2.4)
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D = 4pm1
1 (pm1

1 ≡ 1 (mod 4), m1 ≥ 1), or

D = 8pm1
1 or 16pm1

1 (m1 ≥ 1), or

D = pm1
1 pm2

2 or 4pm1
1 pm2

2

(pm1
1 pm2

2 ≡ 3 (mod 4), m1 ≥ 1,m2 ≥ 1).

P r o o f. We have by Lemma 2.1,

r2(H(−D)) = 0⇔ (t = 0) and (D ≡ 4, 8 (mod 16) or D ≡ 16 (mod 32))

or

(t = 1) and (D ≡ 3 (mod 4) or D ≡ 12 (mod 16)),

and

r2(H(−D)) = 1⇔ (t = 0 and D ≡ 0 (mod 32))

or

(t = 1) and (D ≡ 4, 8 (mod 16) or D ≡ 16 (mod 32))

or

(t = 2) and (D ≡ 3 (mod 4) or D ≡ 12 (mod 16)),

from which (2.3) and (2.4) follow.

Lemma 2.2. Let −E (E > 0) be a fundamental discriminant. Let p and
q denote distinct odd primes. Then

v2(h(−E)) = 0⇔ E = 4, 8 or E = p, p ≡ 3 (mod 4);(2.5)

v2(h(−E)) = 1⇔ E = 4p, p ≡ 5 (mod 8), or(2.6)

E = 8p, p ≡ ±3 (mod 8), or

E = pq, p ≡ 1 (mod 4), q ≡ 3 (mod 4),
(
p

q

)
= −1.

P r o o f. This result can be found for example in [7, Corollaries (18.4)
and (19.6)], or it can be deduced from [4, p. 413 and Theorem 4(1)], [5,
Theorems 1 and 2], [6, pp. 225, 226, 262].

Lemma 2.3. Let −E (E > 0) be a fundamental discriminant and let f
be an integer > 1, so that D = f2E is a nonfundamental discriminant. Let
w denote the number of distinct odd primes which divide f but not E. If
w = 1 we let q denote the unique odd prime factor of f which does not
divide E.

If E = 4 then

v2(h(−D)) = 0 if v2(f) = 1, w = 0;(2.7)

v2(h(−D)) = 1 if (i) v2(f) = 2, w = 0 or(2.8)

(ii) v2(f) = 0, w = 1, q ≡ ±3 (mod 8);
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v2(h(−D)) ≥ 2 otherwise.(2.9)

If E 6= 4 then

(2.10) v2(h(−D)) = 0 if

(i) v2(h(−E)) = 0, v2(f) = 0, w = 0 or

(ii) v2(h(−E)) = 0, v2(f) = 1, v2(E) = 0, w = 0;

(2.11) v2(h(−D)) = 1 if

(i) v2(h(−E)) = 1, v2(f) = 0, w = 0 or

(ii) v2(h(−E)) = 1, v2(f) = 1, v2(E) = 0, w = 0 or

(iii) v2(h(−E)) = 0, v2(f) = 1, v2(E) ≥ 1, w = 0 or

(iv) v2(h(−E)) = 0, v2(f) = 2, v2(E) = 0, w = 0 or

(v) v2(h(−E)) = 0, v2(f) = 0, w = 1, (E/q) = −1 or

(vi) v2(h(−E)) = 0, v2(f) = 1, v2(E) = 0, w = 1, (E/q) = −1;

(2.12) v2(h(−D)) ≥ 2 otherwise.

P r o o f. Gauss [11, §§254–256] proved (see for example [6, p. 217])

h(−D) = fh(−E)
∏

p|f

(
1− (−E/p)

p

)/
u,

where p runs through the distinct primes dividing f and

u =

{
3 if E = 3,
2 if E = 4,
1 if E > 4.

As f =
∏
p|f p

vp(f) we can express h(−D) in the form

h(−D) = h(−E)
∏

p|f
pvp(f)−1

∏

p|f
(p− (−E/p))

/
u

= h(−E)
∏

p|f
pvp(f)−1

∏

p|f
p|E

p
∏

p|f
p-E

(p− (−E/p))
/
u,

that is,

(2.13) h(−D) = h(−E)
∏

p|f
p|E

pvp(f)
∏

p|f
p-E

pvp(f)−1(p− (−E/p))
/
u.

If E = 4 (in which case h(−E) = 1 and u = 2) we have from (2.13),

v2(h(−D)) = v2(f) + v2(R)− 1,
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where

R =
∏

p|f, p6=2

(p− (−1/p)).

As

p− (−1/p) ≡
{

0 (mod 8) if p ≡ ±1 (mod 8),
4 (mod 8) if p ≡ ±3 (mod 8),

we deduce

v2(R)





= 0 if w = 0 (this implies v2(f) ≥ 1),
= 2 if w = 1, q ≡ ±3 (mod 8),
≥ 3 if w = 1, q ≡ ±1 (mod 8) or w ≥ 2.

Hence we have

v2(h(−D))





= v2(f)− 1 if w = 0,
= v2(f) + 1 if w = 1, q ≡ ±3 (mod 8),
≥ v2(f) + 2 if w = 1, q ≡ ±1 (mod 8) or w ≥ 2.

This completes the proof of the lemma in the case E = 4.
If E 6= 4 we have from (2.13),

v2(h(−D)) = v2(h(−E)) + (v2(f)− λ) +
∑

p|f, p-E
v2(p− (−E/p)),

where

λ =
{

1 if 2 | f , 2 -E,
0 otherwise.

If 2 | f, 2 -E then v2(2− (−E/2)) = 0 so that∑

p|f, p-E
v2(p− (−E/p)) =

∑

p|f, p-E
p6=2

v2(p− (−E/p)).

For p an odd prime we have

p− (−E/p) ≡
{

0 (mod 4) if (E/p) = 1,
2 (mod 4) if (E/p) = −1,

so that
∑

p|f, p-E
p6=2

v2(p− (−E/p))
{= 0 if w = 0,

= 1 if w = 1, (E/q) = −1,
≥ 2 otherwise.

Hence we have
v2(h(−D)) = 0 if v2(h(−E)) = v2(f)− λ = w = 0,

v2(h(−D)) = 1 if v2(h(−E)) = 1, v2(f)− λ = w = 0, or

v2(h(−E)) = 0, v2(f)− λ = 1, w = 0, or

v2(h(−E)) = v2(f)− λ = 0, w = 1, (E/q) = −1,

v2(h(−D)) ≥ 2 otherwise.
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As

v2(f)− λ = 0⇔ v2(f) = 0 or v2(f) = 1, v2(E) = 0,

v2(f)− λ = 1⇔ v2(f) = 1, v2(E) ≥ 1 or v2(f) = 2, v2(E) = 0,

we obtain the assertion of the lemma when E 6= 4.

P r o o f o f T h e o r e m 1. We have
H2(−D) ' Z1 ⇔ r2(H(−D)) = 0

⇔ D = 2m (m = 2, 3, 4), or

D = pm1
1 or 4pm1

1 (m1 (odd) ≥ 1,

p1 (prime) ≡ 3 (mod 4)),

by Corollary 2.1, completing case (a).
In order to complete the proof we must classify all discriminants D with

r2(H(−D)) = 1 according as H2(−D) ' Z2 (equivalently v2(h(−D)) = 1)
or H2(−D) ' Z2k (k ≥ 2) (equivalently v2(h(−D)) ≥ 2). We examine each
of the cases in the second part of Corollary 2.1, which we refine further for
convenience. Cases (b), (c) below refer to the sections of the statement of
Theorem 1. An asterisk (*) indicates the first part of a case, and a double
asterisk (**) indicates the second and final part of the case.

• D = 2m, m (even) ≥ 6:

E = 4, f = 2m/2−1.
v2(f) = m/2− 1, w = 0.
v2(h(−D)) = 1 if m = 6, by (2.8)(i). case (b)(A)∗

v2(h(−D)) ≥ 2 if m ≥ 8, by (2.9). case (c)(A)∗

• D = 2m, m (odd) ≥ 5:

E = 8, f = 2(m−3)/2.
v2(h(−E)) = 0, v2(f) = (m− 3)/2, v2(E) = 3, w = 0.
v2(h(−D)) = 1 if m = 5, by (2.11)(iii). case (b)(A)∗∗

v2(h(−D)) ≥ 2 if m ≥ 7, by (2.12). case (c)(A)∗∗

• D = 4pm1
1 , m1 (odd) ≥ 1, p1 ≡ 1 (mod 4):

E = 4p1, f = p
(m1−1)/2
1 .

v2(f) = 0, w = 0.
v2(h(−E)) = 1 or ≥ 2 according as p1 ≡ 5 (mod 8) or p1 ≡ 1 (mod 8).
v2(h(−D)) = 1 if p1 ≡ 5 (mod 8), by (2.11)(i). case (b)(B)∗

v2(h(−D)) ≥ 2 if p1 ≡ 1 (mod 8), by (2.12). case (c)(B)∗

• D = 4pm1
1 , m1 (even) ≥ 2:

E = 4, f = p
m1/2
1 .

v2(f) = 0, w = 1.
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v2(h(−D)) = 1 if p1 ≡ ±3 (mod 8), by (2.8)(ii). case (b)(B)∗∗, (C)
v2(h(−D)) ≥ 2 if p1 ≡ ±1 (mod 8), by (2.9). case (c)(B)∗∗, (C)

• D = 8pm1
1 , m1 (even) ≥ 2:

E = 8, f = p
m1/2
1 .

v2(h(−E)) = 0, v2(f) = 0, w = 1, q = p1.
v2(h(−D)) = 1 if p1 ≡ ±3 (mod 8), by (2.11)(v). case (b)(D)∗

v2(h(−D)) ≥ 2 if p1 ≡ ±1 (mod 8), by (2.12). case (c)(D)∗, (F)

• D = 8pm1
1 , m1 (odd) ≥ 1:

E = 8p1, f = p
(m1−1)/2
1 .

v2(f) = 0, w = 0.
v2(h(−E)) = 1 or ≥ 2 according as p1 ≡ ±3 (mod 8) or p1 ≡ ±1 (mod 8).
v2(h(−D)) = 1 if p1 ≡ ±3 (mod 8), by (2.11) (i). case (b)(D)∗∗

v2(h(−D)) ≥ 2 if p1 ≡ ±1 (mod 8), by (2.12). case (c)(D)∗∗, (E)

• D = 16pm1
1 , m1 (odd) ≥ 1, p1 ≡ 3 (mod 4):

E = p1, f = 4p(m1−1)/2
1 .

v2(h(−E)) = 0, v2(f) = 2, v2(E) = 0, w = 0.
v2(h(−D)) = 1, by (2.11)(iv). case (b)(E)

• D = 16pm1
1 , m1 (even) ≥ 2:

E = 4, f = 2pm1/2
1 .

v2(f) = 1, w = 1.
v2(h(−D)) ≥ 2, by (2.9). case (c)(G)∗, (H)

• D = 16pm1
1 , m1 (odd) ≥ 1, p1 ≡ 1 (mod 4):

E = 4p1, f = 2p(m1−1)/2
1 .

v2(h(−E)) ≥ 1, v2(f) = 1, v2(E) = 2, w = 0.
v2(h(−D)) ≥ 2, by (2.12). case (c)(G)∗∗

• D = pm1
1 pm2

2 , m1 (odd) ≥ 1, m2 (odd) ≥ 1, p1 ≡ 3 (mod 4),
p2 ≡ 1 (mod 4):

E = p1p2, f = p
(m1−1)/2
1 p

(m2−1)/2
2 .

v2(h(−E))
{

= 1, (p1/p2) = −1
≥ 2, (p1/p2) = 1

}
, v2(f) = 0, w = 0.

v2(h(−D)) = 1 if (p1/p2) = −1, by (2.11)(i). case (b)(F)
v2(h(−D)) ≥ 2 if (p1/p2) = 1, by (2.12). case (c)(I)∗

• D = pm1
1 pm2

2 , m1 (odd) ≥ 1, m2 (even) ≥ 2, p1 ≡ 3 (mod 4):

E = p1, f = p
(m1−1)/2
1 p

m2/2
2 .

v2(h(−E)) = 0, v2(f) = 0, w = 1, q = p2.
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v2(h(−D)) = 1 if (p1/p2) = −1, by (2.11)(v). case (b)(G)
v2(h(−D)) ≥ 2 if (p1/p2) = 1, by (2.12). case (c)(I)∗∗, (J)

• D = 4pm1
1 pm2

2 , m1 (odd) ≥ 1, m2 (odd) ≥ 1, p1 ≡ 3 (mod 4),
p2 ≡ 1 (mod 4):

E = p1p2, f = 2p(m1−1)/2
1 p

(m2−1)/2
2 .

v2(h(−E))
{

= 1, (p1/p2) = −1
≥ 2, (p1/p2) = 1

}
, v2(f) = 1, v2(E) = 0, w = 0.

v2(h(−D)) = 1 if (p1/p2) = −1, by (2.11)(ii). case (b)(H)
v2(h(−D)) ≥ 2 if (p1/p2) = 1, by (2.12). case (c)(K)∗

• D = 4pm1
1 pm2

2 , m1 (odd) ≥ 1, m2 (even) ≥ 2, p1 ≡ 3 (mod 4):

E = p1, f = 2p(m1−1)/2
1 p

m2/2
2 .

v2(h(−E)) = 0, v2(f) = 1, v2(E) = 0, w = 1, q = p2.
v2(h(−D)) = 1 if (p1/p2) = −1, by (2.11)(vi). case (b)(I)
v2(h(−D)) ≥ 2 if (p1/p2) = 1, by (2.12). case (c)(K)∗∗, (L)

3. Determination of predictive criteria. Throughout this section D
is a positive integer ≡ 0 or 3 (mod 4) such that H2(−D) ' Z2k for some
integer k ≥ 2. Thus D is one of the twelve types (A), (B), . . . , (L) specified
in Theorem 1(c). For the discriminant −D there are two generic characters
χ1 and χ2 as specified below:

χ1(r) = (−1/r), χ2(r) = (2/r), case (A),

χ1(r) = (−1/r), χ2(r) = (r/p1), cases (B), (C), (G), (H),

χ1(r) = (−2/r), χ2(r) = (r/p1), cases (D), (F),

χ1(r) = (2/r), χ2(r) = (r/p1), case (E),

χ1(r) = (r/p1), χ2(r) = (r/p2), cases (I), (J), (K), (L).

Define the positive integer D∗ as follows:

D∗ =





D/2, cases (A), (E),
D/p1, cases (B), (C), (D), (G), (H),
D/2p1, case (F),
D/p2, cases (I), (K),
D/p1p2, cases (J), (L).

It is easily verified that D∗ is formed by dividing D by the unique squarefree
integer such that −D∗ is a discriminant whose generic characters are all
included among the generic characters for discriminant −D. With χ1 and
χ2 as specified above, the generic characters for the discriminant −D∗ are
as follows:
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(A) χ1, χ2, (H) χ1, χ2,

(B) χ1 (if m1 = 1), (I) χ1 (if m2 = 1),

χ1, χ2 (if m1 ≥ 2), χ1, χ2 (if m2 ≥ 2),

(C) χ2, (J) χ2 (if m1 = 1),

(D) χ1 (if m1 = 1), χ1, χ2 (if m1 ≥ 2),

χ1, χ2 (if m1 ≥ 2), (K) χ1 (if m2 = 1),

(E) χ2, χ1, χ2 (if m2 ≥ 2),

(F) χ2, (L) χ2 (if m1 = 1),

(G) χ1 (if m1 = 1), χ1, χ2 (if m1 ≥ 2).

χ1, χ2 (if m1 ≥ 2),

Let p be an odd prime such that

χ1(p) = χ2(p) = 1,

so that p is represented by a form class Cp (and its inverse C−1
p ) in the prin-

cipal genus of the form class group H(−D). Then, by a well-known theorem
of Gauss, Cp is the square of a form class in H(−D), say, Cp = S2

p . Let K
be a positive integer coprime with 2Dp which is represented primitively by
the form class S−1

p of H(−D). Then K2p is represented primitively by the
class (S−1

p )2Cp = S−2
p S2

p = I = principal class of H(−D). Hence there exist
integers A and B such that

(3.1)




K2p =

{
A2 + (D/4)B2 if D ≡ 0 (mod 4),
A2 +AB + ((D + 1)/4)B2 if D ≡ 3 (mod 4),

K > 0, (A,B) = 1, (K, 2Dp) = 1.

Further, as the generic characters for the discriminant −D∗ are a subset of
those for discriminant −D, by a similar argument, there exist integers H,
M , N such that

(3.2)




H2p =

{
M2 + (D∗/4)N2 if D∗ ≡ 0 (mod 4),
M2 +MN + ((D∗ + 1)/4)N2 if D∗ ≡ 3 (mod 4),

H > 0, (M,N) = 1, (H, 2Dp) = 1.

As H (resp. K) is represented primitively by a form class of discriminant
−D∗ (resp. −D) and (H, 2D) = (K, 2D) = 1, we have

(3.3)
(−D∗

H

)
=
(−D
K

)
= 1.

Our purpose is to determine a necessary and sufficient condition for the
class Cp to be a fourth power in H(−D) for each of the cases (A)–(L). We do
this by extending the techniques employed by the first author in [15], who
developed an idea of Dirichlet [9, §2]. Our results are formulated in terms of
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arithmetic conditions involving the integers M and N in the representation
(3.2). We prove

Theorem 2. With the above notation the following are necessary and
sufficient conditions for the form class Cp to be a fourth power in the form
class group H(−D), where H2(−D) ' Z2k for some k ≥ 2.

• C a s e (A):

m = 7
(

2
M + 4N

)
= 1,

m ≥ 8
(

2
M

)
= 1.

• C a s e (B):

m1 = 1
(
M + wN

p1

)
= 1, where w2 ≡ −1 (mod p1),

m1 ≥ 2
(
M

p1

)
= 1.

• C a s e (C):

(−1)(M−1+N)/2
(
M

p1

)
= 1.

• C a s e (D):

m1 = 1
(
M + wN

p1

)
= 1, where w2 ≡ −2 (mod p1),

m1 ≥ 2
(
M

p1

)
= 1.

• C a s e (E):

(−1)N(p1+1)/8
(

2
M +N

)
= 1.

• C a s e (F):

(−1)N(p1+1)/8
( −2
M +N

)(
M

p1

)
= 1.

• C a s e (G):

m1 = 1
(
M + wN

p1

)
= 1, where w2 ≡ −4 (mod p1),

m1 ≥ 2
(
M

p1

)
= 1.
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• C a s e (H):( −1
M + 2N

)(
M

p1

)
= 1.

• C a s e (I):

m2 = 1
(
M + wN

p2

)
= 1, where w2 − w + 1

4 (1 + pm1
1 ) ≡ 0 (mod p2),

m2 ≥ 2
(

4M + 2N
p2

)
= 1.

• C a s e (J):

m1 = 1
(
M + wN

p1

)(
4M + 2N

p2

)
= 1,

where w2 − w + 1
4 (1 + pm2−1

2 ) ≡ 0 (mod p1),

m1 ≥ 3
(

4M + 2N
p1p2

)
= 1.

• C a s e (K):

m2 = 1
(
M + wN

p2

)
= 1, where w2 ≡ −pm1

1 (mod p2),

m2 ≥ 2
(
M

p2

)
= 1.

• C a s e (L):

m1 = 1
(
M + wN

p1

)(
M

p2

)
= 1, where w2 ≡ −pm2−1

2 (mod p1),

m1 ≥ 3
(
M

p1p2

)
= 1.

Before proving Theorem 2 we state and prove some lemmas.

Lemma 3.1. If x, y, z, m are integers with m 6= 0 such that

x2 ≡ y2 + z2 (mod m)

then
2(x+ y)(x+ z) ≡ (x+ y + z)2 (mod m).

P r o o f. We have

2(x+ y)(x+ z) = 2x2 + 2xy + 2yz + 2zx

= 2x2 + (x+ y + z)2 − (x2 + y2 + z2)

= (x2 − y2 − z2) + (x+ y + z)2

≡ (x+ y + z)2 (mod m).
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Not all parts of the next lemma will be used, but they are given for
completeness.

Lemma 3.2. Let X, Y be nonzero integers and m an integer ≡ 2 (mod 4),
3 (mod 4) or 5 (mod 8). Suppose that 2a ‖X2 −mY 2, a ≥ 1.

(i) If m ≡ 2 (mod 4) then{
2a/2 ‖X, 2a/2 |Y if a is even,
2(a+1)/2 |X, 2(a−1)/2 ‖Y if a is odd.

(ii) If m ≡ 3 (mod 4) then{
2a/2 ‖X, 2a/2+1 |Y or 2a/2+1 |X, 2a/2 ‖Y if a is even,
2(a−1)/2 ‖X, 2(a−1)/2 ‖Y if a is odd.

(iii) If m ≡ 5 (mod 8) then a is even, and

2a/2−1 ‖X, 2a/2−1 ‖Y,
or

2a/2 ‖X, 2a/2+1 |Y,
or

2a/2+1 |X, 2a/2 ‖Y.
P r o o f. (i) As the exponents of 2 in X2 and mY 2 are even and odd,

respectively, we must have

2a ‖X2, 2a+1 |mY 2 if a is even,

2a+1 |X2, 2a ‖mY 2 if a is odd.

(ii) If v2(X) = v2(Y ) then as −m ≡ 1 (mod 4), we have 22v2(X)+1 ‖X2−
mY 2, so that a = 2v2(X) + 1. If v2(X) < v2(Y ) then a = 2v2(X). If
v2(X) > v2(Y ) then a = 2v2(Y ).

(iii) If v2(X) = v2(Y ) then, as X2 ≡ Y 2 ≡ 22v2(X) (mod 22v2(X)+3), we
have X2 −mY 2 ≡ 22v2(X)+2 (mod 22v2(X)+3), so that a = 2v2(X) + 2. If
v2(X) < v2(Y ) then a = 2v2(X). If v2(X) > v2(Y ) then a = 2v2(Y ).

Part of the next lemma is used in the proof of Lemma 3.5 below.

Lemma 3.3. Let m, X, Y be nonzero integers. Suppose that q is an odd
prime such that

qa ‖X2 −mY 2, a ≥ 0,
(
m

q

)
= −1.

Then a is even and
qa/2 ‖X, qa/2 ‖Y if vq(X) = vq(Y ),

qa/2 ‖X, qa/2+1 |Y if vq(X) < vq(Y ),

qa/2+1 |X, qa/2 ‖Y if vq(X) > vq(Y ).
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P r o o f. If vq(X) = vq(Y ) = k (say), then X = qkX1, Y = qkY1, where
q -X1Y1. Thus qa−2k ‖X2

1 −mY 2
1 . If a > 2k then (X1Y

−1
1 )2 ≡ m (mod q),

contradicting (m/q) = −1. Thus a = 2k. If vq(X) < vq(Y ) then a = 2vq(X).
If vq(X) > vq(Y ) then a = 2vq(Y ).

Lemma 3.4. Let q be an odd prime, a a positive integer , and m, X, Y
nonzero integers satisfying

qa ‖X2 −mqY 2, q -m.
Then {

qa/2 ‖X, qa/2 |Y if a is even,
q(a+1)/2 |X, q(a−1)/2 ‖Y if a is odd.

P r o o f. As the exponents of q in X2 and qY 2 are even and odd, respec-
tively, we must have

qa ‖X2, qa+1 | qY 2 if a is even,

qa+1 |X2, qa ‖ qY 2 if a is odd.

Lemma 3.5. Suppose p is a prime and r, s, H, K, M , N , A, B are
nonzero integers such that

H2p = M2 + rN2, (M,N) = 1 or 2,

K2p = A2 + rsB2, (A,B) = 1 or 2.

If q is an odd prime satisfying

q - r,
(
s

q

)
= −1,

then

(i) q does not divide both of HA±KM ,
(ii) both of vq(HA±KM) are even.

P r o o f. (i) Suppose on the contrary that q divides both HA+KM and
HA − KM . Then, as q is odd, we have q | (HA,KM). Thus one of the
following must occur:

(a) q |H, q |K,
(b) q |H, q |M ,
(c) q |A, q |K,
(d) q |A, q |M .

C a s e (a). We have M2 ≡ −rN2 (mod q), A2 ≡ −rsB2 (mod q), q -M ,
q -N , q -A, q -B, so that(−r

q

)
= 1,

(−rs
q

)
= 1,

and thus (s/q) = 1, contradicting (s/q) = −1.



230 J. B. Muskat et al.

C a s e (b). From H2p = M2 +rN2 we have q2 | rN2, which is impossible
as q - r and (M,N) = 1 or 2.

C a s e (c). From K2p = A2 +rsB2 we have q2 | rsB2, which is impossible
as q - r, q - s, (A,B) = 1 or 2.

C a s e (d). We have H2p ≡ rN2 (mod q), K2p ≡ rsB2 (mod q), q -N ,
q -H, q 6= p, q -B, q -K, so that

(
pr

q

)
= 1,

(
prs

q

)
= 1,

and thus (s/q) = 1, contradicting (s/q) = −1.
(ii) By (i), vq(HA + KM) = 0 or vq(HA − KM) = 0. If both are

zero we are finished. Otherwise, without loss of generality, we may assume
vq(HA+KM) = a > 0, so that vq(HA−KM) = 0. Thus qa ‖H2A2−K2M2.
As

H2A2−K2M2 = H2(K2p− rsB2)−K2(H2p− rN2) = r(K2N2−sH2B2),

and q - r, we deduce qa ‖K2N2 − sH2B2. Then, by Lemma 3.3, as (s/q) =
−1, we conclude that a is even.

Lemma 3.6. Let p be a prime and A, B, H, K, M , N , r, s nonzero
integers such that

H2p = M2 + rN2, K2p = A2 + sB2.

Let q be an odd prime such that

q 6= p, q -HK, q | rs.
Then q does not divide both of HA±KM .

P r o o f. Suppose q is an odd prime such that q 6= p, q -HK, q | rs,
q | (HA + KM,HA − KM). Clearly by interchanging the roles of H, M ,
N , r and K, A, B, s respectively, if necessary, we may suppose that q | r.
Now q | (HA+KM)− (HA−KM) = 2KM so that as q 6= 2, q -K, we have
q |M . Then from H2p = M2 + rN2 we see that q |H2p, which is impossible
as q -H and q 6= p.

Lemma 3.7. Let D, D∗ be positive integers with D ≡ D∗ ≡ 3 (mod 4),
D∗ |D, and D/D∗ ≡ 5 (mod 8). Suppose that B, C, H, K, L, N are nonzero
integers such that H and K are odd and

(3.4) H2C2 −K2L2 = D∗(K2N2 − (D/D∗)H2B2),

(3.5) B ≡ C (mod 2), (B,C) = 1 or 2,

(3.6) L ≡ N (mod 2), (L,N) = 1 or 2.

Define the nonnegative integers r and s by
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(3.7) 2r ‖HC +KL, 2s ‖HC −KL.
Then r and s are both even.

P r o o f. From (3.4) and (3.7) we see that 2r+s ‖K2N2 − (D/D∗)H2B2.
By Lemma 3.2(iii), as D/D∗ ≡ 5 (mod 8), r+ s is even. We assume r and s
are both odd and obtain a contradiction. Replacing K by −K, if necessary,
we may suppose that r ≥ s. We consider two cases: (i) r > s, (ii) r = s.

C a s e (i): r > s. From (3.7) we see that 2s ‖ (HC+KL)±(HC−KL), so
that 2s−1 ‖HC, 2s−1 ‖KL. ButH andK are both odd, so 2s−1 ‖C, 2s−1 ‖L.
If s ≥ 3 then 22 |C, 22 |L and so, by (3.5) and (3.6), we have 2 ‖B, 2 ‖N .
Thus 24 ‖K2N2−(D/D∗)H2B2 and so, by (3.4), 24 ‖H2C2−K2L2, that is,
r+s = 4, contradicting r > s ≥ 3. If s = 1 (so that r ≥ 3) C and L are odd so
that, by (3.5) and (3.6), B and N are odd. Thus 22 ‖K2N2−(D/D∗)H2B2,
and so, by (3.4), 22 ‖H2C2 −K2L2, that is, r + s = 2, a contradiction.

C a s e (ii): r = s. From (3.7) we have 2r ‖HC ± KL so that, as K,H
are both odd, 2r |C, 2r |L. If r ≥ 3, then by (3.5) and (3.6), we see that
2 ‖B, 2 ‖N . Thus 24 ‖K2N2− (D/D∗)H2B2, 24 ‖H2C2−K2L2, r+ s = 4,
r = s = 2, a contradiction. If r = 1 then either 22 |L, 2 ‖C or 2 ‖L, 22 |C. If
22 |L, 2 ‖C holds then, by (3.6), we have 2 ‖N . Then 23 ‖D∗K2N2−H2C2,
24 |K2L2, 23 ‖ (D∗K2N2 − H2C2) + K2L2 = DH2B2 (by (3.4)), so that
23 ‖B2, which is impossible. If 2 ‖L, 22 |C holds then, by (3.5), 2 ‖B. Then
23 ‖DH2B2−K2L2, 24 |H2C2, 23 ‖ (DH2B2−K2L2)+H2C2 = D∗K2N2,
so that 23 ‖N2, which is impossible.

Lemma 3.8. Let E,E∗ be positive integers with E ≡ E∗ ≡ 3 (mod 4),
E∗ |E, and E/E∗ ≡ 5 (mod 8). Suppose that A, B, H, K, M , N are
nonzero integers such that H and K are odd and

(3.8) H2A2 −K2M2 = E∗(K2N2 − (E/E∗)H2B2),

(3.9) A 6≡ B (mod 2), (A,B) = 1,

(3.10) M 6≡ N (mod 2), (M,N) = 1.

Define the nonnegative integers r and s by

(3.11) 2r ‖HA+KM, 2s ‖HA−KM.

Then r and s are both odd.

P r o o f. From (3.8) and (3.11) we see that 2r+s ‖K2N2− (E/E∗)H2B2.
By Lemma 3.2(iii), r + s is even. We assume r and s are both even and
obtain a contradiction. Replacing K by −K, if necessary, we may suppose
that r ≥ s. We consider two cases: (i) r > s, (ii) r = s.

C a s e (i): r > s. If s = 0 then HA−KM is odd and thus HA+KM is
odd, so that r = 0, contradicting r > s. Thus s ≥ 2. From (3.11) we see that
2s ‖ (HA + KM) ± (HA − KM), so that, as H and K are odd, 2s−1 ‖A,
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2s−1 ‖M . Thus B and N are odd and so 22 ‖K2N2 − (E/E∗)H2B2, as
E/E∗ ≡ 5 (mod 8), that is, 22 ‖H2A2 −K2M2. But 2s−1 ‖A, 2s−1 ‖M so
22(s−1)+3 |H2A2 −K2M2, giving 2(s− 1) + 3 ≤ 2, 2s ≤ 1, a contradiction.

C a s e (ii): r = s. If r = s = 0 then HA ± KM are odd, so either
A odd, M even or A even, M odd. If A odd, M even, then B even, N
odd, so 2 ‖H2A2 − E∗K2N2, 22 |K2M2 − EH2B2, contradicting (3.8). If
A even, M odd, then B odd, N even, so 22 |H2A2−E∗K2N2, 2 ‖K2M2−
EH2B2, contradicting (3.8). Thus r = s (even) ≥ 2. We have 2r ‖HA+KM ,
2r ‖HA−KM , so that 22r ‖H2A2−K2M2. Furthermore, 2r |A, 2r |M . By
(3.9) and (3.10) both B and N are odd. Thus 22 ‖K2N2 − (E/E∗)H2B2,
so that 22 ‖H2A2 −K2M2, contradicting r ≥ 2.

We are now ready to prove Theorem 2.

P r o o f o f T h e o r e m 2. We consider each of the 12 cases (A), (B),
. . . , (L) separately.

C a s e (A): D = 2m, D∗ = 2m−1, m ≥ 7. Let p be an odd prime such
that (−1/p) = (2/p) = 1, that is, p ≡ 1 (mod 8). From (3.2) and (3.1) we
have

H2p = M2 + 2m−3N2, H > 0, (M,N) = 1, (H, 2p) = 1,(3.A.1)

K2p = A2 + 2m−2B2, K > 0, (A,B) = 1, (K, 2p) = 1.(3.A.2)

By (3.3) we have (−D/K) = (−2m/K) = 1 so that

(3.A.3)
(−1
K

)
=
(

2
K

)m
.

Eliminating p from (3.A.1) and (3.A.2) yields

(3.A.4) (HA+KM)(HA−KM) = 2m−3(K2N2 − 2H2B2).

As H, A, K, M are odd, exactly one of HA±KM is divisible by 2 but not
by 4. We choose the sign of A so that 2 ‖HA+KM . Then, from (3.A.4), we
see that 2m−4 |HA−KM . We factor (HA+KM)/2 into primes as follows:

(3.A.5) (HA+KM)/2 = ε
∏

(2/qi)=1

qeii
∏

(2/rj)=−1

r
fj
j ,

where ε = ±1, ei, fj are positive integers, and qi, rj are distinct odd primes.
By Lemma 3.5(ii) with s = 2, each fj in (3.A.5) is even. We conclude that

(3.A.6) (HA+KM)/2 ≡ ±1 (mod 8).

Next, by (3.A.4) and Lemma 3.1 (with m = 25), we have




1
2 (HA+KM)(KM + 4KN) ≡ ( 1

2 (HA+KM) + 2KN
)2

(mod 8)
if m = 7,

1
2 (HA+KM)(KM) ≡ ( 1

2 (HA+KM)
)2

(mod 8) if m ≥ 8,
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so that appealing to (3.A.6) we have{
K(M + 4N) ≡ ±1 (mod 8) if m = 7,
KM ≡ ±1 (mod 8) if m ≥ 8,

and thus

(3.A.7)
(

2
K

)
=





(
2

M + 4N

)
if m = 7,

(
2
M

)
if m ≥ 8.

Finally, recalling that K is odd and represented by the form class S−1
p

of discriminant D, we have

Cp is a fourth power in H(−D)

⇔ Sp is a square in H(−D) (as H2(−D) ' Z2k , k ≥ 2)

⇔ S−1
p is a square in H(−D)

⇔
(−1
K

)
=
(

2
K

)
= 1

⇔
(

2
K

)
= 1 (by (3.A.3))

⇔





(
2

M + 4N

)
= 1 if m = 7,

(
2
M

)
= 1 if m ≥ 8 (by (3.A.7)).

C a s e (B): D = 4pm1
1 , D∗ = 4pm1−1

1 , m1 ≥ 1, p1 ≡ 1 (mod 8). Let p be
an odd prime satisfying (−1/p) = (p/p1) = 1, so that p ≡ 1 (mod 4) and
p 6= p1. From (3.2) and (3.1) we have

H2p = M2 + pm1−1
1 N2, H > 0, (M,N) = 1, (H, 2pp1) = 1,(3.B.1)

K2p = A2 + pm1
1 B2, K > 0, (A,B) = 1, (K, 2pp1) = 1.(3.B.2)

By (3.3) we have (−D/K) = (−4pm1
1 /K) = 1, so that by the law of

quadratic reciprocity

(3.B.3)
(−1
K

)
=
(
p1

K

)m1

=
(
K

p1

)m1

.

From (3.B.1) and (3.B.2), we obtain

(3.B.4) (HA+KM)(HA−KM) = pm1−1
1 (K2N2 − p1H

2B2).

By Lemma 3.6, p1 does not divide both of HA ±KM . Choose the sign of
A so that p1 -HA+KM . Define odd integers R and S by

(3.B.5) R = (HA+KM)/2r, S = (HA−KM)/2spα1 ,
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where pα1 ‖HA −KM . Note that p1 -RS and, by (3.B.4), α ≥ m1 − 1. We
factor R into primes as follows:

(3.B.6) R = ε
∏

(p1/qi)=1

qeii
∏

(p1/rj)=−1

r
fj
j ,

where ε = ±1, ei, fj are positive integers, and qi, rj are distinct odd primes.
By Lemma 3.5(ii) each fj is even. Then from (3.B.6), by the law of quadratic
reciprocity, we obtain

(
R

p1

)
=
(
ε

p1

) ∏

(p1/qi)=1

(
qi
p1

)ei ∏

(p1/rj)=−1

(
rj
p1

)fj
(3.B.7)

=
∏

(p1/qi)=1

(
p1

qi

)ei
= 1.

By Lemma 3.1 and (3.B.4) we have

(3.B.8)





2(HA+KM)(KM + wKN)
≡ (HA+KM + wKN)2 (mod p1) if m1 = 1,

2(HA+KM)KM ≡ (HA+KM)2 (mod p1) if m1 ≥ 2,

where w2 ≡ −1 (mod p1). From (3.B.8) we see that




(
2
p1

)(
HA+KM

p1

)(
K

p1

)(
M + wN

p1

)
= 1 if m1 = 1,

(
2
p1

)(
HA+KM

p1

)(
K

p1

)(
M

p1

)
= 1 if m1 ≥ 2.

Thus, as (2/p1) = 1 and (HA + KM/p1) = (2rR/p1) = 1 (by (3.B.5) and
(3.B.7)), we obtain

(3.B.9)
(
K

p1

)
=





(
M + wN

p1

)
if m1 = 1,

(
M

p1

)
if m1 ≥ 2.

Finally,

Cp is a fourth power in H(−D)

⇔
(−1
K

)
=
(
K

p1

)
= 1

⇔
(
K

p1

)
= 1 (by (3.B.3))
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⇔





(
M + wN

p1

)
= 1

if m1 = 1, where w2 ≡ −1 (mod p1),(
M

p1

)
= 1 if m1 ≥ 2 (by (3.B.9)).

We remark that when m1 = 1 it is possible for p1 to divide M so that the
symbol (M/p1) cannot be used for the criterion in this case. We note that
the value of the Legendre symbol (M +wN/p1) is independent of the choice
of solution ±w of w2 ≡ −1 (mod p1), as

(
M + wN

p1

)(
M − wN

p1

)
=
(
M2 − w2N2

p1

)
=
(
M2 +N2

p1

)

=
(
H2p

p1

)
= 1.

C a s e (C): D = 4pm1
1 , D∗ = 4pm1−1

1 , m1 (even) ≥ 2, p1 ≡ 7 (mod 8).
Let p be an odd prime satisfying (−1/p) = (p/p1) = 1, so that p ≡ 1
(mod 4) and p 6= p1. From (3.2) and (3.1) we have

H2p = M2 + pm1−1
1 N2, H > 0, (M,N) = 1, (H, 2pp1) = 1,(3.C.1)

K2p = A2 + pm1
1 B2, K > 0, (A,B) = 1, (K, 2pp1) = 1.(3.C.2)

From (3.3) we have (−D/K) = (−4pm1
1 /K) = 1 so that

(3.C.3)
(−1
K

)
= 1,

and hence

(3.C.4) K ≡ 1 (mod 4).

Reducing (3.C.1) and (3.C.2) modulo 8, we obtain

(3.C.5)




A ≡ (p− 1)/2 (mod 4), B ≡ 1 (mod 2) or
A ≡ 1 (mod 2), B ≡ (p− 1)/2 (mod 4),
M ≡ 1 (mod 2), N ≡ (p− 1)/2 (mod 4).

Replacing M by −M if necessary, we may suppose that

(3.C.6) M ≡ 1 (mod 4).

From (3.C.1) and (3.C.2) we obtain

(3.C.7) (HA+KM)(HA−KM) = pm1−1
1 (K2N2 − p1H

2B2).

By Lemma 3.6, p1 does not divide both of HA ±KM . Choose the sign of
A so that p1 -HA+KM , and define the odd integers R and S by

(3.C.8) R = (HA+KM)/2r, S = (HA−KM)/2spα1 ,
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where pα1 ‖HA−KM . Clearly p1 -RS. Note that

(3.C.9)

{α ≥ m1 − 1,
r = s = 0 if A is even,
min(r, s) = 1 if A is odd.

We show that when A is odd

(3.C.10)
{
p ≡ 1 (mod 8) if r + s ≥ 4,
p ≡ 5 (mod 8) if r + s = 3.

This is clear from (3.C.5) as

p ≡ 1 (mod 8)⇒ B ≡ N ≡ 0 (mod 4)⇒ 24 |K2N2 − p1H
2B2

⇒ 24 | (HA+KM)(HA−KM)⇒ r + s ≥ 4,

p ≡ 5 (mod 8)⇒ B ≡ N ≡ 2 (mod 4)⇒ 2 ‖ (N/2)2 + (B/2)2

⇒ 2 ‖K2(N/2)2 − p1H
2(B/2)2 ⇒ 23 ‖K2N2 − p1H

2B2

⇒ 23 ‖ (HA+KM)(HA−KM)⇒ r + s = 3.

Next we show that

(3.C.11)
(
R

p1

)(
S

p1

)
= (−1)α+1.

From (3.C.7) and (3.C.8) we see that pα1 ‖H2A2−K2M2 = pm1−1
1 (K2N2−

p1H
2B2), so that pα−m1+1

1 ‖K2N2 − p1H
2B2. Then, by Lemma 3.4, we

observe that{
p

(α−m1+1)/2
1 ‖N, p(α−m1+1)/2

1 |B if α is odd,

p
(α−m1+2)/2
1 |N, p(α−m1)/2

1 ‖B if α is even.

Define integers N1 and B1 by{
N = p

(α−m1+1)/2
1 N1, B = p

(α−m1+1)/2
1 B1 if α is odd,

N = p
(α−m1+2)/2
1 N1, B = p

(α−m1)/2
1 B1 if α is even,

where p1 -N1 (α odd) and p1 -B (α even). Hence

2r+sRS = (H2A2 −K2M2)/pα1 = (K2N2 − p1H
2B2)/pα−m1+1

1

=
{
K2N2

1 − p1H
2B2

1 if α is odd,
p1K

2N2
1 −H2B2

1 if α is even,

so that, as (2/p1) = 1,

(
RS

p1

)
=





(
K2N2

1

p1

)
= 1 if α is odd,

(−H2B2
1

p1

)
= −1 if α is even,

completing the proof of (3.C.11).
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Now factor R and S into primes:

(3.C.12)





R = ε
∏

(p1/qi)=1

qeii
∏

(p1/rj)=−1

r
fj
j ,

S = ε′
∏

(p1/qi)=1

qgii
∏

(p1/rj)=−1

r
hj
j ,

where ε, ε′ = ±1, ei, fj , gi, hj are nonnegative integers, and qi, rj are
distinct odd primes. By Lemma 3.5(ii) for each j both fj and hj are even.
Hence, appealing to the law of quadratic reciprocity, we have

(
R

p1

)
=
(
ε

p1

) ∏

(p1/qi)=1

(
qi
p1

)ei ∏

(p1/rj)=−1

(
rj
p1

)fj

= ε
∏

(p1/qi)=1

((−1
qi

)(
p1

qi

))ei
,

that is

(3.C.13)
(
R

p1

)
= ε(−1)E , where E =

∑

(p1/qi)=1
qi≡3 (mod 4)

ei.

Next, taking the first equation in (3.C.12) modulo 4, we have

R ≡ ε
∏

(p1/qi)=1
qi≡3 (mod 4)

(−1)ei ≡ ε(−1)E (mod 4),

so that

(3.C.14) ε(−1)E = (−1)(R−1)/2.

Thus, from (3.C.13) and (3.C.14), we obtain

(3.C.15)
(
R

p1

)
= (−1)(R−1)/2.

Similarly we derive

(3.C.16)
(
S

p1

)
= (−1)(S−1)/2.

The next step is to show that

(3.C.17)
(
R

p1

)
= (−1)N/2.

We consider three cases.
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C a s e (i): A even. We have

R− 1 ≡ HA+KM − 1 (by (3.C.8) and (3.C.9))

≡ A (by (3.C.1), (3.C.4) and (3.C.6))

≡ N (mod 4) (by (3.C.5)),

so that by (3.C.15) we obtain
(
R

p1

)
= (−1)(R−1)/2 = (−1)N/2.

C a s e (ii): A odd, r = 1. We have

R− 1 = 1
2 (HA+KM)− 1

= KM + 2s−1pα1S − 1 (by (3.C.8))

≡ 2s−1pα1S (by (3.C.4) and (3.C.6))

≡
{

0 ≡ N (mod 4) if p ≡ 1 (mod 8)
2 ≡ N (mod 4) if p ≡ 5 (mod 8)

(by (3.C.10) and (3.C.5)),

so that by (3.C.15) we obtain
(
R

p1

)
= (−1)(R−1)/2 = (−1)N/2.

C a s e (iii): A odd, s = 1. We have

S = (HA−KM)/2pα1 = (2r−1R−KM)/pα1 (by (3.C.8))

≡ (−1)α(2r−1R− 1) (by (3.C.4) and (3.C.6))

≡
{

(−1)α+1 if p ≡ 1 (mod 8)
(−1)α if p ≡ 5 (mod 8)

(by (3.C.10))

≡ 2α+ (p+ 5)/2 (mod 4),

that is

(S − 1)/2 ≡ α+ (p+ 3)/4 (mod 2),

so that, by (3.C.5), (3.C.11) and (3.C.16), we obtain
(
R

p1

)
= (−1)α+1

(
S

p1

)
= (−1)α+1+(S−1)/2

= (−1)α+1+α+(p+3)/4 = (−1)(p−1)/4 = (−1)N/2.

This completes the proof of (3.C.17).
Writing (3.C.7) in the form

(HA+KM)2 − 2(HA+KM)KM = pm1−1
1 (K2N2 − p1H

2B2),

and appealing to (3.C.8), we see that

22rR2 − 2r+1RKM ≡ 0 (mod p1),
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so that (
RKM

p1

)
=
(

2r+1RKM

p1

)
=
(

2rR
p1

)2

= 1,

which implies by (3.C.17),

(3.C.18)
(
K

p1

)
=
(
R

p1

)(
M

p1

)
= (−1)N/2

(
M

p1

)
.

Finally,

Cp is a fourth power in H(−D)

⇔
(−1
K

)
=
(
K

p1

)
= 1

⇔
(
K

p1

)
= 1 (by (3.C.3))

⇔ (−1)N/2
(
M

p1

)
= 1 (by (3.C.18)).

We have shown that if M ≡ 1 (mod 4) then

(3.C.19) Cp is a fourth power in H(−D)⇔ (−1)N/2
(
M

p1

)
= 1.

Clearly, if M ≡ 3 (mod 4), (3.C.19) becomes (as (−M/p1) = −(M/p1))

(3.C.20) Cp is a fourth power in H(−D)⇔ −(−1)N/2
(
M

p1

)
= 1.

Putting (3.C.19) and (3.C.20) together, we obtain

Cp is a fourth power in H(−D)

⇔ (−1)(M−1+N)/2
(
M

p1

)
= 1

⇔ (−1)N/2
(
p1

M

)
= 1

without any restriction on M .

C a s e (D): D = 8pm1
1 , D∗ = 8pm1−1

1 , m1 ≥ 1, p1 ≡ 1 (mod 8). Let p be
an odd prime such that (−2/p) = (p/p1) = 1, so that p ≡ 1, 3 (mod 8) and
p 6= p1. From (3.2) and (3.1) we have

H2p = M2 + 2pm1−1
1 N2, H > 0, (M,N) = 1, (H, 2pp1) = 1,(3.D.1)

K2p = A2 + 2pm1
1 B2, K > 0, (A,B) = 1, (K, 2pp1) = 1.(3.D.2)
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By (3.3) we have (−D/K) = (−8pm1
1 /K) = 1, so that, by the law of

quadratic reciprocity, we have

(3.D.3)
(−2
K

)
=
(
K

p1

)m1

.

Next, from (3.D.1) and (3.D.2), we obtain

(3.D.4) (HA+KM)(HA−KM) = 2pm1−1
1 (K2N2 − p1H

2B2).

The rest of the proof proceeds almost exactly as the proof of Case (B),
immediately following (3.B.4), except that in the equivalent to (3.B.8) w is
chosen so that w2 ≡ −2 (mod p1), and at the end we use (−2/K).

C a s e (E): D = 8pm1
1 , D∗ = 4pm1

1 , m1 (odd) ≥ 1, p1 ≡ 7 (mod 8). Let
p be an odd prime such that (2/p) = (p/p1) = 1, so that p ≡ 1, 7 (mod 8)
and p 6= p1. From (3.2) and (3.1) we have

H2p = M2 + pm1
1 N2, H > 0, (M,N) = 1, (H, 2pp1) = 1,(3.E.1)

K2p = A2 + 2pm1
1 B2, K > 0, (A,B) = 1, (K, 2pp1) = 1.(3.E.2)

From (3.3) we have (−D/K) = (−8pm1
1 /K) = 1 so that (appealing to the

law of quadratic reciprocity)

(3.E.3)
(

2
K

)
=
(−p1

K

)
=
(
K

p1

)
.

Reducing (3.E.1) and (3.E.2) modulo 8, we see that A is odd and

(3.E.4)





B ≡ 0 (mod 2), M ≡ 1 (mod 2), N ≡ 0 (mod 4)
if p ≡ 1 (mod 8),

B ≡ 1 (mod 2), M ≡ 0 (mod 4), N ≡ 1 (mod 2)
if p ≡ 7 (mod 8).

From (3.E.1) and (3.E.2) we obtain

(3.E.5) (HA+KM)(HA−KM) = pm1
1 (K2N2 − 2H2B2).

If p ≡ 1 (mod 8) exactly one of HA±KM is congruent to 2 (mod 4); choose
the sign of A so that 2 ‖HA+KM . Thus 2α ‖HA−KM for some integer
α ≥ 2. If p ≡ 7 (mod 8) both of HA±KM are odd.

We define the odd integers R and S by

(3.E.6)
{
R = (HA+KM)/2, S = (HA−KM)/2α if p ≡ 1 (mod 8),
R = HA+KM, S = HA−KM if p ≡ 7 (mod 8).

Factor R into primes:

(3.E.7) R = εpr1
∏

(2/qi)=1

qeii
∏

(2/rj)=−1

r
fj
j ,

where ε = ±1, r ≥ 0, ei, fj are positive integers, and qi, rj are distinct odd
primes all different from p1. By Lemma 3.5(ii) each fj is even. Hence, from
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(3.E.7) modulo 8, we obtain R ≡ ±1 (mod 8) so that by (3.E.6),

(3.E.8)
{
HA+KM ≡ 2δ (mod 16) if p ≡ 1 (mod 8),
HA+KM ≡ δ (mod 8) if p ≡ 7 (mod 8),

where δ = ±1. We show next that

(3.E.9)
(

2
K

)
=
(

2
M +N

)
(−1)N(p1+1)/8

by adapting the method used in the proof of [15, Theorem 2] but without
constraining the odd integers among A, B, H, K, M and N to be congruent
to 1 (mod 4).

We treat the case p ≡ 1 (mod 8) first. By (3.E.1), (3.E.2) and (3.E.4)
we may express

A = 4a+ εA, B = 2b, H = 4h+ εH , K = 4k + εK ,

M = 4m+ εM , N = 4n,

where εA, εH , εK , εM take only the values ±1. Note that

ε2
A = 1, εA ≡ 1 (mod 2), a2 ≡ a (mod 2), A2 ≡ 8a+ 1 (mod 16),

and similarly for the others. Then, from (3.E.8) we obtain

(3.E.10) 4(εHa+ εAh+ εMk + εKm) + (εAεH + εKεM ) ≡ 2δ (mod 16).

Taking (3.E.10) modulo 4, we see that

(3.E.11) εAεH = εKεM = θ (say).

Then, taking (3.E.10) modulo 8 and dividing by 2, we obtain (as 4εHa ≡ 4a
(mod 8), . . .)

δ ≡ θ + 2(a+ h+ k +m) (mod 4),
so that

(3.E.12) δ = θ(−1)a+h+k+m.

Thus, from (3.E.10), (3.E.11) and (3.E.12), we have

εHa+ εAh+ εMk + εKm ≡ θ((−1)a+h+k+m − 1)/2 (mod 4),

so that, as εH = θεA, εA = θεH , εM = θεK , εK = θεM , we have

(3.E.13) εAa+ εHh+ εKk + εMm ≡ ((−1)a+h+k+m − 1)/2 (mod 4).

Next we take (3.E.5) modulo 32 and divide by 8 to obtain

(3.E.14) 2(a+h+k+m) + (εAa+ εHh− εKk− εMm) ≡ 2n+ b2 (mod 4).

Taking (3.E.14) modulo 2, we deduce

(3.E.15) a+ h+ k +m ≡ b (mod 2).

Then, from (3.E.13)–(3.E.15), we obtain

2b+ 2(k +m) ≡ 2n+ b2 − ((−1)b − 1)/2 (mod 4).
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But 2b ≡ b2 − ((−1)b − 1)/2 (mod 4) for any integer b so that k + m ≡ n
(mod 2). Thus

(
2
K

)
= (−1)(K2−1)/8 = (−1)k = (−1)m+n =

(
2

M +N

)
,

which proves (3.E.9) in this case as N is even.
Now we treat the case p ≡ 7 (mod 8). By (3.E.4) we may express

A = 4a± 1, B = 4b± 1, H = 4h± 1, K = 4k ± 1,

M = 4m, N = 4n± 1,

so that A2 ≡ 8a+ 1 (mod 16), . . . . From (3.E.8) modulo 8 we obtain

(3.E.16) a+ h+m ≡ 0 (mod 2).

Next, from (3.E.5) modulo 16, we deduce

(3.E.17) k + n ≡ a+ h+ (p1 + 1)/8 (mod 2).

Eliminating a+ h from (3.E.16) and (3.E.17) yields

k ≡ m+ n+ (p1 + 1)/8 (mod 2).

Thus (
2
K

)
= (−1)k = (−1)m+n+(p1+1)/8 =

(
2

M +N

)
(−1)(p1+1)/8,

which proves (3.E.9) in this case as N is odd.
Finally,

Cp is a fourth power in H(−D)

⇔
(

2
K

)
=
(
K

p1

)
= 1

⇔
(

2
K

)
= 1 (by (3.E.3))

⇔
(

2
M +N

)
(−1)N(p1+1)/8 = 1 (by (3.E.9)).

C a s e (F): D = 8pm1
1 , D∗ = 4pm1−1

1 , m1 (even) ≥ 2, p1 ≡ 7 (mod 8).
Let p be an odd prime such that (−2/p) = (p/p1) = 1, so that p ≡ 1, 3
(mod 8) and p 6= p1. From (3.2) and (3.1) we have

H2p = M2 + pm1−1
1 N2, H > 0, (M,N) = 1, (H, 2pp1) = 1,(3.F.1)

K2p = A2 + 2pm1
1 B2, K > 0, (A,B) = 1, (K, 2pp1) = 1.(3.F.2)

From (3.3) we have (−D/K) = (−8pm1
1 /K) = 1, that is,

(3.F.3)
(−2
K

)
= 1, K ≡ 1, 3 (mod 8).
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Reducing (3.F.1) and (3.F.2) modulo 8, we obtain

(3.F.4) A ≡ 1 (mod 2),

and

(3.F.5)





B ≡ 0 (mod 2), M ≡ 1 (mod 2), N ≡ 0 (mod 4)
if p ≡ 1 (mod 8),

B ≡ 1 (mod 2), M ≡ 2 (mod 4), N ≡ 1 (mod 2)
if p ≡ 3 (mod 8).

Replacing (M,N) by (−M,−N) if necessary, we may suppose that

(3.F.6) M +N ≡ 1 (mod 4).

From (3.F.1) and (3.F.2) we obtain

(3.F.7) (HA+KM)(HA−KM) = pm1−1
1 (K2N2 − 2p1H

2B2).

By Lemma 3.6, p1 does not divide both of HA ±KM . Choose the sign of
A so that p1 -HA+KM . Define odd integers R and S by

(3.F.8) R = (HA+KM)/2r, S = (HA−KM)/2spα1 ,

where pα1 ‖HA−KM . Clearly, p1 -RS. We note that

(3.F.9)

{α ≥ m1 − 1 ≥ 1,
min(r, s) = 1, r + s ≥ 3 if p ≡ 1 (mod 8),
r = s = 0 if p ≡ 3 (mod 8).

We first show that

(3.F.10)
(
R

p1

)(
S

p1

)
= (−1)α+1.

From (3.F.7), (3.F.8) and (3.F.9), we see that

pα−m1+1
1 ‖K2N2 − 2p1H

2B2.

Thus, by Lemma 3.4, we have{
p

(α−m1+1)/2
1 ‖N, p(α−m1+1)/2

1 |B if α is odd,

p
(α−m1+2)/2
1 |N, p(α−m1)/2

1 ‖B if α is even.

Define integers N1 and B1 by{
N = p

(α−m1+1)/2
1 N1, B = p

(α−m1+1)/2
1 B1 if α is odd,

N = p
(α−m1+2)/2
1 N1, B = p

(α−m1)/2
1 B1 if α is even,

so that

p1 -N1 (α odd), p1 -B1 (α even).

Hence

2r+sRS =
{
K2N2

1 − 2p1H
2B2

1 if α is odd,
p1K

2N2
1 − 2H2B2

1 if α is even,
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so that (recalling (2/p1) = 1)

(
R

p1

)(
S

p1

)
=





(
K2N2

1

p1

)
= 1 if α is odd,

(−2H2B2
1

p1

)
= −1 if α is even,

proving (3.F.10).
We next show that

(3.F.11)
(
R

p1

)
=
(−2
R

)
,

(
S

p1

)
=
(−2
S

)
.

We factor R into primes as follows:

(3.F.12) R = ε
∏

(2p1/qi)=1

qeii
∏

(2p1/rj)=−1

r
fj
j ,

where ε = ±1, ei, fj are positive integers, and qi, rj are distinct odd primes.
By Lemma 3.5(ii) each fj is even. It is convenient to define

(3.F.13) Ek =
∑

(2p1/qi)=1
qi≡k (mod 8)

ei, k = 1, 3, 5, 7.

From (3.F.12) we have
(
R

p1

)
=
(
ε

p1

) ∏

(2p1/qi)=1

(
qi
p1

)ei
(as the fj are even)

= ε
∏

(2p1/qi)=1

(−p1

qi

)ei
(by the law of quadratic reciprocity)

= ε
∏

(2p1/qi)=1

(−2
qi

)ei

= ε
∏

(2p1/qi)=1
qi≡5,7 (mod 8)

(−1)ei ,

that is, by (3.F.13),

(3.F.14)
(
R

p1

)
= ε(−1)E5+E7 .

Now taking (3.F.12) modulo 4, we obtain, as each fj is even,

R ≡ ε
∏

(2p1/qi)=1

qeii ≡ ε
∏

(2p1/qi)=1
qi≡3 (mod 4)

(−1)ei ≡ ε(−1)E3+E7 (mod 4),
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that is, (−1
R

)
= ε(−1)E3+E7 ,

so

(3.F.15) ε =
(−1
R

)
(−1)E3+E7 .

Substituting (3.F.15) in (3.F.14), we obtain

(3.F.16)
(
R

p1

)
=
(−1
R

)
(−1)E3+E5 .

Further, taking (3.F.12) modulo 8, we deduce

R ≡ ε
∏

(2p1/qi)=1
qi≡3 (mod 8)

3ei
∏

(2p1/qi)=1
qi≡5 (mod 8)

5ei
∏

(2p1/qi)=1
qi≡7 (mod 8)

7ei

≡ ε3E35E57E7

≡ ε(−5)E35E5(−1)E7

≡ ε(−1)E3+E75E3+E5 (mod 8),

that is, by (3.F.15),

(3.F.17) R ≡
(−1
R

)
5E3+E5 (mod 8).

Hence, from (3.F.17), we have

(3.F.18)
(

2
R

)
=
(

2
5

)E3+E5

= (−1)E3+E5 .

Then, from (3.F.16) and (3.F.18), we deduce
(
R

p1

)
=
(−1
R

)(
2
R

)
=
(−2
R

)
,

as asserted in (3.F.11). The proof of (S/p1) = (−2/S) is similar.
The next step is to show that

(3.F.19)
(−2
R

)
= (−1)N(p1+1)/8

(
2

M +N

)
.

We consider two cases according as p ≡ 1 (mod 8) or p ≡ 3 (mod 8).

C a s e 1: p ≡ 1 (mod 8). We set (recalling (3.F.1)–(3.F.6))

A = 4a+ εA, B = 2b, H = 4h+ εH , K = 4k + (−1)k,

M = 4m+ 1, N = 4n,
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where εA = ±1, εH = ±1. Substituting these in (3.F.7), reducing modulo
32, and dividing by 8, we obtain

(3.F.20) 2(a+h+k+m+n)+ (εAa+εHh− (−1)kk−m) ≡ −b2 (mod 4).

Taking (3.F.20) modulo 2 we have

(3.F.21) b ≡ a+ h+ k +m (mod 2).

Next, substituting the above values for A,B, . . . into the first equation in
(3.F.8) when r = 1 and into the second equation in (3.F.8) when s = 1, we
obtain, modulo 16,

(3.F.22)





4(εHa+ εAh) + 4(−1)km+ 4k + (εAεH + (−1)k)
≡ 2R (mod 16) if r = 1,

4(εHa+ εAh)− 4(−1)km− 4k + (εAεH + (−1)k+1)
≡ 2pα1S (mod 16) if s = 1.

Looking at (3.F.22) modulo 4, we deduce
{
εAεH + (−1)k ≡ 2 (mod 4) if r = 1,
εAεH − (−1)k ≡ 2 (mod 4) if s = 1,

that is,

(3.F.23) εA =
{

(−1)kεH if r = 1,
(−1)k+1εH if s = 1.

Substituting (3.F.23) in (3.F.22), and dividing by 2, we obtain

(3.F.24)





R ≡ 2εH(a+ (−1)kh) + 2(−1)km+ 2k + (−1)k (mod 8)
if r = 1,

(−1)αS ≡ 2εH(a+ (−1)k+1h) + 2(−1)k+1m− 2k
+ (−1)k+1 (mod 8) if s = 1.

Taking (3.F.24) modulo 4, we have

(3.F.25)
{
R ≡ 2(a+ h+m) + 1 (mod 4) if r = 1,
(−1)αS ≡ 2(a+ h+m)− 1 (mod 4) if s = 1,

as 2k + (−1)k ≡ 1 (mod 4) for all integers k. Then, using (3.F.21) and
(3.F.23), we may rewrite (3.F.20) as

(3.F.26)





εH(a+ (−1)kh)
≡ (−1)km+ k + 2(b+ n)− (−1)kb2 (mod 4) if r = 1,

εH(a+ (−1)k+1h)
≡ (−1)k+1m− k + 2(b+ n) + (−1)kb2 (mod 4) if s = 1.

Substituting (3.F.26) into (3.F.24) gives

(3.F.27)

{
R ≡ 4(b+ k +m+ n)− 2(−1)kb2 + (−1)k (mod 8) if r = 1,
(−1)αS ≡ 4(b+ k +m+ n) + 2(−1)kb2 + (−1)k+1 (mod 8)

if s = 1.
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Now, from (3.F.21) and (3.F.25), we have

(3.F.28)
{
R ≡ 2(b+ k) + 1 (mod 4) if r = 1,
(−1)αS ≡ 2(b+ k)− 1 (mod 4) if s = 1.

Applying (3.F.28) to the right side of (3.F.27), we obtain
{
R ≡ 2(R− 1) + 4(m+ n)− 2(−1)kb2 + (−1)k (mod 8) if r = 1,
(−1)αS ≡ 2((−1)αS + 1) + 4(m+ n) + 2(−1)kb2 + (−1)k+1 (mod 8)

if s = 1.
By rearranging and then squaring, we obtain{

R2 − 4R+ 4− 8(m+ n) ≡ 1 (mod 16) if r = 1,
S2 + 4(−1)αS + 4− 8(m+ n) ≡ 1 (mod 16) if s = 1,

as (2b2 − 1)2 = 4b2(b2 − 1) + 1 ≡ 1 (mod 16). Hence
{

(R2 − 1)− 4(R− 1) ≡ 8(m+ n) (mod 16) if r = 1,
(S2 − 1)− 4(S − 1) ≡ 8(m+ n) + 8(α+ 1) (mod 16) if s = 1.

Thus if r = 1 we have(−2
R

)
= (−1)(R−1)/2+(R2−1)/8 = (−1)m+n

= (−1)((M+N)2−1)/8 =
(

2
M +N

)
,

and if s = 1 we have(−2
S

)
= (−1)(S−1)/2+(S2−1)/8 = (−1)m+n+α+1

= (−1)((M+N)2−1)/8(−1)α+1 =
(

2
M +N

)(−2
R

)(−2
S

)

(by (3.F.10) and (3.F.11))

so that in both cases (−2
R

)
=
(

2
M +N

)
.

This completes the proof of (3.F.19) when p ≡ 1 (mod 8) as N is even in
this case.

C a s e 2: p ≡ 3 (mod 8). We set (recalling (3.F.1)–(3.F.6))

A = 4a+ εA, B = 4b+ εB , H = 4h+ εH ,

K = 4k + (−1)k, M = 4m+ 2, N = 4n− 1,

where εA = ±1, εB = ±1, εH = ±1. Taking R = HA+KM modulo 4, we
obtain

(3.F.29) εAεH = (−1)(R+1)/2.
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Then, taking R = HA + KM modulo 8, and appealing to (3.F.29), we
deduce

(3.F.30)
(−2
R

)
= (−1)a+h+k+m.

From (3.F.7) modulo 16 we have

(3.F.31) a+ h+ k ≡ n+ (p1 + 1)/8 (mod 2).

Then, from (3.F.30) and (3.F.31), we obtain
(−2
R

)
= (−1)m+n+(p1+1)/8 =

(
2

M +N

)
(−1)(p1+1)/8,

which is (3.F.19) as N is odd in this case. This completes the proof of
(3.F.19).

Now, by (3.F.7) and (3.F.8), we have

22rR2 − 2r+1RKM = (HA+KM)2 − 2(HA+KM)KM

= (HA+KM)(HA−KM)

= pm1−1
1 (K2N2 − 2p1H

2B2)

≡ 0 (mod p1) (as m1 ≥ 2),

so that

(3.F.32)
(

2
p1

)r+1(
R

p1

)(
K

p1

)(
M

p1

)
= 1.

Finally,

Cp is a fourth power in H(−D)

⇔
(−2
K

)
=
(
K

p1

)
= 1

⇔
(
K

p1

)
= 1 (by (3.F.3))

⇔
(
R

p1

)(
M

p1

)
= 1 (by (3.F.32))

⇔
(−2
R

)(
M

p1

)
= 1 (by (3.F.11)),

that is, under the restriction (3.F.6),

(3.F.33) Cp is a fourth power in H(−D)

⇔ (−1)N(p1+1)/8
(

2
M +N

)(
M

p1

)
= 1 (by (3.F.19)).
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In order to remove this restriction, the necessary and sufficient condition
(3.F.33) must include the additional factor

( −1
M +N

)
=
{

1 if M +N ≡ 1 (mod 4),
−1 if M +N ≡ 3 (mod 4),

so that the condition can now be written

(−1)N(p1+1)/8
( −2
M +N

)(
M

p1

)
= 1.

C a s e (G): D = 16pm1
1 , D∗ = 16pm1−1

1 , m1 ≥ 1, p1 ≡ 1 (mod 4). Let
p be an odd prime satisfying (−1/p) = (p/p1) = 1, so that p ≡ 1 (mod 4)
and p 6= p1. From (3.2) and (3.1) we have

H2p = M2 + 4pm1−1
1 N2, H > 0, (M,N) = 1, (H, 2pp1) = 1,(3.G.1)

K2p = A2 + 4pm1
1 B2, K > 0, (A,B) = 1, (K, 2pp1) = 1.(3.G.2)

By (3.3) we have (−D/K) = (−16pm1
1 /K) = 1, so that by the law of

quadratic reciprocity

(3.G.3)
(−1
K

)
=
(
p1

K

)m1

=
(
K

p1

)m1

.

Reducing (3.G.1) and (3.G.2) modulo 8, we obtain

(3.G.4) A ≡M ≡ 1 (mod 2), B ≡ N ≡ (p− 1)/4 (mod 2).

From (3.G.1) and (3.G.2) we obtain

(3.G.5) (HA+KM)(HA−KM) = 4pm1−1
1 (K2N2 − p1H

2B2).

By Lemma 3.6, p1 does not divide both of HA ±KM . Choose the sign of
A so that p1 -HA+KM . Define odd integers R and S by

(3.G.6) R = (HA+KM)/2r, S = (HA−KM)/2spα1 ,

where pα1 ‖HA−KM . Clearly p1 -RS, α ≥ m1−1, and appealing to (3.G.4)
we see that

(3.G.7) min(r, s) = 1, r + s ≥ 4.

From (3.G.5) and (3.G.6) we see that 2r+s−2 ‖K2N2 − p1H
2B2. Thus, by

Lemma 3.2(iii), we have

(3.G.8) r + s ≡ 0 (mod 2) if p1 ≡ 5 (mod 8).

We factor R into primes:

(3.G.9) R = ε
∏

(p1/qi)=1

qeii
∏

(p1/rj)=−1

r
fj
j ,

where ε = ±1, ei, fj are positive integers, and qi, rj are distinct odd primes.
By Lemma 3.5(ii) each fj is even. From (3.G.9) we have by the law of
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quadratic reciprocity

(3.G.10)
(
R

p1

)
= 1.

By Lemma 3.1 we have

(3.G.11)





2(HA+KM)(KM + wKN)
≡ (HA+KM + wKN)2 (mod p1) if m1 = 1,

2(HA+KM)KM ≡ (HA+KM)2 (mod p1) if m1 ≥ 2,

where w2 ≡ −4 (mod p1). Thus by (3.G.6) and (3.G.11), we have

(3.G.12)





(
2
p1

)r+1(
R

p1

)(
K

p1

)(
M + wN

p1

)
= 1 if m1 = 1,

(
2
p1

)r+1(
R

p1

)(
K

p1

)(
M

p1

)
= 1 if m1 ≥ 2.

If p1 ≡ 1 (mod 8) then (2/p1) = 1. If p1 ≡ 5 (mod 8) then by (3.G.7) and
(3.G.8), r is odd so that (2/p1)r+1 = (−1)r+1 = 1. Hence, by (3.G.10) and
(3.G.12), we have

(3.G.13)
(
K

p1

)
=





(
M + wN

p1

)
if m1 = 1,

(
M

p1

)
if m1 ≥ 2.

Finally,

Cp is a fourth power in H(−D)

⇔
(−1
K

)
=
(
K

p1

)
= 1

⇔
(
K

p1

)
= 1 (by (3.G.3))

⇔





(
M + wN

p1

)
= 1

if m1 = 1, where w2 ≡ −4 (mod p1)(
M

p1

)
= 1 if m1 ≥ 2 (by (3.G.13)).

C a s e (H): D = 16pm1
1 , D∗ = 16pm1−1

1 , m1 (even) ≥ 2, p1 ≡ 3 (mod 4).
Let p be an odd prime such that (−1/p) = (p/p1) = 1, so that p ≡ 1
(mod 4) and p 6= p1. From (3.2) and (3.1) we have

H2p = M2 + 4pm1−1
1 N2, H > 0, (M,N) = 1, (H, 2pp1) = 1,(3.H.1)

K2p = A2 + 4pm1
1 B2, K > 0, (A,B) = 1, (K, 2pp1) = 1.(3.H.2)
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From (3.3) we have (−D/K) = (−16pm1
1 /K) = 1, so that

(3.H.3)
(−1
K

)
= 1, K ≡ 1 (mod 4).

Reducing (3.H.1) and (3.H.2) modulo 8, we obtain

(3.H.4) A ≡M ≡ 1 (mod 2), B ≡ N ≡ (p− 1)/4 (mod 2).

From (3.H.1) and (3.H.2) we obtain

(3.H.5) (HA+KM)(HA−KM) = 4pm1−1
1 (K2N2 − p1H

2B2).

By Lemma 3.6, p1 does not divide both of HA±KM . We choose the sign
of A so that p1 -HA+KM , and define odd integers R and S by

(3.H.6) R = (HA+KM)/2r, S = (HA−KM)/2spα1 ,

where pα1 ‖HA−KM . Clearly p1 -RS. We note that

(3.H.7)





α ≥ m1 − 1 ≥ 1,
min(r, s) = 1,
p ≡ 1 (mod 8) if r + s ≥ 4,
p ≡ 5 (mod 8) if r + s = 3.

Proceeding exactly as in the proof of (3.C.11), we obtain
(

2
p1

)r+s(
R

p1

)(
S

p1

)
= (−1)α+1,

that is,

(3.H.8)
(
R

p1

)(
S

p1

)
=
(

2
p1

)r+s
(−1)α+1.

Next, factoring R and S into primes and proceeding as in case (C) ((3.C.12)–
(3.C.16)), we obtain

(3.H.9)
(
R

p1

)
= (−1)(R−1)/2,

(
S

p1

)
= (−1)(S−1)/2.

From (3.H.8) and (3.H.9) we deduce

(3.H.10) (R− 1)/2 + (S − 1)/2 ≡ (r + s)(p2
1 − 1)/8 + (α+ 1) (mod 2).

Our next task is to show that

(3.H.11) (M − 1)/2 +N ≡ (R− 1)/2 + (r + 1)(p2
1 − 1)/8 (mod 2).

From (3.H.7) either r = 1 or s = 1. We treat the case r = 1 first. In this
case s ≥ 2 by (3.H.7). Working modulo 4 we have
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R = KM + pα1 2s−1S (by (3.H.6))

≡M + pα1 2s−1S (by (3.H.3))

≡M +
{

2 if s = 2
0 if s ≥ 3

(as p1, S are odd)

≡
{
M + 2 if p ≡ 5 (mod 8)
M if p ≡ 1 (mod 8)

(by (3.H.7))

≡M + 2N (mod 4) (by (3.H.4)),

so that

(M − 1)/2 +N ≡ (R− 1)/2 (mod 2),

proving (3.H.11) in this case. We now turn to the case s = 1. In this case
r ≥ 2 by (3.H.7). Working modulo 4 we have

2α+ S ≡ (−1)αS (as S ≡ 1 (mod 2))

≡ pα1S (as p1 ≡ 3 (mod 4))

≡ (HA−KM)/2 (by (3.H.6))

≡ 2r−1R−KM (by (3.H.6))

≡ 2r−1R−M (by (3.H.3))

≡ 2r−1 +M + 2 (as R and M are odd)

≡
{
M + 2 if r ≥ 3⇔ p ≡ 1 (mod 8)
M if r = 2⇔ p ≡ 5 (mod 8)

(by (3.H.7))

≡M + 2N − 2 (mod 4) (by (3.H.4)),

so that

(M − 1)/2 +N ≡ (S − 1)/2 + (α+ 1) (mod 2).

Appealing to (3.H.10) we obtain

(M − 1)/2 +N ≡ (R− 1)/2 + (r + 1)(p2
1 − 1)/8 (mod 2)

as required.
From (3.H.5) and (3.H.6) we have

22rR2 − 2r+1RKM = (HA+KM)2 − 2(HA+KM)KM

= (HA+KM)(HA−KM)

= 4pm1−1
1 (K2N2 − p1H

2B2)

≡ 0 (mod p1) (as m1 ≥ 2),

so that (
2r+1RKM

p1

)
=
(

22rR2

p1

)
= 1,
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giving
(
K

p1

)
=
(

2
p1

)r+1(
R

p1

)(
M

p1

)

= (−1)(r+1)(p2
1−1)/8+(R−1)/2

(
M

p1

)
(by (3.H.9)),

that is,

(3.H.12)
(
K

p1

)
= (−1)(M−1)/2+N

(
M

p1

)
(by (3.H.11)).

Finally,

Cp is a fourth power in H(−D)

⇔
(−1
K

)
=
(
K

p1

)
= 1

⇔
(
K

p1

)
= 1 (by (3.H.3))

⇔ (−1)(M−1)/2+N
(
M

p1

)
= 1 (by (3.H.12))

⇔
( −1
M + 2N

)(
M

p1

)
= 1.

C a s e (I): D = pm1
1 pm2

2 , D∗ = pm1
1 pm2−1

2 , m1 (odd) ≥ 1, m2 ≥ 1, p1 ≡ 3
(mod 4), p2 ≡ 1 (mod 4), (p1/p2) = 1. Let p be an odd prime such that
(p/p1) = (p/p2) = 1, so that p 6= p1, p2. From (3.2) and (3.1) we have

(3.I.1) H2p = M2 +MN + 1
4 (1 + pm1

1 pm2−1
2 )N2,

H > 0, (M,N) = 1, (H, 2pp1p2) = 1,

(3.I.2) K2p = A2 +AB + 1
4 (1 + pm1

1 pm2
2 )B2,

K > 0, (A,B) = 1, (K, 2pp1p2) = 1.

From (3.3) we have (−D/K) = (−pm1
1 pm2

2 /K) = 1, so that, by the law of
quadratic reciprocity,

(3.I.3)
(
K

p1

)
=
(
K

p2

)m2

.

We set

(3.I.4) C = 2A+B, L = 2M +N.

Using (3.I.4) in (3.I.1) and (3.I.2), we obtain

4H2p = L2 + pm1
1 pm2−1

2 N2,(3.I.5)

4K2p = C2 + pm1
1 pm2

2 B2.(3.I.6)
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We note that

(L,N) = (2M +N,N) = (2M,N) = (2, N) =
{

1 if N is odd,
2 if N is even,

(3.I.7)

(C,B) = (2A+B,B) = (2A,B) = (2, B) =
{

1 if B is odd,
2 if B is even.

(3.I.8)

From (3.I.5) and (3.I.6) we obtain

(3.I.9) (HC +KL)(HC −KL) = pm1
1 pm2−1

2 (K2N2 − p2H
2B2).

Lemma 3.6 implies that neither p1 nor p2 divides both of HC ± KL. By
changing the sign of C if necessary, we may suppose that p1 -HC+KL. We
define odd integers R and S by

(3.I.10) R = (HC +KL)/2rpβ2 , S = (HC −KL)/2spα1 p
γ
2 ,

where pα1 ‖HC −KL, pβ2 ‖HC +KL, pγ2 ‖HC −KL. We note that

(3.I.11)




p1 -RS, p2 -RS,
α ≥ m1 ≥ 1, β + γ ≥ m2 − 1 ≥ 0,
min(β, γ) = 0.

Next we factor R into primes:

(3.I.12) R = ε
∏

(p2/qi)=1

qeii
∏

(p2/rj)=−1

r
fj
j ,

where ε = ±1, ei, fj are positive integers, and qi, rj are distinct odd primes.
From (3.I.5)–(3.I.8), (3.I.10) and Lemma 3.5(ii) we see that each fj is even.
Then, from (3.I.12), we have

(3.I.13)
(
R

p2

)
=
(
ε

p2

) ∏

(p2/qi)=1

(
qi
p2

)ei
= 1,

by the law of quadratic reciprocity. Similarly we have

(3.I.14)
(
S

p2

)
= 1.

Next, by Lemma 3.1 and (3.I.9), we have

(3.I.15) 2(KL±HC)(KL+ θKN) ≡ (KL±HC + θKN)2 (mod p2),

where θ is a solution of the congruence

(3.I.16) θ2 ≡ −pm1
1 pm2−1

2 (mod p2).
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Note that we may take θ = 0 when m2 ≥ 2. The congruence (3.I.16) is
solvable when m2 = 1 as

(−pm1
1

p2

)
=
(
p1

p2

)m1

= 1.

From (3.I.15) we have, as (−1/p2) = 1,

(3.I.17)
(

2
p2

)(
HC ±KL

p2

)(
K

p2

)(
L+ θN

p2

)
= 1.

Recall from (3.I.11) that either β = 0 or γ = 0. Taking the + sign in (3.I.17)
when β = 0 and the − sign when γ = 0, and appealing to (3.I.10), we
obtain

(3.I.18)





(
2
p2

)r+1(
R

p2

)(
K

p2

)(
L+ θN

p2

)
= 1 if β = 0,

(
2
p2

)s+1(
p1

p2

)α(
S

p2

)(
K

p2

)(
L+ θN

p2

)
= 1 if γ = 0.

Thus, by (3.I.13), (3.I.14) and (3.I.18), we have

(3.I.19)
(
K

p2

)
=





(
2
p2

)r+1(
L+ θN

p2

)
if β = 0,

(
2
p2

)s+1(
L+ θN

p2

)
if γ = 0.

If p2 ≡ 1 (mod 8) then (2/p2)r+1 = (2/p2)s+1 = (2/p2). If p2 ≡ 5 (mod 8),
by Lemma 3.7, r and s are both even so (2/p2)r+1 = (2/p2)s+1 = (2/p2).
Hence (3.I.19) reduces to

(3.I.20)
(
K

p2

)
=
(

2
p2

)(
L+ θN

p2

)
.

Now set w ≡ (1 + θ)/2 (mod p2) so that

(3.I.21) L+ θN = 2M + (1 + θ)N ≡ 2(M + wN) (mod p2),

and w is a solution of the congruence

w2 − w + 1
4 (1 + pm1

1 pm2−1
2 ) ≡ 0 (mod p2).

Note 2w ≡ 1 (mod p2) if m2 ≥ 2.
Hence, by (3.I.20) and (3.I.21), we have

(3.I.22)
(
K

p2

)
=
(
M + wN

p2

)
.
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Finally,

Cp is a fourth power

⇔
(
K

p1

)
=
(
K

p2

)
= 1

⇔
(
K

p2

)
= 1 (by (3.I.3))

⇔
(
M + wN

p2

)
= 1 (by (3.I.22))

⇔





(
M + wN

p2

)
= 1 if m2 = 1,

where w2 − w + 1
4 (1 + pm1

1 ) ≡ 0 (mod p2),(
4M + 2N

p2

)
= 1 if m2 ≥ 2.

C a s e (J): D = pm1
1 pm2

2 , D∗ = pm1−1
1 pm2−1

2 , m1 (odd) ≥ 1, m2 (even)
≥ 2, p1 ≡ p2 ≡ 3 (mod 4), (p1/p2) = 1. Let p be an odd prime such that
(p/p1) = (p/p2) = 1, so that p 6= p1, p2. From (3.2) and (3.1) we have

(3.J.1) H2p = M2 +MN + 1
4 (1 + pm1−1

1 pm2−1
2 )N2,

H > 0, (M,N) = 1, (H, 2pp1p2) = 1,

(3.J.2) K2p = A2 +AB + 1
4 (1 + pm1

1 pm2
2 )B2,

K > 0, (A,B) = 1, (K, 2pp1p2) = 1.

From (3.3) we have (−D/K) = (−pm1
1 pm2

2 /K) = 1, so that by the law of
quadratic reciprocity, we have

(3.J.3)
(
K

p1

)
=
(−p1

K

)
= 1.

We set

(3.J.4) C = 2A+B, L = 2M +N.

Making use of (3.J.4), equations (3.J.1) and (3.J.2) become

4H2p = L2 + pm1−1
1 pm2−1

2 N2,(3.J.5)

4K2p = C2 + pm1
1 pm2

2 B2.(3.J.6)

As in case (I) we have

(L,N) =
{

1 if N is odd,
2 if N is even,

(3.J.7)

(C,B) =
{

1 if B is odd,
2 if B is even.

(3.J.8)
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From (3.J.5) and (3.J.6) we obtain

(3.J.9) (HC +KL)(HC −KL) = pm1−1
1 pm2−1

2 (K2N2 − p1p2H
2B2).

By Lemma 3.6 neither p1 nor p2 divides both of HC±KL. By changing the
sign of C if necessary, we may suppose that p2 -HC + KL. We define odd
integers R and S by

(3.J.10) R = (HC +KL)/2rpβ1 , S = (HC −KL)/2spα2 p
γ
1 ,

where pα2 ‖HC −KL, pβ1 ‖HC +KL, pγ1 ‖HC −KL. We note that

(3.J.11)




p1 -RS, p2 -RS,
α ≥ m2 − 1 ≥ 1, β + γ ≥ m1 − 1 ≥ 0,
min(β, γ) = 0.

Next we factor R into primes:

(3.J.12) R = ε
∏

(p1p2/qi)=1

qeii
∏

(p1p2/rj)=−1

r
fj
j ,

where ε = ±1, ei, fj are positive integers, and qi, rj are distinct odd primes.
By (3.J.5)–(3.J.8), (3.J.10), (3.J.12), and Lemma 3.5(ii), we see that each
fj in (3.J.12) is even. Hence

(3.J.13)

(
R

p1

)
=
(
ε

p1

) ∏

(p1p2/qi)=1

(
qi
p1

)ei
,

(
R

p2

)
=
(
ε

p2

) ∏

(p1p2/qi)=1

(
qi
p2

)ei
.

By the law of quadratic reciprocity, we have

(p1p2/qi) = 1⇒ (qi/p1p2) = 1⇒ (qi/p1) = (qi/p2),

and, as (ε/p1) = (ε/p2) = ε, we deduce from (3.J.13) that

(3.J.14)
(
R

p1

)
=
(
R

p2

)
.

Similarly we have

(3.J.15)
(
S

p1

)
=
(
S

p2

)
.

From (3.J.9) and (3.J.10) we see that pα−m2+1
2 ‖K2N2− p1p2H

2B2. By
Lemma 3.4 we observe that{

p
(α−m2+1)/2
2 ‖N, p(α−m2+1)/2

2 |B if α is odd,
p

(α−m2+2)/2
2 |N, p(α−m2)/2

2 ‖B if α is even.
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Define integers N1 and B1 by
{
N1 = N/p

(α−m2+1)/2
2 , B1 = B/p

(α−m2+1)/2
2 if α is odd,

N1 = N/p
(α−m2+2)/2
2 , B1 = B/p

(α−m2)/2
2 if α is even,

so that p2 -N1 (α odd) and p2 -B1 (α even). Hence, by (3.J.10) and (3.J.9),
we have

2r+spβ+γ
1 RS = (H2C2 −K2L2)/pα2

= pm1−1
1 (K2N2 − p1p2H

2B2)/pα−m2+1
2

=
{
pm1−1

1 (K2N2
1 − p1p2H

2B2
1) if α is odd,

pm1−1
1 (p2K

2N2
1 − p1H

2B2
1) if α is even,

so that, as (p1/p2) = 1,
(

2
p2

)r+s(
R

p2

)(
S

p2

)
=
{ +1 if α is odd
−1 if α is even

}
= (−1)α+1,

that is,

(3.J.16)
(
R

p2

)(
S

p2

)
=
(

2
p2

)r+s
(−1)α+1.

A similar calculation, with the roles of p1 and p2 reversed (note that (p2/p1)
= −1), shows that

(3.J.17)
(
R

p1

)(
S

p1

)
=
(

2
p1

)r+s
(−1)α+1.

From (3.J.14)–(3.J.17) we obtain (2/p1)r+s = (2/p2)r+s, so that
(

2
p1p2

)r
=
(

2
p1p2

)s
.

If p1p2 ≡ 1 (mod 8) then (2/p1p2) = 1. If p1p2 ≡ 5 (mod 8) then, by
Lemma 3.7, r and s are both even. Thus in both cases we have

(3.J.18)
(

2
p1p2

)r
=
(

2
p1p2

)s
= 1.

Now let θ be a solution of

(3.J.19) θ2 ≡ −pm1−1
1 pm2−1

2 (mod p1).

If m1 ≥ 3 we see from (3.J.19) that we can take θ = 0. If m1 = 1 the
congruence is solvable as (−pm2−1

2 /p1) = (−p2/p1) = (p1/p2) = +1. Then,
by Lemma 3.1, we have

2(KL±HC)(KL+ θKN) ≡ (KL±HC + θKN)2 (mod p1),
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and thus (
2
p1

)(
KL±HC

p1

)(
K

p1

)(
L+ θN

p1

)
= 1.

Recall from (3.J.11) that either β = 0 or γ = 0. Taking the + sign when
β = 0 and the − sign when γ = 0, we obtain, appealing to (3.J.3) and
(3.J.10),





(
2
p1

)r+1(
R

p1

)(
L+ θN

p1

)
= 1 if β = 0,

(
2
p1

)s+1(−1
p1

)(
p2

p1

)α(
S

p1

)(
L+ θN

p1

)
= 1 if γ = 0.

Hence, as (−1/p1) = −1 and (p2/p1) = (−p1/p2) = −1, we have




(
R

p1

)
=
(

2
p1

)r+1(
L+ θN

p1

)
if β = 0,

(
S

p1

)
= (−1)α+1

(
2
p1

)s+1(
L+ θN

p1

)
if γ = 0.

Appealing to (3.J.17) when γ = 0, we see that

(3.J.20)
(
R

p1

)
=
(

2
p1

)r+1(
L+ θN

p1

)

in both cases. Then, from (3.J.14) and (3.J.20), we obtain

(3.J.21)
(
R

p2

)
=
(

2
p1

)r+1(
L+ θN

p1

)
.

Next we observe that

(HC +KL)2 − 2(HC +KL)KL

= (HC +KL)(HC −KL)

= pm1−1
1 pm2−1

2 (K2N2 − p1p2H
2B2) (by (3.J.9))

≡ 0 (mod p2) (as m2 ≥ 2),

so that (
2
p2

)(
HC +KL

p2

)(
K

p2

)(
L

p2

)
= 1.

From (3.J.10) we deduce (as (p1/p2) = 1)

(3.J.22)
(

2
p2

)r+1(
R

p2

)(
K

p2

)(
L

p2

)
= 1.
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Then, from (3.J.21) and (3.J.22), we have
(

2
p1p2

)r+1(
K

p2

)(
L

p2

)(
L+ θN

p1

)
= 1,

that is, by (3.J.18),
(
K

p2

)
=
(

2
p1p2

)(
L

p2

)(
L+ θN

p1

)
.

Now set w ≡ (θ + 1)/2 (mod p1) so that w is a solution of the congruence

(3.J.23) w2 − w + 1
4 (1 + pm1−1

1 pm2−1
2 ) ≡ 0 (mod p1).

Then we have(
L+ θN

p1

)
=
(

2M + (1 + θ)N
p1

)
=
(

2M + 2wN
p1

)
=
(

2
p1

)(
M + wN

p1

)

and

(3.J.24)
(
K

p2

)
=
(

2
p2

)(
L

p2

)(
M + wN

p1

)
.

Finally, noting from (3.J.23) that 2w ≡ 1 (mod p1) when m1 ≥ 3, we
have

Cp is a fourth power in H(−D)

⇔
(
K

p1

)
=
(
K

p2

)
= 1

⇔
(
K

p2

)
= 1 (by (3.J.3))

⇔
(

2
p2

)(
L

p2

)(
M + wN

p1

)
= 1 (by (3.J.24))

⇔





(
M + wN

p1

)(
4M + 2N

p2

)
= 1

if m1 = 1, where w2 − w + 1
4 (1 + pm2−1

2 ) ≡ 0 (mod p1),(
4M + 2N
p1p2

)
= 1 if m1 ≥ 3 (by (3.J.4)).

C a s e (K): D = 4pm1
1 pm2

2 , D∗ = 4pm1
1 pm2−1

2 , m1 (odd) ≥ 1, m2 ≥ 1,
p1 ≡ 3 (mod 4), p2 ≡ 1 (mod 4), (p1/p2) = 1. Let p be an odd prime such
that (p/p1) = (p/p2) = 1, so that p 6= p1, p2. From (3.2) and (3.1) we have

H2p = M2 + pm1
1 pm2−1

2 N2, H > 0, (M,N) = 1, (H, 2pp1p2) = 1,(3.K.1)

K2p = A2 + pm1
1 pm2

2 B2, K > 0, (A,B) = 1, (K, 2pp1p2) = 1.(3.K.2)
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From (3.3) we have (−D/K) = (−4pm1
1 pm2

2 /K) = 1, so that, by the law of
quadratic reciprocity, we have

(3.K.3)
(
K

p1

)
=
(
K

p2

)m2

.

From (3.K.1) and (3.K.2) we obtain

(3.K.4) (HA+KM)(HA−KM) = pm1
1 pm2−1

2 (K2N2 − p2H
2B2).

By Lemma 3.6 neither p1 nor p2 divides both of HA ±KM . By changing
the sign of A if necessary, we may suppose that p2 -HA + KM . We define
odd integers R and S by

(3.K.5) R = (HA+KM)/2rpβ1 , S = (HA−KM)/2spα2 p
γ
1 ,

where pα2 ‖HA−KM, pβ1 ‖HA+KM , pγ1 ‖HA−KM . We note from (3.K.4)
and (3.K.5) that




p1 -RS, p2 -RS,
α ≥ m2 − 1 ≥ 0, β + γ ≥ m1 ≥ 1,
min(β, γ) = 0.

Next we factor R into primes:

(3.K.6) R = ε
∏

(p2/qi)=1

qeii
∏

(p2/rj)=−1

r
fj
j ,

where ε = ±1, ei, fj are positive integers, and qi, rj are distinct odd primes.
By (3.K.1), (3.K.2), (3.K.5), (3.K.6) and Lemma 3.5(ii) we see that each fj
in (3.K.6) is even. Hence, by the law of quadratic reciprocity, we have

(3.K.7)
(
R

p2

)
=
(
ε

p2

) ∏

(p2/qi)=1

(
qi
p2

)ei
= 1.

Now, by Lemma 3.1, we have

(3.K.8) 2(KM +HA)(KM + wKN) ≡ (KM +HA+ wKN)2 (mod p2),

where

(3.K.9) w2 ≡ −pm1
1 pm2−1

2 (mod p2).

Note from (3.K.9) that we may take w = 0 when m2 ≥ 2. When m2 = 1,
the congruence for w is solvable as (−pm1

1 /p2) = (−p1/p2) = (p1/p2) = 1.
Then, from (3.K.5) and (3.K.8), we obtain

(3.K.10)
(

2
p2

)r+1(
p1

p2

)β(
R

p2

)(
K

p2

)(
M + wN

p2

)
= 1.
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Thus, as (p1/p2) = (R/p2) = 1 (see (3.K.7)), we deduce from (3.K.10) that

(3.K.11)
(
K

p2

)
=
(

2
p2

)r+1(
M + wN

p2

)
.

If p2 ≡ 1 (mod 8) then (2/p2) = 1. If p2 ≡ 5 (mod 8) then, by Lemma 3.8
with E = pm1

1 pm2
2 ≡ 3 (mod 4), E∗ = pm1

1 pm2−1
2 ≡ 3 (mod 4), E/E∗ =

p2 ≡ 5 (mod 8), r is odd so that (2/p2)r+1 = 1. Hence (3.K.11) becomes

(3.K.12)
(
K

p2

)
=
(
M + wN

p2

)
.

Finally,

Cp is a fourth power in H(−D)

⇔
(
K

p1

)
=
(
K

p2

)
= 1

⇔
(
K

p2

)
= 1 (by (3.K.3))

⇔
(
M + wN

p2

)
= 1 (by (3.K.12))

⇔





(
M + wN

p2

)
= 1 if m2 = 1, where w2 ≡ −pm1

1 (mod p2),
(
M

p2

)
= 1 if m2 ≥ 2 (by (3.K.9)).

C a s e (L): D = 4pm1
1 pm2

2 , D∗ = 4pm1−1
1 pm2−1

2 , m1 (odd) ≥ 1, m2 (even)
≥ 2, p1 ≡ p2 ≡ 3 (mod 4), (p1/p2) = 1. Let p be an odd prime such that
(p/p1) = (p/p2) = 1, so that p 6= p1, p2. From (3.2) and (3.1), we have

(3.L.1) H2p = M2+pm1−1
1 pm2−1

2 N2, H > 0, (M,N) = 1, (H, 2pp1p2) = 1,

(3.L.2) K2p = A2 + pm1
1 pm2

2 B2, K > 0, (A,B) = 1, (K, 2pp1p2) = 1.

From (3.3) we have (−D/K) = (−4pm1
1 pm2

2 /K) = 1, so that, by the law of
quadratic reciprocity, we have

(3.L.3)
(
K

p1

)
= 1.

From (3.L.1) and (3.L.2) we have

(3.L.4) (HA+KM)(HA−KM) = pm1−1
1 pm2−1

2 (K2N2 − p1p2H
2B2).

By Lemma 3.6 neither p1 nor p2 divides both of HA ±KM . By changing
the sign of A if necessary, we may suppose that p2 -HA + KM . We define
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odd integers R and S by

(3.L.5) R = (HA+KM)/2rpα1 , S = (HA−KM)/2spβ1p
γ
2 ,

where pα1 ‖HA+KM , pβ1 ‖HA−KM , pγ2 ‖HA−KM . We observe that

(3.L.6)




p1 -RS, p2 -RS,
α+ β ≥ m1 − 1 ≥ 0, γ ≥ m2 − 1 ≥ 1,
min(α, β) = 0.

Proceeding as in Case (J) (proof of (3.J.16)) with roles of p1 and p2 reversed,
we obtain

(3.L.7)
(
R

p1

)(
S

p1

)
=
(

2
p1

)r+s
(−1)γ+1.

Next we factor R into primes:

(3.L.8) R = ε
∏

(p1p2/qi)=1

qeii
∏

(p1p2/rj)=−1

r
fj
j ,

where ε = ±1, ei, fj are positive integers, and qi, rj are distinct odd primes.
By Lemma 3.5(ii) each fj is even. Hence from (3.L.8) we have
(
R

p1

)
=
(
ε

p1

) ∏

(p1p2/qi)=1

(
qi
p1

)ei
,

(
R

p2

)
=
(
ε

p2

) ∏

(p1p2/qi)=1

(
qi
p2

)ei
.

As (
p1p2

qi

)
= 1⇒

(−p1

qi

)
=
(−p2

qi

)
⇒
(
qi
p1

)
=
(
qi
p2

)

and (
ε

p1

)
=
(
ε

p2

)
= ε,

we deduce that

(3.L.9)
(
R

p1

)
=
(
R

p2

)
.

Next, by Lemma 3.1, we have

(3.L.10) 2(KM ±HA)(KM + wKN) ≡ (KM ±HA+ wKN)2 (mod p1),

where w is a solution of the congruence

(3.L.11) w2 ≡ −pm1−1
1 pm2−1

2 (mod p1).

Note that we may take w = 0 when m1 ≥ 3. When m1 = 1 the congruence
(3.L.11) is solvable as

(−pm2−1
2

p1

)
=
(−p2

p1

)
=
(
p1

p2

)
= 1.
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From (3.L.10) we obtain
(

2
p1

)(
KM ±HA

p1

)(
K

p1

)(
M + wN

p1

)
= 1.

Recall by (3.L.6) that either α = 0 or β = 0. Taking the + sign in the above
equation if α = 0 and the − sign if β = 0, we derive, using (3.L.3) and
(3.L.5),

(3.L.12)





(
2
p1

)r+1(
R

p1

)
=
(
M + wN

p1

)
if α = 0,

−
(

2
p1

)s+1(
p2

p1

)γ(
S

p1

)
=
(
M + wN

p1

)
if β = 0.

Appealing to (3.L.7) in the case β = 0, we see from (3.L.12) that in both
cases we have

(3.L.13)
(
R

p1

)
=
(

2
p1

)r+1(
M + wN

p1

)
.

Further, by (3.L.4), we have (as m2 ≥ 2)

2(HA+KM)KM ≡ (HA+KM)2 (mod p2),

so that (
2
p2

)(
HA+KM

p2

)(
K

p2

)(
M

p2

)
= 1.

Then, appealing to (3.L.5), we obtain
(

2
p2

)r+1(
p1

p2

)α(
R

p2

)(
K

p2

)(
M

p2

)
= 1,

so that (as (p1/p2) = 1 and (R/p1) = (R/p2), see (3.L.9)) we have
(
K

p2

)
=
(

2
p2

)r+1(
M

p2

)(
R

p1

)
,

and thus by (3.L.13),
(
K

p2

)
=
(

2
p1p2

)r+1(
M

p2

)(
M + wN

p1

)
.

If p1p2 ≡ 1 (mod 8) then (2/p1p2) = 1. If p1p2 ≡ 5 (mod 8) then, by
Lemma 3.8 with E = pm1

1 pm2
2 ≡ 3 (mod 4), E∗ = pm1−1

1 pm2−1
2 ≡ 3

(mod 4), E/E∗ = p1p2 ≡ 5 (mod 8), r is odd, so that (2/p1p2)r+1 = 1.
Hence we have

(3.L.14)
(
K

p2

)
=
(
M + wN

p1

)(
M

p2

)
.
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Finally,

Cp is a fourth power in H(−D)

⇔
(
K

p1

)
=
(
K

p2

)
= 1

⇔
(
K

p2

)
= 1 (by (3.L.3))

⇔
(
M + wN

p1

)(
M

p2

)
= 1 (by (3.L.14))

⇔





(
M + wN

p1

)(
M

p2

)
= 1, if m1 = 1, where w2 ≡ −pm2−1

2 (mod p1),
(
M

p1p2

)
= 1 if m1 ≥ 3 (by (3.L.14)).

4. Predictive criteria when H(−D) ' Z4. The class number 4 prob-
lem for imaginary quadratic fields was solved by Steven Arno [1]. It can be
deduced from this work that there are exactly fifty values of D (> 0) for
which H(−D) ' Z4. For these values of D, we tabulate (pp. 266–269) the
predictive criteria given by Theorem 2 with specific numerical values for H
and w. For some discriminants the criterion can be simplified, for example
by removing a quadratic residue from a Legendre symbol or by writing the
product of two Jacobi symbols as one. For example the latter is possible
when D = 63, as

(
M + 3N

7

)(
4M + 2N

3

)
=
(
M − 4N

7

)(
M − 4N

3

)

=
(
M − 4N

21

)
.

For these fifty values of D the predictive criterion determines which form
class represents the prime p as the principal genus contains exactly two form
classes. For most of these, the predictive criterion is already known, and a
reference is given.

The fifty discriminants in the table include representatives of all cases
except (F). We conclude this section with an example illustrating case (F).

Example. D = 392, D∗ = 28. Here h(−392) = 8, h(−28) = 1. The
principal genus of discriminant −392 contains the four form classes [1, 0, 98],
[2, 0, 49], [9,±2, 11], of which the first two are fourth powers and the other
two are not (see the table on p. 270).
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p = M2 + 7N2 Representation of p by(−1)N
( −2
M+N

)(
M
7

)
p M N a form of discriminant −392

11 2 1 −1 11 = 9 · 02 + 2 · 0 · 1 + 11 · 12

43 6 1 −1 43 = 9 · 22 + 2 · 2(−1) + 11(−1)2

67 2 3 +1 67 = 2 · 32 + 49 · 12

107 10 1 +1 107 = 32 + 98 · 12

5. Successive predictions. If the pair of discriminants (D,D∗) meets
the conditions of one of the six cases (A), (B), (D), (G), (I), (K) studied
in Theorem 2, then the pair (λD,D) (where λ = D/D∗) also satisfies the
conditions of the same case. For these six cases we can apply Theorem 2
t times to determine whether or not a form class in the principal genus of
H(−λtd) representing p is a fourth power.

For example consider case (G) with p1 = 5, and take p = 29. We use
Theorem 2 three times to determine whether a form class in H(−16 · 53) =
H(−2000) representing 29 is a fourth power or not. From 29 = 52 + 4 · 12,
((5 + 1 · 1)/5) = 1 (w = 1 is a solution of w2 ≡ −4 (mod 5)), we see
that 29 is represented by the form x2 + 20y2, as the form class [1, 0, 20] is
the only fourth power in H(−16 · 5) = H(−80). Indeed 29 = 32 + 20 · 12.
Now (3/5) = −1, so that 29 is represented by the form 4x2 + 25y2, as
the form class [4, 0, 25] is the only square which is not a fourth power in
H(−16 ·52) = H(−400). Indeed, 29 = 4 ·12 +25 ·12. In order to continue we
must determine a positive integer H coprime with 2 ·5 ·29 such that 29H2 is
represented by the form x2 + 100y2. As [8,±4, 13] are the two form classes
in the non-principal genus of H(−400), a suitable choice is H = 13. We find
132 · 29 = 12 + 100 · 72. Now (1/5) = 1, so that 29 is represented by one or
two of the forms x2 + 500y2, 21x2 ± 10xy + 25y2, 24x2 ± 20xy + 25y2, as
the form classes corresponding to these forms are precisely those which are
fourth powers in H(−16 · 53) = H(−2000). However, Theorem 2 does not
tell us which of these forms actually represent 29.

Once it has been determined, by Theorem 2 or otherwise, whether a
form class in the principal genus of discriminant −D representing p is a
fourth power or not, Theorem 3 tells us how to determine directly whether
a form class in the principal genus of discriminant −λtD representing p is
a fourth power or not, without determining the sequence of representations
of p needed to apply Theorem 2.

Theorem 3. Let p be an odd prime such that χ1(p) = χ2(p) = 1, where
χ1, χ2 are defined at the beginning of Section 3. Let (D,D∗) be a pair of
discriminants as defined in cases (A), (B), (D), (G), (I), (K) of Theorem 2.
Set λ = D/D∗. For t = 0, 1, 2, . . . let Cp(t) denote a form class of H(−λtD)
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which represents p. Define the character

Ψp(t) =





1 if Cp(t) is a fourth power in H(−λtD),
−1 if Cp(t) is a square but not a

fourth power in H(−λtD).

Then

Ψp(t)
Ψp(0)

=





(−1)t(p−1)/8 in case (A), where m ≥ 7,(
p

p1

)t

4
in cases (B), (D), (G), where m1 ≥ 1,

(
p

p2

)t

4
in cases (I), (K), where m2 ≥ 1.

P r o o f. C a s e (A). Let D = 2m, m ≥ 7, and let t denote a pos-
itive integer. As (−1/p) = (2/p) = 1, applying (3.2) with discriminant
−2t+m−1 = −2t−1D shows that there are integers H, M , N such that

(5.1) H2p = M2 + 2t+m−3N2, H > 0, (M,N) = 1, (H, 2p) = 1.

By (3.3) we have (−2t+m−1/H) = 1 so that

(5.2)
(−1
H

)
=
(

2
H

)t+m−1

.

Reducing (5.1) modulo 16, we obtain, as t+m− 3 > m− 3 ≥ 4,

(5.3) H2p ≡M2 (mod 16).

By Theorem 2 (Case (A)),

Cp(t) is a fourth power in H(−2tD)
⇔ (2/M) = 1
⇔ M ≡ ±1 (mod 8)
⇔ M2 ≡ 1 (mod 16)
⇔ H2p ≡ 1 (mod 16) (by (5.3))
⇔ H ≡ ±1 (mod 8), p ≡ 1 (mod 16) or

H ≡ ±3 (mod 8), p ≡ 9 (mod 16)
⇔ (2/H) = 1, p ≡ 1 (mod 16) or (2/H) = −1, p ≡ 9 (mod 16)
⇔ (by (5.2)) H is represented by a square in H(−2t−1D) if p ≡ 1 (mod 16),

or H is not represented by a square in H(−2t−1D) if p ≡ 9 (mod 16)
⇔ p is represented by a fourth power in H(−2t−1D) if p ≡ 1 (mod 16), or

p is represented by a square which is not a fourth power in H(−2t−1D)
if p ≡ 9 (mod 16)

⇔ Cp(t−1) is a fourth power in H(−2t−1D) if p ≡ 1 (mod 16), or Cp(t−1)
is a square but not a fourth power in H(−2t−1D) if p ≡ 9 (mod 16),
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and thus

Ψp(t) = 1⇔ Ψp(t− 1) = 1, p ≡ 1 (mod 16) or

Ψp(t− 1) = −1, p ≡ 9 (mod 16)

⇔ Ψp(t− 1) = (−1)(p−1)/8.

Hence we have

Ψp(t) = (−1)(p−1)/8Ψp(t− 1) (t ≥ 1)

and so

Ψp(t) = (−1)t(p−1)/8Ψp(0) (t ≥ 0).

C a s e s (B), (D), (G). Let D = 2µpm1
1 , where m1 ≥ 1,

µ =





2, case (B),
3, case (D),
4, case (G),

and {
p1 (prime) ≡ 1 (mod 8), cases (B), (D),
p1 (prime) ≡ 1 (mod 4), case (G).

Here

χ1(r) =
(−2µ

r

)
, χ2(r) =

(
r

p1

)
.

Let t denote a positive integer. As χ1(p) = χ2(p) = 1, from (3.2) with
discriminant −pt−1

1 D, there exist integers H, M , N such that

(5.4) H2p = M2 + (pt−1
1 D/4)N2, H > 0, (M,N) = 1, (H, 2pp1) = 1.

By (3.3) and the law of quadratic reciprocity, we have

1 =
(−pt−1

1 D

H

)
=
(−2µpt+m1−1

1

H

)

= χ1(H)
(
p1

H

)t+m1−1

= χ1(H)
(
H

p1

)t+m1−1

,

that is,

(5.5) χ1(H) = χ2(H)t+m1−1.

From (5.4) we have

H2p ≡M2 (mod p1),

so that

(5.6)
(
H

p1

)(
p

p1

)

4
=
(
M

p1

)
.

By Theorem 2 (cases (B), (D), (G)),
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Cp(t) is a fourth power in H(−pt1D)

⇔
(
M

p1

)
= 1

⇔
(
H

p1

)(
p

p1

)

4
= 1 (by (5.6))

⇔
(
p

p1

)

4
= 1, χ2(H) = 1 or

(
p

p1

)

4
= −1, χ2(H) = −1

⇔ (by (5.5)) H is represented by a square in H(−pt−1
1 D) if (p/p1)4 = 1, or

H is not represented by a square in H(−pt−1
1 D) if (p/p1)4 = −1

⇔ p is represented by a fourth power in H(−pt−1
1 D) if (p/p1)4 = 1, or p

is represented by a square which is not a fourth power in H(−pt−1
1 D)

if (p/p1)4 = −1
⇔ Cp(t− 1) is a fourth power in H(−pt−1

1 D) if (p/p1)4 = 1, or Cp(t− 1) is
a square but not a fourth power in H(−pt−1

1 D) if (p/p1)4 = −1,

and thus

Ψp(t) = 1⇔ Ψp(t− 1) = 1,
(
p

p1

)

4
= 1 or

Ψp(t− 1) = −1,
(
p

p1

)

4
= −1

⇔ Ψp(t− 1) =
(
p

p1

)

4
.

Hence we have

Ψp(t) =
(
p

p1

)

4
Ψp(t− 1) (t ≥ 1)

and so

Ψp(t) =
(
p

p1

)t

4
Ψp(0) (t ≥ 0).

C a s e (I). Let D = pm1
1 pm2

2 , m1 (odd) ≥ 1, m2 ≥ 1, p1 ≡ 3 (mod 4),
p2 ≡ 1 (mod 4), (p1/p2) = 1. Let t denote a positive integer. As (p/p1) =
(p/p2) = 1, from (3.2) with discriminant −pt−1

2 D, there exist integers H,
M , N such that

(5.7) H2p = M2 +MN + 1
4 (1 + pm1

1 pt+m2−1
2 )N2,

H > 0, (M,N) = 1, (H, 2pp1p2) = 1.

By (3.3) we have

1 =
(−pt−1

2 D

H

)
=
(−pm1

1 pt+m2−1
2

H

)
=
(−p1p

t+m2−1
2

H

)
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=
(−p1

H

)(
p2

H

)t+m2−1

=
(
H

p1

)(
H

p2

)t+m2−1

,

so that (
H

p1

)
=
(
H

p2

)t+m2−1

.

From (5.7) we have

16H2p = (4M + 2N)2 + 4pm1
1 pt+m2−1

2 N2.

Hence 24H2p ≡ (4M + 2N)2 (mod p2) so that
(
H

p2

)(
p

p2

)

4
=
(

4M + 2N
p2

)
.

The rest of the proof now proceeds as in the previous cases.

C a s e (K). Let D = 4pm1
1 pm2

2 , m1 (odd) ≥ 1, m2 ≥ 1, p1 ≡ 3 (mod 4),
p2 ≡ 1 (mod 4), (p1/p2) = 1. Let t denote a positive integer. As (p/p1) =
(p/p2) = 1, from (3.2) with discriminant −pt−1

2 D, there exist integers H,
M , N such that

(5.8) H2p = M2 +(pt−1
2 D/4)N2, H > 0, (M,N) = 1, (H, 2pp1p2) = 1.

Appealing to (3.3), we obtain as in Case (I),
(
H

p1

)
=
(
H

p2

)t+m2−1

.

From (5.8) we have H2p ≡M2 (mod p2) so that
(
H

p2

)(
p

p2

)

4
=
(
M

p2

)
.

The rest of the proof now proceeds as in the previous cases.

Returning to the example discussed at the beginning of this section, as 29
is represented by the principal form of discriminant −80 (29 = 32 + 20 · 12),
Ψ29(0) = 1. Then, by Theorem 3, for t ≥ 0 we have

Ψ29(t) =
(

29
5

)t

4
Ψ29(0) = (−1)t.

Thus 29 is represented by a form class in H(−5t ·80) which is a fourth power
if t is even and a square but not a fourth power if t is odd.

6. Double prediction. We have applied Dirichlet’s technique to deter-
mine predictive criteria when H2(−D) ' Z2k , k ≥ 2. However the method
is also applicable to certain types of discriminants −D for which the 2-rank
of H(−D) is 2 or more.
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We illustrate this for the following two types of discriminants −D:

D = 4tqr, q and r (primes) ≡ 1 (mod 8), (q/r) = 1, t = 1 or 2.

By Lemma 2.1 the 2-rank of H(−D) is 2. Further, by the Rédei–Reichardt
theorem [17], the 4-rank of H(−D) is also 2. Thus

H(−4tqr) = G1 ×G2 ×G3,

where G1 and G2 are cyclic subgroups of H(−4tqr) of orders 2k (k ≥ 2)
and 2l (l ≥ 2), respectively, and G3 is a subgroup of H(−4tqr) of odd
order. Let U and V be generators of G1 and G2 respectively. The subgroup
H2(−4tqr) in H(−4tqr) is the principal genus. The four genera of H(−4tqr)
are the cosets H2(−4tqr), UH2(−4tqr), V H2(−4tqr), UV H2(−4tqr). We
order the generic characters of H(−4tqr) as follows: (∗/q), (∗/r), (−t/∗). Let
FH2(−4tqr) be the genus among UH2(−4tqr), V H2(−4tqr), UV H2(−4tqr)
with character values +−−. Let GH2(−4tqr) be the genus with character
values −+−. Thus the 4 genera are H2(−4tqr), FH2(−4tqr), GH2(−4tqr),
FGH2(−4tqr) with character values +++, +−−, −+−, −−+ respectively.

Let H4(−4tqr) denote the subgroup of fourth powers in H2(−4tqr). We
have the coset decomposition H2(−4tqr) = H4(−4tqr) ∪ F 2H4(−4tqr) ∪
G2H4(−4tqr) ∪ F 2G2H4(−4tqr).

By the law of quadratic reciprocity, we have (−r/q) = (−q/r) = 1, and
therefore (−tr/q) = (−tq/r) = 1. Hence we may define integers wq and wr
such that

w2
q ≡ −tr (mod q), w2

r ≡ −tq (mod r).

Theorem 4. Let t, q, r, F , G, wq, wr be as defined above. Let p be a
prime satisfying (

p

q

)
=
(
p

r

)
=
(−t
p

)
= 1,

so that there are integers H, M , N , H ′, M ′, N ′ with

H2p = M2 + tqN2, H > 0, (M,N) = 1, (H, 2pqr) = 1,(6.1)

H ′2p = M ′2 + trN ′2, H ′ > 0, (M ′, N ′) = 1, (H ′, 2pqr) = 1.(6.2)

Then p is represented by form class(es) from



H4(−4tqr)⇔ (M ′ + wqN
′/q) = (M + wrN/r) = 1,

F 2H4(−4tqr)⇔ (M ′ + wqN
′/q) = 1, (M + wrN/r) = −1,

G2H4(−4tqr)⇔ (M ′ + wqN
′/q) = −1, (M + wrN/r) = 1,

F 2G2H4(−4tqr)⇔ (M ′ + wqN
′/q) = (M + wrN/r) = −1.

P r o o f. As (p/q) = (p/r) = (−t/p) = 1, p is represented by a form class
Cp (and its inverse C−1

p ) in the principal genus H2(−4tqr). Let Sp be a class
such that S2

p = Cp. Let K be a positive integer coprime with 2pqr which
is represented primitively by the form class S−1

p . Then K2p is represented
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primitively by the class (S−1
p )2S2

p = I the principal class of H(−4tqr). Hence
there exist integers A and B such that
(6.3) K2p = A2 + tqrB2, (A,B) = 1, (K, 2pqr) = 1.
From (6.1) and (6.3) we obtain
(6.4) (HA+KM)(HA−KM) = tq(K2N2 − rH2B2).
By Lemma 3.6, r does not divide both of HA±KM . Choose the sign of M
so that r -HA+KM . Factoring HA+KM into primes, we have

HA+KM = ε2α
∏

(r/qi)=1

qeii
∏

(r/rj)=−1

r
fj
j ,

where ε = ±1, α is a nonnegative integer, ei, fj are positive integers, and
qi, rj are distinct odd primes. By Lemma 3.5(ii) each fj is even. Thus, by
the law of quadratic reciprocity, we have(

HA+KM

r

)
=
(
ε

r

)(
2
r

)α ∏

(r/qi)=1

(
qi
r

)ei ∏

(r/rj)=−1

(
rj
r

)fj
= 1.

Similarly we can choose the sign of M ′ so that q -H ′A+KM ′, and deduce(
H ′A+KM ′

q

)
= 1.

Next, by Lemma 3.1, we have{
2(KM +HA)(KM + wrKN) ≡ (KM +HA+ wrKN)2 (mod r),
2(KM ′ +H ′A)(KM ′ + wqKN

′) ≡ (KM ′ +H ′A+ wqKN
′)2 (mod q),

so that (
K

r

)
=
(
M + wrN

r

)
,

(
K

q

)
=
(
M ′ + wqN

′

q

)
.

If t = 1, then the four ambiguous classes are [1, 0, qr], [q, 0, r],
[
1, 1, 1

2 (1+qr)
]
,[

2q, 2q, 1
2 (q+r)

]
. If t = 2, the four ambiguous classes are [1, 0, 2qr], [2, 0, qr],

[q, 0, 2r], [2q, 0, r]. All these ambiguous classes belong to the principal genus
of H(−4tqr). Then p is represented by form class(es) in H4(−4tqr) ∪
F 2H4(−4tqr)
⇔ Cp = J4 or F 2J4 for some form class J in H(−4tqr)

⇔ S2
p = J4 or F 2J4

⇔ Sp = LJ2 or LFJ2, where L is an ambiguous class, that is, L2 = I,

⇔ Sp = J2
1 or FJ2

1

⇔ K is represented by form class(es) in H2(−4tqr) ∪ FH2(−4tqr)

⇔
(
K

q

)
= 1

⇔
(
M ′ + wqN

′

q

)
= 1.
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Similarly p is represented by form class(es) in H4(−4tqr)∪G2H4(−4tqr) if
and only if (M + wrN/r) = 1. Combining these two assertions we deduce
the double prediction criterion of the theorem. It is readily verified that the
choice of signs of M and M ′ does not affect the values of the Legendre
symbols appearing in the assertion of the theorem.

Example. t = 1, q = 73 ≡ 1 (mod 8), r = 89 ≡ 1 (mod 8), (q/r) = 1,
wq = 35, wr = 4, H(−4tqr) = H(−25988) = G1 ×G2, where G1 (resp. G2)
is a cyclic group of order 8 generated by the form class F = [27,−16, 243]
(resp. G = [87, 82, 94]). The genera of H(−4tqr) are:

( ∗
73

) ( ∗
89

) (−1
∗
)

H2(−4tqr) + + +

FH2(−4tqr) + − −
GH2(−4tqr) − + −

FGH2(−4tqr) − − +

Further H2(−4tqr) comprises sixteen form classes subdivided as follows:

H4(−4tqr) = {[1, 0, 6497], [2, 2, 3249], [73, 0, 89], [81, 16, 81]},
F 2H4(−4tqr) = {[9,±2, 722], [18,±2, 361]},
G2H4(−4tqr) = {[57,±40, 121], [69,±64, 109]},

F 2G2H4(−4tqr) = {[57,±2, 114], [69,±28, 97]}.

H2p H ′2p
p ε′ ε Representation of p

H M N H ′ M ′ N ′

97 7 64 3 3 28 1 −1 −1 97 = 69 · 02 + 28 · 0 · 1 + 97 · 12

173 1 10 1 5 63 2 −1 −1 173 = 57 · 12 + 2 · 1 · 1 + 114 · 12

257 7 89 8 5 27 8 −1 +1 257 = 69 · 22 + 64 · 2 · (−1) + 109 · (−1)2

809 7 32 23 5 72 13 +1 −1 809 = 9 · 32 + 2 · 3 · 1 + 722 · 12

1013 7 202 11 7 81 22 +1 +1 1013 = 73 · 32 + 89 · 22

H2p = M2 + 73N2, H ′2p = M ′2 + 89N ′2, ε′ =
(
M ′+35N ′

73

)
, ε =

(
M+4N

89

)
.

It remains to investigate further the possibilities of Dirichlet’s technique
in determining predictive criteria.
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