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1. Introduction. The motivation for this work comes from the fact
that x2 + y2 + 2z2 represents all odd positive integers. This seems to me
to be of special interest among results on ternary forms; for instance, in
1785 Legendre remarked that it could be regarded as a strengthening of
Lagrange’s four squares theorem [2, p. 282]. I therefore thought it would be
a useful step forward to determine all the positive ternary forms that share
this property.

According to my search of the literature, this question has not been pre-
viously raised. There is, however, a similar project of finding all positive
quaternary forms that represent all positive integers; this started with Ra-
manujan [6] and, after many intervening papers, culminated with Willerd-
ing [7].

In this paper I report partial progress on the problem. There are at most
23 such forms—19 for sure and 4 plausible candidates; they are listed at the
end of the paper. The 4 candidates do represent all odd numbers up to 16383
(= 214 − 1). I am greatly indebted to Noam Elkies who kindly programmed
and ran off the computation.

For 18 of the 19 forms more is true: they are regular, i.e., each represents
all numbers (even as well as odd) represented by its genus. (See [4] for
background on regular forms.) For 15 of the 18 this is true simply because
each is alone in its genus. I believe that regularity of the 3 other forms is
proved here for the first time; the proofs appear in Section 3. An ad hoc
proof that the 19th form represents all odd positive integers is presented in
Section 4.

In addition I shall mention three forms that I am calling “near misses”:

x2 + y2 + 9z2 + xy + xz, x2 + 2y2 + 5z2 + xz + 2yz, and

x2 + 3y2 + 5z2 + xy + yz.

Each seems to represent all odd positive integers with exactly one exception.
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More precisely, up to 16383 they represent all odd positive integers except
5, 13, and 17, respectively.

R e m a r k s. (a) For the computations on the near misses I am also in-
debted to Noam Elkies. (b) I was not looking for near misses and so there
may be others. (c) For positive diagonal quaternary forms Halmos [3] (with
a final touch added by Pall [5]) found all near misses, relative to all positive
integers. (d) I have additional information on the last of the near misses
(call it k) which I mention without proof. First, k represents all odd posi-
tive integers congruent to 0 or 1 (mod 3). Second, let A be an odd positive
integer congruent to 2 (mod 3). Then k represents A if and only if A can
be written x2 + 2y2 + 3z2 with z prime to 3. (Of course, both statements
fail for A = 17 and otherwise hold up to 16383.)

2. Modus Operandi. The investigation involved a fair amount of hand
computation which, I feel, is unsuitable for public scrutiny. However, I shall
outline the procedure. To diminish the possibility of error I did the work
twice, using different methods. In the first method the assumption that the
form represents the first few odd numbers produced a reasonably short list
of eligible discriminants. In the second method an a priori upper bound for
the discriminant was found and all forms up to this bound were examined.
I am indebted to John Hsia who sent me a copy of the relevant portion of
the massive table [1].

First the forms were tested for representing all odd positive integers
locally; this is an easy thing to check. If a form passed this test and was
alone in its genus it was forthwith mounted as a specimen. It turned out
that 8 forms were left. As noted above, I proved that 3 are regular and gave
a special argument for a fourth. The remaining 4 resisted my attacks and
remain in limbo. I hope that their fate will be settled some day.

3. Three proofs of regularity. The proofs follow a single plan. In each
case there is one other form in the genus; I write f for the target form and
g for its genus mate. Let A be an integer represented by the genus. If g does
not represent A, then f does. So I may assume that g represents A.

I. f = x2 +3y2 +3z2 +xy+3yz (number 13 on the list), g = x2 +xy+y2

+8z2. It is known that the binary forms x2 +xy+y2 and x2 +3y2 represent
exactly the same numbers. Hence we can replace g by x2 + 3y2 + 8z2. Thus
there exist u, v, w with A = u2 + 3v2 + 8w2. Set x = u − w, y = 2w,
z = v−w. Then f(x, y, z) = A; I leave this short computation to the reader.

II. f = x2 + 3y2 + 3z2 + xy + yz (number 15 on the list), g = x2 + y2 +
11z2 + xy + xz. If g(u, v, w) = A we have

(1) 12A = (3u+ 2w)2 + 3(u+ 2v)2 + 128w2,
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another computation that I omit. The following is known: if p2 + 3q2 is a
multiple of 4 then (p2 + 3q2)/4 can also be written as r2 + 3s2. On applying
this to (1) and dividing by 4 we get

(2) 3A = r2 + 3s2 + 32w2.

Now r2 + 32w2 is divisible by 3 and hence so is r2 − w2. By changing
the sign of w, if necessary, we arrange that r − w is divisible by 3. Set
x = s − w, y = 2w, z = (r − w)/3. Then f(x, y, z) = A. This time I give a
little detail:

f(x, y, z) = (s− w)2 + 3(2w)2 + 3[(r − w)/3]2

+ 2w(s− w) + 2w(r − w)/3,

3f(x, y, z) = 3(s2 − 2sw + w2) + 36w2 + r2 − 2rw + w2

+ 6(sw − w2) + 2rw − 2w2

= r2 + 3s2 + 32w2,

which is 3A, by (2).
III. f = x2 + 3y2 + 5z2 + xz+ yz (number 19 on the list), g = x2 + y2 +

19z2 +xy+xz. The details are nearly the same as in II and I shall be brief.
With g(u, v, w) = A we have

12A = 3(u+ 2v)2 + (3u+ 2w)2 + 224w2, 3A = r2 + 3s2 + 56w2.

With w changed, if necessary, to make r−w divisible by 3 we set x = s−w,
y = (r − w)/3, z = 2w. Then

3f(x, y, z) = 3(s− w)2 + (r − w)2 + 15(2w)2 + 6w(s− w) + 2w(r − w)

= r2 + 3s2 + 56w2 = 3A.

4. Form number 18. h = x2 +3y2 +5z2 +xy+xz−yz. In the following
proof no use is made of the other form in the genus of h.

First we present a lemma. This lemma is surely well known; for lack of
a reference we include a proof.

Lemma. If a nonzero integer r is divisible by 5 and expressible as a sum
of two squares then r can be written p2 + q2 with both p and q prime to 5.

P r o o f. The integer s = r/5 is also a sum of two squares. We claim that
s can be written s = t2 + u2 with at least one of t, u prime to 5. For: if s
is prime to 5, this is automatic, and if s is divisible by 5, we can arrange to
have both t and u prime to 5 by induction. Suppose for definiteness that u
is prime to 5. Change the sign of u, if necessary, so that t 6≡ 2u (mod 5).
We have

(t− 2u)2 + (2t+ u)2 = 5(t2 + u2) = 5s = r.

Note that t− 2u is prime to 5. It follows that 2t+ u is also prime to 5.
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We turn our attention to h. The first step is going to be a switch to an
equivalent form; the version at hand is the canonical form as given in [1]
but it will be more convenient to use a version with one of the cross product
terms vanishing. We set x = X + Y , y = Y , z = Z. The form becomes

(X +Y )2 + 3Y 2 + 5Z2 + (X +Y )Y +XZ = X2 + 5Y 2 + 5Z2 + 3XY +XZ.

We change notation and write h = x2 + 5y2 + 5z2 + 3xy + xz.
Let A be an odd positive integer. Our task is to prove that h represents A.

We can assume that A is not divisible by 25, for if it is, h represents A/25
by induction and we need only multiply the variables by 5. (Of course, if
it helped, we could assume A to be square-free.) It is known that 2A is
representable as a sum c2 + d2 + e2 of three squares. They cannot all be
divisible by 5; say c is prime to 5. We cannot have d = e = 0, for then
2A would be a square, whereas it is twice an odd number. The lemma is
applicable to r = 10(d2 + e2) and we write r = a2 + b2 with a and b prime
to 5. We have

(3) 20A = a2 + b2 + 10c2

with a, b, and c all prime to 5. The next claim is that a, b, and c all have the
same parity. For if c is odd, a2 + b2 ≡ 2 (mod 4) by (3) and a and b have to
be odd; if c is even, a2 + b2 ≡ 0 (mod 4) and a and b have to be even. Note
next that each of a2, b2, and c2 is congruent to ±1 mod 5. Furthermore,
since a2 + b2 ≡ 0 (mod 5), one of a2, b2 is congruent to 1 and the other
to −1. Interchange a and b, if necessary, so that a2 ≡ c2, b2 ≡ −c2 (mod 5).
Change the sign of a, if necessary, so as to achieve a ≡ c (mod 5). We have
b2 − 9c2 ≡ 0 (mod 5). Change the sign of b, if necessary, so as to achieve
b ≡ 3c (mod 5). We now have a− c and b− 3c both divisible by 10. We are
at last ready to assign the values of x, y, and z: x = c, y = (b − 3c)/10,
z = (a− c)/10. This final computation is going to be left to the reader: we
have 20h(x, y, z) = the right side of (3).

5. The list. It takes only a few seconds to discuss diagonal forms. Three
forms emerge: the first three on the list. It takes just a little longer to handle
the more general case of forms with even cross product coefficients: the next
two forms emerge. Serious business began when I attacked forms with at
least one odd cross product coefficient. The survivors are listed in order of
increasing discriminant; the discriminants are the numbers in parentheses.
I am following the normalization of the discriminant used in [1].

1. x2 + y2 + 2z2

2. x2 + 2y2 + 3z2

3. x2 + 2y2 + 4z2
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4. x2 + 3y2 + 2yz + 3z2

5. x2 + 3y2 + 2yz + 5z2

6. (2) x2 + y2 + z2 + xy + xz

7. (6) x2 + xy + y2 + 2z2

8. (8) x2 + y2 + 3z2 + xy + xz

9. (10) x2 + y2 + 3z2 + xz + yz

10. (14) x2 + y2 + 5z2 + xy + xz

11. (18) x2 + 2y2 + 3z2 + xz + 2yz

12. (22) x2 + 2y2 + 3z2 + xz

13. (24) x2 + 3y2 + 3z2 + xy + 3yz

14. (30) x2 + 3y2 + 3z2 + xy + xz

15. (32) x2 + 3y2 + 3z2 + xy + yz

16. (40) x2 + 3y2 + 4z2 + xy + 2yz

17. (46) x2 + 3y2 + 5z2 + xy + 3yz

18. (50) x2 + 3y2 + 5z2 + xy + xz − yz
19. (56) x2 + 3y2 + 5z2 + xz + yz

Candidates

20. (38) x2 + 2y2 + 5z2 + xz

21. (62) x2 + 3y2 + 6z2 + xy + 2yz

22. (72) x2 + 3y2 + 11z2 + xy + 7yz

23. (74) x2 + 3y2 + 7z2 + xy + xz
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