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1. Introduction and results. In the last years arithmetic properties
of holomorphic functions were studied which satisfy a functional equation
of the shape

(1) P (z, f(z), f(T (z))) = 0,

where P (z, u, w) is a polynomial with coefficients in Q, the field of all alge-
braic numbers, and T (z) is an algebraic function. This generalizes investi-
gations of Mahler [M1], [M2], [M3], which dealt with functional equations
of the form

(2) f(zd) = R(z, f(z))

with d ∈ N, d ≥ 2, and a rational function R(z, u) (resp. generalizations of
these functional equations to several variables and several functions). Cer-
tain cases of (1) were studied extensively by different authors. For a survey
of results about the transformations considered by Mahler see [M4], [K1],
[L], [LP]. If T (z) is a polynomial, the transcendence of f(α) for algebraic α
was proved by Nishioka [Ni1]. This was generalized to algebraic functions
T (z) by Becker in [B3]. Applications to Böttcher functions were given by
Becker and Bergweiler [BB], and transcendence measures for these functions
can be found in [B4] (see also [NT]). The algebraic independence of several
values f1(α), . . . , fm(α) was proved by Becker [B2] for certain rational trans-
formations T (z) under additional technical assumptions.

Since a general zero order estimate for functions satisfying (2) with zd

replaced by rational functions T (z) was proved in [T3], we will give an ap-
plication of the zero order estimate in this paper and derive measures for the
algebraic independence of the values of the functions considered by Becker
in [B2]. Furthermore we give lower bounds for the transcendence degree of
Q(f1(α), . . . , fm(α)) over Q, if f1, . . . , fm satisfy functional equations with
more general rational transformations T (z).
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Theorem 1. Let f1, . . . , fm : U → C be holomorphic in a neighborhood
U of ω ∈ Ĉ, algebraically independent over C(z), and suppose the power
series coefficients of f1, . . . , fm in the expansion at ω are algebraic. Suppose
that T (z) = T1(z)/T2(z) with T1, T2 ∈ Q[z], deg T = max{deg T1,deg T2} =
d ≥ 2, ω is a fixed point of T of order ordω T = d, and f = (f1, . . . , fm)
satisfies the functional equation

(3) a(z)f(z) = A(z)f(T (z)) +B(z),

where A(z) is a regular m×m matrix with entries in Q[z], B(z) ∈ (Q[z])m,
and a(z) ∈ Q[z]. Let α ∈ U be an algebraic number with limk→∞ T k(α) = ω,
where T k(α) denotes the k-th iterate of T at α, and suppose for k ∈ N0

that T k(α) ∈ U \ {ω,∞}, and T k(α) is neither a zero of a(z) nor a zero of
detA(z). Then for each polynomial Q ∈ Z[y1, . . . , ym]\{0} with degQ ≤ D,
where degQ denotes the total degree of Q in all variables, and H(Q) ≤ H,
where H(Q) denotes the height of Q, i.e. the maximum of the moduli of the
coefficients of Q, the inequality

|Q(f(α))| > exp(−c1Dm(Dm+2 + logH))

holds with a constant c1 ∈ R+ depending only on f and α.

R e m a r k s. (i) For ω = 0, T (z) = p(z−1)−1 with a polynomial p ∈ Q[z],
and a diagonal matrix A(z), Theorem 1 is the quantitative analogue of the
theorem in [B2], where the algebraic independence of the function values
under consideration was proved.

(ii) With T (z) = zd, d ∈ N, d ≥ 2, and ω = 0, Theorem 1 includes an
earlier result of Becker (Theorem 1 in [B1]) and the improvement of Nishioka
(Theorem 1 in [Ni2]).

Theorem 2. Let f1, . . . , fm : U → C be holomorphic in a neighborhood
U of ω ∈ Ĉ, algebraically independent over C(z), and suppose the power
series coefficients of f1, . . . , fm in the expansion at ω are algebraic. Suppose
that T (z) = T1(z)/T2(z) with T1, T2 ∈ Q[z], deg T = d, ω is a fixed point of
T with ordω T = δ ≥ 2, and f = (f1, . . . , fm) satisfies

a(z)f(z) = A(z)f(T (z)) +B(z),

where A(z) is a regular m×m matrix with entries in Q[z], B(z) ∈ (Q[z])m,
and a(z) ∈ Q[z]. Let α ∈ U be an algebraic number with limk→∞ T k(α) = ω,
and suppose for k ∈ N0 that T k(α) ∈ U \ {ω,∞}, and T k(α) is neither a
zero of a(z) nor a zero of detA(z). Let m0 be the greatest integer satisfying

m0 < m

(
2 log δ
log d

− 1
)

+
log δ
log d

.

Then
trdegQQ(f(α)) ≥ m0.
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Corollary 1. Suppose the assumptions of Theorem 2 are fulfilled with
d < δ1+1/2m. Then f1(α), . . . , fm(α) are algebraically independent. In par-
ticular , for m = 1 and d < δ3/2 we have f(α) 6∈ Q.

R e m a r k. The case m = 1 is Becker’s result in [B3] in the special case
of rational transformations and the functional equation (3).

Theorem 3. Let f1, . . . , fm : U → C be holomorphic in a neighborhood U
of ω ∈ C, algebraically independent over C(z), and suppose f1(ω), . . . , fm(ω)
are algebraic. Suppose that T ∈ Q[z], deg T = d, ω is a fixed point of T with
ordω T = δ ≥ 2, and f = (f1, . . . , fm) satisfies

(4) f(z) = A(z)f(T (z)) +B(z),

where A(z) is a regular m × m matrix with entries in Q[z], and B(z) ∈
(Q[z])m. Let α ∈ U be an algebraic number with limk→∞ T k(α) = ω, and
suppose for k ∈ N0 that T k(α) ∈ U \ {ω}, and detA(T k(α)) 6= 0. Let m0 be
the greatest integer satisfying

m0 < (m+ 1)
log δ
log d

.

Then
trdegQQ(f(α)) ≥ m0.

Corollary 2. Suppose the assumptions of Theorem 3 are fulfilled and
d < δ1+1/m. Then f1(α), . . . , fm(α) are algebraically independent. In partic-
ular , for m = 1 and d < δ2 we get f(α) 6∈ Q.

R e m a r k. Since the condition d < δ3/2 in Corollary 1 coincides with
the condition given in the theorem of Becker in [B3] in the special case of
rational transformations and functional equations of type (3), the weaker
condition of Corollary 2 for polynomial transformations and the more re-
stricted functional equations of type (4) gives a first answer to a question
posed by Becker (p. 119 in [B3]). He asked for weaker technical assumptions
of this form to extend the range of applications of Mahler’s method.

2. Examples and applications. Our first example deals with series of
the form

χi(z) =
∞∑

h=0

qi(Th(z)) (i = 1, . . . ,m),

where T (z) = T1(z)/T2(z) ∈ Q(z), dj = deg Tj (j = 1, 2), ω ∈ C is a fixed
point of T of order δ ≥ 2, qi ∈ Q[z] with deg qi ≥ 1 and qi(ω) = 0 for
i = 1, . . . ,m. Then all χi are holomorphic in a neighborhood U of ω and
satisfy the functional equation

χi(z) = χi(T (z)) + qi(z) (i = 1, . . . ,m).
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Corollary 3. Suppose q1, . . . , qm are C-linearly independent , 0 < d2 <
d1 = d, and α ∈ Q satisfies limk→∞ T k(α) = ω and T k(α) 6= ω for k ∈ N0.
Then

trdegQQ(χ1(α), . . . , χm(α)) ≥ m0,

where m0 denotes the greatest integer satisfying

m0 < (m+ 1)
log δ
log d

−
(

1− log δ
log d

)
m.

P r o o f. For the application of Theorem 2 we have to show that χ1, . . .
. . . , χm are algebraically independent. In the next paragraph this will be
derived from Lemma 6 of Section 3.

Suppose that χ1, . . . , χm are algebraically dependent. By Lemma 6 there
exist gi ∈ C(z) with deg gi = γi (i = 1, 2), γ = max{γ1, γ2}, and s1, . . . , sm ∈
C, not all zero, such that

g1(z)
g2(z)

=
g1(T (z))
g2(T (z))

+
m∑

i=1

siqi(z).

Since the sum on the right is nonzero, we know that γ ≥ 1. From this
equation we get the polynomial identity

g1(z)h2(z) = g2(z)h1(z) + g2(z)h2(z)
m∑

i=1

siqi(z)

with hi(z) = T2(z)γgi(T (z)) ∈ C[z] (i = 1, 2). Since g1, g2 resp. T1, T2 are
coprime, we see that h1, h2 are also coprime. Thus h2 | g2, and the condition
d2 < d1 implies

deg h2 = (γ − γ2)d2 + γ2d1 ≤ γ2 = deg g2.

But d2 ≥ 1, d1 ≥ 2 and γ ≥ 1. Hence we get a contradiction, and so
χ1, . . . , χm must be algebraically independent. Then application of The-
orem 2 completes the proof.

Corollary 4. Suppose that 1, q1, . . . , qm are C-linearly independent ,
T (z) ∈ Q[z] with 2 ≤ δ ≤ d, d - deg(

∑m
i=1 siqi(z)) for arbitrary (s1, . . . , sm)

∈ Cm \ {0}, and α ∈ Q satisfies limk→∞ T k(α) = ω and T k(α) 6= ω for
k ∈ N0. Then

trdegQQ(χ1(α), . . . , χm(α)) ≥ m0,

where m0 denotes the greatest integer satisfying

m0 < (m+ 1)
log δ
log d

.

P r o o f. Under the assumption that χ1, . . . , χm are algebraically depen-
dent, we get analogously to the proof of Corollary 3 the polynomial identity
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(notice that T2 = 1, hence h2 = g2)

(5) g1(z)g2(T (z)) = g2(z)g1(T (z)) + g2(z)g2(T (z))
m∑

i=1

siqi(z).

The coprimality of g1, g2 implies g2(T (z)) | g2(z), hence γ2 = 0. Now we
compare the degrees in (5). The degree on the left side is γ1, and the two
terms on the right have degrees γ1d and deg(

∑m
i=1 siqi(z)) = ∆, respectively.

Since d ≥ 2, this forces γ1d = ∆. But∆ is not divisible by d except for∆ = 0.
Then γ1 = 0, and we get the contradiction

∑m
i=1 siqi(z) = 0. Therefore

χ1, . . . , χm are algebraically independent. Now application of Theorem 3
yields the assertion.

Corollary 5. Suppose q1, . . . , qm are C-linearly independent , T (z) =
T1(z)/T2(z) ∈ Q(z), 0 < d2 <d1 = d = δ, and α ∈ Q satisfies limk→∞ T k(α)
= ω and T k(α) ∈ U\{ω} for k ∈ N0. Then for each polynomial Q ∈ Z[y]\{0}
with degQ ≤ D and H(Q) ≤ H,

|Q(χ1(α), . . . , χm(α))| > exp(−c1Dm(Dm+2 + logH)).

P r o o f. From the proof of Corollary 3 we know that χ1, . . . , χm
are algebraically independent. Since δ = d, the assertion follows from The-
orem 1.

R e m a r k. The same quantitative result can be derived under the as-
sumptions of Corollary 4 for δ = d.

Now we consider certain Cantor series introduced by Tamura [Ta]. Let

(6) θi(z) =
∞∑

h=0

1
qi(z)qi(T (z)) . . . qi(Th(z))

(i = 1, . . . ,m)

with T (z) = T1(z)/T2(z) ∈ Q(z), deg Tj = dj (j = 1, 2), ω ∈ Ĉ is a fixed
point of T of order δ ≥ 2, qi ∈ Q[z] with deg qi ≥ 1 and |qi(ω)| > 1 for
i = 1, . . . ,m (notice that ω =∞ and qi(∞) =∞ is possible). The functions
θi are holomorphic in a neighborhood of ω ∈ Ĉ and satisfy the functional
equation

θi(T (z)) = qi(z)θi(z)− 1 (i = 1, . . . ,m).

Tamura proved the transcendence of θ(α) for certain α in the special case
q(z) = z, T (z) ∈ Z[z] and deg T ≥ 3. The more general case of polynomials
qi, T ∈ Q[z] (i = 1, . . . ,m) was treated by Becker [B2]. He derived alge-
braic independence results for θ1(α), . . . , θm(α) at algebraic points α and
discussed in detail the transcendence of θ(α) for linear polynomials q and
algebraic α. Here we study rational transformations and give qualitative and
quantitative generalizations of Becker’s results.
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Corollary 6. Suppose q1, . . . , qm are pairwise distinct , max{2, d2} <
d1 = d, 1 ≤ deg qi < d − 1 for i = 1, . . . ,m. Let α be an algebraic number
with limk→∞ T k(α) = ω and qi(T k(α)) 6= 0, T k(α) 6= ω for k ∈ N0 and
i = 1, . . . ,m. If m0 is the greatest integer satisfying

m0 < (m+ 1)
log δ
log d

−
(

1− log δ
log d

)
m,

then

trdegQQ(θ1(α), . . . , θm(α)) ≥ m0.

If δ = d, then θ1(α), . . . , θm(α) are algebraically independent , and for all
polynomials Q ∈ Z[y] \ {0} with degQ ≤ D and H(Q) ≤ H,

|Q(θ1(α), . . . , θm(α))| > exp(−c1Dm(Dm+2 + logH)).

P r o o f. The assertions are obvious consequences of Theorems 1 and 2,
if the algebraic independence of θ1, . . . , θm is verified. Thus we assume that
θ1, . . . , θm are algebraically dependent, and apply Lemma 6. First we must
show that qi(z)/qj(z) for i 6= j is not of the form g(T (z))/g(z) for some g ∈
C(z). With g(z) = g1(z)/g2(z), deg gi = γi (i = 1, 2), and γ = max{γ1, γ2}
we suppose on the contrary that

qi(z)g1(z)h2(z) = qj(z)g2(z)h1(z),

where hi(z) = T2(z)γgi(T (z)) ∈ C[z]. Since g1, g2 resp. T1, T2 are coprime,
we see that h1, h2 are also coprime. Thus h1 | qig1, h2 | qjg2, and this implies
(notice that d2 < d1)

deg hi = γd2 + γi(d1 − d2) = γid1 + (γ − γi)d2 ≤ d1 − 2 + γi (i = 1, 2).

Since d1 ≥ 3, we must have γ1 = γ2 = 0, but this leads to the contradiction
qi = qj . Now all conditions of Lemma 6 are fulfilled, and then there exist
i ∈ {1, . . . ,m} and a rational function g (with gi, hi, γi, γ as above) such
that

(7) g2(z)h1(z) = h2(z)g2(z) + qi(z)g1(z)h2(z).

Hence h2 | g2, and this yields

deg h2 = γ2d1 + (γ − γ2)d2 ≤ γ2.

But d1 ≥ 3, and so γ2 = d2 = 0. Now we compare the degrees on both sides
of (7) and get d1γ1 ≤ γ1 + d1 − 2. Since d1 ≥ 3, we must have γ1 = 0, but
then qi(z) is a constant, and this is excluded. Thus θ1, . . . , θm cannot be
algebraically dependent.

Corollary 7. Suppose that T ∈ Q[z] is a polynomial with d ≥ 2, and
q ∈ Q[z] is a linear polynomial with q(T (z))2 6= q(z)2 − 2. Let α be an
algebraic number with limk→∞ T k(α) = ∞ and q(T k(α)) 6= 0 for k ∈ N0.
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Then for each polynomial Q ∈ Z[y] \ {0} with degQ ≤ D, H(Q) ≤ H the
inequality

|Q(θ(α))| > exp(−c1D(D3 + logH))

holds for θ(z) as in (6). In particular , θ(α) is an S-number in Mahler’s
classification of transcendental numbers.

P r o o f. In Corollary 2 of [B2] Becker showed that θ(z) is a transcendental
function for q(z), T (z) as above. Then Theorem 1 with ω = ∞ yields the
assertion (notice that deg T = d = ord∞ T ).

The next example deals with the series

Ω(z) =
∞∑

h=0

(−1)h

q(Th(z))

with q, T ∈ Q[z] and deg q ≥ 1, d ≥ 2, which was introduced by Becker [B2].
Then Ω(z) is holomorphic in a neighborhood of ω =∞ and satisfies

Ω(T (z)) = −Ω(z) + 1/q(z).

Corollary 8. Suppose q(T (z)) 6= λ−1q(z)2+q(z)−λ for any λ ∈ C\{0},
and α is an algebraic number with limk→∞ T k(α) = ∞ and q(T k(α)) 6= 0
for k ∈ N0. Then for each Q ∈ Z[y] \ {0} with degQ ≤ D and H(Q) ≤ H,

|Q(Ω(α))| > exp(−c1D(D3 + logH)).

In particular , this transcendence measure is valid for Cahen’s constant

C =
∞∑

h=0

(−1)h

Sh − 1
,

where S0 = 2 and Sh+1 = S2
h − Sh + 1 for h ≥ 0.

R e m a r k. The transcendence of C was proved by Davison and Shallit
[DS] with continued fractions and later by Becker in [B2] using the identity
C = Ω(2) for q(z) = z − 1, T (z) = z2 − z + 1. Corollary 8 implies that C is
a S-number in Mahler’s classification of transcendental numbers.

P r o o f o f C o r o l l a r y 8. In Corollary 3 of [B2] the transcendence of
the function Ω(z) was proved. Then Theorem 1 yields the assertion.

The last example was studied by Becker in [B3], Corollary 1. Let

σ(z) =
∞∏

h=0

q(Th(z)),

where q ∈ Q[z], deg q ≥ 1, and T (z) = T1(z)/T2(z) ∈ Q(z), deg Ti = di
(i = 1, 2), and ω ∈ Ĉ is a fixed point of T of order δ. Assume that q(ω) = 1.
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Then σ(z) is holomorphic in a neighborhood of ω and satisfies the functional
equation

σ(z) = q(z)σ(T (z)).

Corollary 9. Suppose 0 < d2 < d1 = δ, and α is an algebraic number
with limk→∞ T k(α) = ω and q(T k(α)) 6= 0, T k(α) 6= ω,∞ for k ∈ N0. Then
for any polynomial Q ∈ Z[y] \ {0} with degQ ≤ D, H(Q) ≤ H,

|Q(σ(α))| > exp(−c1D(D3 + logH)).

P r o o f. The transcendence of σ(z) was proved in Corollary 1 of [B3].
Then the assertion follows from Theorem 1.

3. Preliminaries and auxiliary results. Throughout the paper let K
denote an algebraic number field, and OK is the ring of integers in K. Define
α , the house of the algebraic number α, as the maximum of the moduli of
the conjugates of α. A denominator of an algebraic number α is a positive
integer d such that dα ∈ OK . For a polynomial P with algebraic coefficients
the height H(P ) is defined as the maximum of the houses of the coefficients,
and the length L(P ) is the sum of the houses of the coefficients.

Lemma 1. Suppose the rational function g(z) = r(z)/s(z) ∈ K(z) is
holomorphic in a neighborhood of z = 0. Then for each h ∈ N0 the power
series coefficients gh of

g(z) =
∞∑

h=0

ghz
h

satisfy

(i) gh ∈ K(g0),
(ii) gh ≤ exp(c2(h+ 1)),
(iii) D[c2(h+1)]gh ∈ OK

with suitable D ∈ N and c2 ∈ R+ depending only on g.

P r o o f. From r(z) = s(z)
∑∞
h=0 ghz

h with r(z) =
∑l
i=0 riz

i, s(z) =∑l
i=0 siz

i we get the following recurrence relation for the coefficients gh
(with rh = 0 for h > l), h ∈ N0:

gh =
rh
s0
−

min{l,h}∑
µ=1

sµ
s0
gh−µ.

This implies the assertion.
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Lemma 2. Suppose T (z) = T1(z)/T2(z) is a rational function with δ =
ord0 T ≥ 2, and α ∈ C satisfies T k(α) 6= 0 for k ∈ N0 and limk→∞ T k(α)
= 0. Then for all k ≥ k,

−c3δk ≤ log |T k(α)| ≤ −c4δk
with c3, c4 ∈ R+, k ∈ N depending on T and α.

P r o o f. Since 0 is a zero of T of order δ ≥ 2, we have T (z) = zδg(z),
where g(z) is holomorphic in a neighborhood of z = 0 and g(0) 6= 0. Then
there exists a constant ε ∈ R+ depending only on T such that for all β ∈ C
with 0 < |β| < ε (< 1),

γ0|β|δ ≤ |T (β)| ≤ γ1|β|δ,
where γ0, γ1 ∈ R+ depend on T . Thus

(8) exp(−γ2δ
k) ≤ γk0 |β|δ

k ≤ |T k(β)| ≤ γk1 |β|δ
k ≤ exp(−γ3δ

k)

with γ2, γ3 ∈ R+ depending on T and β. Since limk→∞ T k(α) = 0, we know
0 < |T k(α)| < ε for k ≥ k with k ∈ N depending on T and α, and together
with (8) this yields the assertion.

The proofs of the theorems depend on the following results from elimi-
nation theory.

Lemma 3. Suppose ω ∈ Cm. Then there exists a constant c5 = c5(ω,K)
∈ R+ with the following property : If there exist increasing functions Ψ1, Ψ2 :
N → R+, numbers Φ1, Φ2, Λ ∈ R+, positive integers k0, k1 with k0 < k1,
m0 ∈ {0, . . . ,m} and polynomials (Qk)k0≤k≤k1 , such that the following as-
sumptions are satisfied :

(i) Φ2 ≥ Φ1 ≥ c5, Λ ≥ Ψ1(k + 1)/Ψ2(k) ≥ 1 for k ∈ {k0, . . . , k1},
(ii) Ψ2(k) ≥ c5(logH(Qk) + degQk) for k ∈ {k0, . . . , k1},
(iii) the polynomials Qk ∈ OK [y1, . . . , ym] (k0 ≤ k ≤ k1) satisfy

(a) degQk ≤ Φ1,
(b) logH(Qk) ≤ Φ2,
(c) exp(−Ψ1(k)) ≤ |Qk(ω)| ≤ exp(−Ψ2(k)),

(iv) Ψ2(k1) ≥ c5Λm0−1Φm0−1
1 max{Ψ1(k0), Φ2},

then
trdegQQ(ω) ≥ m0.

P r o o f. This is Theorem 1 in [T1] with slight modifications.

Lemma 4. Suppose ω ∈ Cm. Then there exists a constant c6 = c6(ω,K)
∈ R+ with the following property : If there exist functions Ψ1, Ψ2 : N2 → R+,
which are increasing in the first variable, numbers Φ1, Φ2, Λ, U, τ ∈ R+,
positive integers N0, N1 with N0 ≤ N1, for each N ∈ {N0, . . . , N1} posi-
tive integers k0(N), k1(N) with k0(N) ≤ k1(N), and polynomials Qk,N for
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N ∈ {N0, . . . , N1} and k ∈ {k0(N), . . . , k1(N)}, such that the following as-
sumptions are satisfied for positive integers D,H and all N ∈ {N0, . . . , N1},
k ∈ {k0(N), . . . , k1(N)}:

(i) (a) Φ2 ≥ Φ1 ≥ c6, Λ ≥ Ψ1(k + 1, N)/Ψ2(k,N) ≥ 1,
(b) Ψ1(k1(N), N) ≥ Ψ1(k0(N + 1), N + 1),
(c) U ≤ max{Ψ2(k,N) | N0 ≤ N ≤ N1, k0(N) ≤ k ≤ k1(N)},

τ ≥ min{Ψ1(k,N) | N0 ≤ N ≤ N1, k0(N) ≤ k ≤ k1(N)},
(ii) Ψ2(k,N) ≥ c6(logH(Qk,N ) + degQk,N ),
(iii) the polynomials Qk,N ∈ OK [y1, . . . , ym] satisfy

(a) degQk,N ≤ Φ1,
(b) logH(Qk,N ) ≤ Φ2,
(c) exp(−Ψ1(k,N)) ≤ |Qk,N (ω)| ≤ exp(−Ψ2(k,N)),

(iv) U ≥ c6Λm−1Φm−1
1 max{τD,Λ(Φ1 logH + Φ2D)},

then for all polynomials R ∈ Z[y1, . . . , ym] \ {0} with degR ≤ D,
H(R) ≤ H,

|R(ω)| ≥ exp(−U).

P r o o f. Lemma 4 can be derived from Jabbouri’s criterion [J] analogous
to the proof of the proposition in [T2].

Lemma 5. Let f1, . . . , fm ∈ C[[z]] be formal power series which satisfy

A0(z, f(z))f(T (z)) = A(z, f(z)),

where f(z) = (f1(z), . . . , fm(z)), T (z) = T1(z)/T2(z) is a rational function
with T1, T2 ∈ C[z], d = max{deg T1,deg T2}, δ = ord0 T ≥ 2, A(z, y) =
(A1(z, y), . . . , Am(z, y)), and Ai(z, y) ∈ C[z, y1, . . . , ym] \ {0} (0 ≤ i ≤ m)
are polynomials with degz Ai ≤ s and degy1,...,ym Ai ≤ t. Suppose that tm <
δ and Q ∈ C[z, y1, . . . , ym] with degz Q ≤ M , degy1,...,ym Q ≤ N and M ≥
N ≥ 1. If Q(z, f(z)) 6= 0, then

ord0Q(z, f(z)) ≤ c7MNm log d/(log δ−m log t)

with a constant c7 ∈ R+ depending on f .

P r o o f. See Theorem 1 in [T3].

The following result of Kubota is often useful to verify the algebraic
independence of the functions f1, . . . , fm.

Lemma 6. Suppose fi,j ∈ C[[z]] (1 ≤ i ≤ m, 1 ≤ j ≤ n(i)) are formal
power series satisfying the functional equations

fi,j(z) = ai(z)fi,j(T (z)) + bi,j(z) (1 ≤ i ≤ m, 1 ≤ j ≤ n(i))

with ai, bi,j ∈ C(z), T ∈ C(z) is not constant , ai 6= 0, and ai1/ai2 is not
of the form g(T (z))/g(z) with g ∈ C(z) for i1 6= i2. If f1,1, . . . , fm,n(m) are
algebraically dependent , then there exist indices 1 ≤ i1 < . . . < iR ≤ m,
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complex numbers cir,j for 1 ≤ r ≤ R and 1 ≤ j ≤ n(ir), not all zero, and
functions g1, . . . , gR ∈ C(z) with the following properties:

(i) gr(z) = air (z)gr(T (z)) +
∑n(ir)
j=1 cir,jbir,j(z) for 1 ≤ r ≤ R,

(ii) there exist m1, . . . ,mR ∈ Z, not all zero, such that

R∏
r=1

(n(ir)∑

j=1

cir,jfir,j(z)− gr(z)
)mr ∈ C(z).

P r o o f. See Theorem 2 in [K2].

4. Proof of Theorem 1. The first step in the proof of the theorems is
the reduction to the case ω = 0, as shown in [B3]. This is done by means of
a suitable Möbius transformation Φ(z), which is defined as

Φ(z) =

{
z − ω for ω ∈ C,

1
z − β for ω=∞ with an algebraic number β 6=T k(α) for k ∈ N0.

Then we consider the functions f∗i (z) = fi(Φ−1(z)) and the transformation
T ∗(z) = Φ(T (Φ−1(z))) (notice that deg T ∗ = deg T and ord0 T

∗ = ordω T ).
Since the functional equations

a∗(z)f∗(z) = A∗(z)f∗(T ∗(z)) +B∗(z)

with a∗(z) = a(Φ−1(z)), A∗(z) = A(Φ−1(z)), B∗(z) = B(Φ−1(z)) hold,
the assumptions of Theorem 1 are fulfilled for f∗, d(z)a∗(z), d(z)A∗(z),
d(z)B∗(z), where d(z) ∈ Q[z] is a common denominator for the rational
functions in A∗, B∗, a∗, and further ω = 0.

The next step in the proof of Theorem 1 is the estimate of the power
series coefficients of the functions fi and the construction of an auxiliary
function with high vanishing order at z = 0. This yields a sequence of
auxiliary polynomials in f1(α), . . . , fm(α). Application of Lemmas 3 and 5
and a suitable choice of the parameters completes the proof.

For the proof of Lemmas 7–9 we suppose that T (z) = T1(z)/T2(z)
with T1, T2 ∈ Q[z], ω = 0, d = deg T ≥ δ = ord0 T ≥ 2. Further we de-
fine for fi(z) =

∑∞
h=0 fi,hz

h the power series coefficients of the jth power
f ji (z) by

(9) f ji (z) =
∞∑

h=0

( ∑

h1+...+hj=h

fi,h1 . . . fi,hj

)
zh =

∞∑

h=0

f
(j)
i,h z

h

and for j = (j1, . . . , jm) ∈ Nm0 ,
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f(z)j = f j11 (z) . . . f jmm (z)(10)

=
∞∑

h=0

( ∑

h1+...+hm=h

f
(j1)
1,h1

. . . f
(jm)
m,hm

)
zh =

∞∑

h=0

f
(j)

h zh.

Lemma 7. Suppose the above mentioned assumptions are fulfilled , and f
satisfies (3). Then for all h ∈ N0 and j ∈ N, j ∈ Nm0 with |j| = j1 + . . .+jm,

(i) fi,h ∈ K,
(ii) fi,h ≤ exp(c8(1 + h)), D[c8(1+h)]fi,h ∈ OK ,

(iii) f
(j)
i,h ≤ exp(c9(j + h)), D[c9(j+h)]f

(j)
i,h ∈ OK ,

(iv) f
(j)
h ≤ exp(c10(|j|+ h)), D[c10(|j|+h)]

f
(j)

h ∈ OK ,

where D ∈ N, c8, c9, c10 ∈ R+, and the algebraic number field K depend on
f1, . . . , fm.

P r o o f. Without loss of generality we may assume that fi(0) = 0 for all
i (otherwise we consider fi(z)−fi(0)), and the entries of a(z)−1A(z) (hence
of a(z)−1B(z)) are regular in z = 0. If there exist entries of a(z)−1A(z)
which are not regular in z = 0, and the pole order is at most s, we put

Ri(z) =
s−1∑

h=0

fi,hz
h (1 ≤ i ≤ m), R(z) = (R1(z), . . . , Rm(z)),

and consider the functions gi(z) = (fi(z) − Ri(z))z−s, which satisfy the
functional equation

g(z) = T (z)sz−sa(z)−1A(z)g(T (z))

− z−s(R(z)− a(z)−1(A(z)R(T (z)) +B(z))),

and then T (z)sz−sa(z)−1A(z) is regular in z = 0 because of δ ≥ 2. Now let
K denote the algebraic number field which is generated by the coefficients
of the power series expansion of the entries of a(z)−1A(z) and a(z)−1B(z),
the fixed point ω (remember the Möbius transformation Φ), the coefficients
of T , finitely many power series coefficients of f1, . . . , fm (if necessary, see
above), and the point β from the beginning of this section (if necessary).
With a(z)−1A(z) = (ai,j(z))1≤i,j≤m, a(z)−1B(z) = (bi(z))1≤i≤m and

ai,j(z) =
∞∑

h=0

ai,j,hz
h, bi(z) =

∞∑

h=0

bi,hz
h,

T (z) =
∞∑

h=δ

phz
h, (T (z))l =

∞∑

h=δl

p
(l)
h z

h,

the functional equation implies
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∞∑

h=1

fi,hz
h =

m∑

j=1

( ∞∑

h=0

ai,j,hz
h
)( ∞∑

l=1

fj,l

( ∞∑

h=δl

p
(l)
h z

h
))

+
∞∑

h=0

bi,hz
h

=
∞∑

h=δ

( m∑

j=1

h∑

k=δ

ai,j,h−k
([log k/ log δ]∑

l=1

fj,l p
(l)
k

))
zh +

∞∑

h=0

bi,hz
h,

and we get the identity

(11) fi,h =
h∑

k=δ

m∑

j=1

ai,j,h−k
([log k/ log δ]∑

l=1

fj,l p
(l)
k

)
+ bi,h.

Now assertion (i) is obvious. According to Lemma 1(ii) the power series
coefficients ph of T are bounded by ph ≤ exp(γ0(h+ 1)) with γ0 ∈ R+, and
then

p
(l)
h ≤

∑

h1+...+hl=h

ph1 . . . phl ≤ exp(γ1(l + h)).

Together with (11) and the bounds of Lemma 1(ii) for the power series coef-
ficients of the ai,j(z) and bi(z) this yields the first part of (ii) by induction,
and with suitable D ∈ N the second part of (ii) follows from Lemma 1(iii).

Assertions (iii) and (iv) are consequences of (ii) and the identities (9),
(10) (notice that the number of h ∈ Nj0 with |h| = h is bounded by

(
h+j−1
j−1

) ≤
2h+j).

Lemma 8. For N ∈ N there exists a polynomial RN (z, y) ∈ OK [z, y1, . . .
. . . , ym] \ {0} with the following properties:

(i) degz RN ≤ N , degy RN ≤ N ,

(ii) H(RN ) ≤ exp(c11N
1+m),

(iii) c12N
1+m ≤ ν(N) = ord0RN (z, f(z)) ≤ c13N

1+m log d/ log δ.

P r o o f. Put

RN (z, y) =
N∑
ν=0

∑

|µ|≤N
rν,µz

νyµ

with unknown coefficients rν,µ. Then

RN (z, f(z)) =
N∑
ν=0

∑

|µ|≤N
rν,µz

νf(z)µ =
∞∑

h=0

βhz
h

with

(12) βh =
min{h,N}∑
ν=0

∑

|µ|≤N
rν,µf

(µ)
h−ν .
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The left-hand inequality of assertion (iii) is equivalent to the condition βh =
0 for 0 ≤ h < c12N

1+m. This yields at most [c12N
1+m]+1 linear equations in

the (N + 1)
(
N+m
m

)
unknowns rν,µ. After multiplication with D[c12N

1+m] (see
Lemma 7) the coefficients of the linear equations are algebraic integers, and
the houses are bounded by exp(γ0N

1+m). Since (N+1)
(
N+m
m

) ≥ 1
m!N

1+m >
2c12N

1+m + 1 for suitable c12 ∈ R+, Siegel’s lemma yields the assertion of
Lemma 8 apart from the upper bound for the zero order ν(N) in (iii), but
this is a consequence of Lemma 5.

Lemma 9. For k ∈ N with δk ≥ c14ν(N),

exp(−c15ν(N)δk) ≤ |RN (T k(α), f(T k(α)))| ≤ exp(−c16ν(N)δk),

where the constants c14, c15, c16 ∈ R+ depend only on f and α.

P r o o f. From Lemma 7 and (12) we get (notice that h ≥ c12N
1+m)

(13) |βh| ≤ βh ≤ exp(γ0h), D[γ0h]βh ∈ OK .
Then we consider

RN (T k(α), f(T k(α))) = βν(N)(T
k(α))ν(N)

(
1 +

∞∑

h=1

βh+ν(N)

βν(N)
(T k(α))h

)
.

Since

(14) |βν(N)| ≥ (D[γ0ν(N)] βν(N) )−[K:Q]

and ∣∣∣∣
βh+ν(N)

βν(N)

∣∣∣∣ ≤ exp(γ1(h+ ν(N)))

for h ∈ N, Lemma 2 implies for k ∈ N with δk ≥ γ2ν(N),
∣∣∣∣
∞∑

h=1

βh+ν(N)

βν(N)
(T k(α))h

∣∣∣∣ ≤
∞∑

h=1

exp(γ1(h+ ν(N))− γ3hδ
k) <

1
2
,

hence
1
2
|βν(N)||T k(α)|ν(N) ≤ |RN (T k(α), f(T k(α)))| ≤ 3

2
|βν(N)||T k(α)|ν(N).

Now (13), (14) together with Lemma 2 complete the proof.

From now on we suppose in addition that δ = ord0 T = deg T = d, i.e.
the assumptions of Theorem 1 are fulfilled with ω = 0. For the application
of Lemma 4 we define polynomials Rk,N ∈ K[z, y] for k,N ∈ N with δk ≥
c14ν(N) by

R0,N (z, y) = RN (z, y),

Rk+1,N (z, y) = (detA(z))NT2(z)dkNRk,N (T (z), A(z)−1(a(z)y −B(z))),
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where the degree of the entries of A(z) and B(z) is at most s ∈ N, and
dk = c17(dk − 1)/(d− 1) + dk with c17 = ms.

Lemma 10. Suppose k,N ∈ N. Then

(i) Rk,N ∈ K[z, y],
(ii) degz Rk,N ≤ dkN ≤ 2c17d

kN , degy Rk,N ≤ N ,

(iii) H(Rk,N ) ≤ exp(c18N(dk +Nm)),

and if dk ≥ c19ν(N), then

(iv) exp(−c20ν(N)dk) ≤ |Rk,N (α, f(α))| ≤ exp(−c21ν(N)dk).

P r o o f. (i), (ii) are proved by induction; (i) follows from the fact that
the matrix detA(z)A(z)−1 has entries in K[z], and (ii) is a consequence of
deg T = d and the definition of c17. Suppose that L is an upper bound for
the length of a(z) and the entries of A(z) and B(z). Then assertion (iii)
follows from

H(Rk+1,N ) ≤ L(Rk+1,N )

≤ L(Rk,N ) max{1, L}mN max{1, L(T1), L(T2)}dkN

≤ L(RN ) exp
(
γ0

k∑

l=0

dlN
)
≤ exp(γ1d

k+1N + γ2N
1+m).

The last assertion is a consequence of d = δ, Lemma 8, and

Rk,N (α, f(α))

=
k−1∏

j=0

(detA(T j(α)))N
k−1∏

j=0

(T2(T j(α)))dk−1−jNRN (T k(α), f(T k(α))),

since

(15) exp(−γ3d
kN) ≤

k−1∏

j=0

|detA(T j(α))|N ≤ exp(γ4d
kN)

and

(16) exp(−γ5d
kN) ≤

k−1∏

j=0

|T2(T j(α))|dk−1−jN ≤ exp(γ6d
kN).

Suppose that D1 is a denominator of α, D2 is a common denominator of
the coefficients of T (z), and D3 is a common denominator of the coefficients
of a(z) and the entries of A(z) and B(z). Then we put

(17) Qk,N (y) = (D1D2)[2c17d
kN ]+1DmkN

3 Rk,N (α, y).
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Thus for N ≥ N0 and k ∈ N with dk ≥ c22N
1+m (cf. Lemma 8(iii)),

Qk,N ∈ OK [y], degQk,N ≤ N, H(Qk,N ) ≤ exp(c23d
kN),

exp(−c24d
kN1+m) ≤ |Qk,N (f(α))| ≤ exp(−c25d

kN1+m).

With sufficiently large constants γ0, γ1 ∈ R+, which depend only on f , α,N0,
and the constant c6 of Lemma 4, we choose N1 = [γ0D] and the parameters
k0(N), k1(N) for N ∈ {N0, . . . , N1} such that

dk0(N)−1 < c22N
1+m ≤ dk0(N),

k1 = k1(N) =
[

1
log d

log
(
Dm+1 +

logH
D

)
+ γ1

]
,

D and H as in the assumptions of Theorem 1. Hence k0(N) ≤ k1, and for
the application of Lemma 4 we define

Φ1 = N1, Φ2 = c23N1d
k1 ,

Ψ1(k,N) = c24d
kN1+m, Ψ2(k,N) = c25d

kN1+m.

Then obviously (i), (ii), (iii) of Lemma 4 are fulfilled with Λ = dc24/c25 and

U = c24d
k1N1+m

1 , τ = c24d
k0(N0)N1+m

0 .

Furthermore, we see that

U ≥ γ2N
m
1 max{logH + dk1D, τD/N1}

≥ c6Λm−1Φm−1
1 max{τD,Λ(Φ1 logH + Φ2D)},

and Lemma 4 implies

|Q(f(α))| > exp(−U)

≥ exp(−γ3d
k1N1+m

1 )

≥ exp
(
− γ4D

m+1
(
Dm+1 +

logH
D

))
.

5. Proof of Theorem 2. The first part of the proof up to Lemma 9
and the definition of the polynomials Rk,N in the paragraph after Lemma 9
is identical with the proof of Theorem 1. Since 2 ≤ δ ≤ d, Lemma 10 must
be slightly modified.

Lemma 11. Suppose k,N ∈ N. Then

(i) Rk,N ∈ K[z, y],
(ii) degz Rk,N ≤ dkN ≤ 2c17d

kN , degy Rk,N ≤ N ,

(iii) H(Rk,N ) ≤ exp(c18N(dk +Nm)),

and if δk ≥ c26ν(N) and Ndk ≤ c27ν(N)δk, then

(iv) exp(−c28ν(N)δk) ≤ |Rk,N (α, f(α))| ≤ exp(−c29ν(N)δk).
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P r o o f. The additional assumption in (iv) is necessary to compensate
the bounds of Lemma 9 and (15), (16).

With denominators D1, D2, D3 as in (17) we define polynomials Qk,N by

Qk,N (y) = (D1D2)[2c17d
kN ]+1DmkN

3 Rk,N (α, y).

Thus for k ∈ N with Ndk ≤ c30ν(N)δk and δk ≥ c31ν(N) we have

Qk,N ∈ OK [y], degQk,N ≤ N, H(Qk,N ) ≤ exp(c32d
kN),

exp(−c33δ
kν(N)) ≤ |Qk,N (f(α))| ≤ exp(−c34δ

kν(N)).

With sufficiently large γ0, γ1 ∈ R+, which depend on f and α, we define

k0 =
[

log ν(N)
log δ

+ γ0

]
, k1 =

[
log ν(N)−m0 logN

log d− log δ
− γ1

]

(notice that c30 ∈ R+ may be very small). Then obviously Ndk ≤ c30ν(N)δk

and δk ≥ c31ν(N) for k0 ≤ k ≤ k1 (without loss of generality m0 ≥ 1), and
k0 ≤ k1 is shown in (19). Furthermore,

(18) ν(N)δk1 ≥ γ2N
m0dk1 ,

and the definition of m0, k0, k1 together with ν(N) ≥ c12N
1+m yields

(19) δk1 ≥ γ3N
m0−1δk0

with γ2, γ3 ∈ R+ for N ≥ N0(γ0, . . . , γ3). Thus we define

Φ1 = N, Φ2 = c32d
k1N,

Ψ1(k) = c33δ
kν(N), Ψ2(k) = c34δ

kν(N), Λ = δc33/c34,

and if we now fix N ∈ N sufficiently large with respect to γ0, . . . , γ3, δ, f, α,
and c5, we put Qk = Qk,N for k0 ≤ k ≤ k1 and this value of N . Then (18),
(19) imply

Ψ2(k) ≥ c5Λm0−1Φm0−1
1 max{Ψ1(k0), Φ2},

and the other assumptions of Lemma 3 are also fulfilled for this choice of pa-
rameters. The application of Lemma 3 completes the proof of Theorem 2.

6. Proof of Theorem 3. Under the assumptions of Theorem 3 we can
give sharper bounds for the power series coefficients of f1, . . . , fm in the
expansion at ω. This yields a weaker condition for k0, hence a better bound
for m0.

Analogously to Section 4 we apply the Möbius transformation Φ to get
ω = 0. Then the sharper estimates for the power series coefficients depend
on the fact that a(z) = 1, and T (z) and the entries of A(z) and B(z) are
polynomials. For the sake of simplicity the case ω =∞ is excluded, because
then Φ transforms the functional equation into another system, where in
general a(z) is not constant, and T (z) is rational.
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Since the proof of Theorem 3 is analogous to the proof of Theorem 2
apart from the estimates for the power series coefficients, most proofs are
shortened or omitted.

Lemma 12. Suppose that the assumptions of Theorem 3 are fulfilled with
ω = 0. Then for all h ∈ N0 and j ∈ N, j ∈ Nm0 ,

(i) fi,h ∈ K,
(ii) fi,h ≤ exp(c34 log(h+ 2)), D[c34 log(h+2)]fi,h ∈ OK ,

(iii) f
(j)
i,h ≤ exp(c35j log(h+ 2)), D[c35j log(h+2)]f

(j)
i,h ∈ OK ,

(iv) f
(j)
h ≤ exp(c36|j| log(h+ 2)), D[c36|j| log(h+2)]

f
(j)

h ∈ OK ,

where D ∈ N, c34, c35, c36 ∈ R+, and the algebraic number field K depend
on f .

P r o o f. Without loss of generality fi(0) = 0 for all i (since f1(0), . . .
. . . , fm(0) ∈ Q, the functions fi(z) − fi(0), 1 ≤ i ≤ m, satisfy functional
equations of the required form). Then with A(z) = (ai,j(z))1≤i,j≤m, B(z) =
(Bi(z))1≤i≤m and

ai,j(z) =
s∑

h=0

ai,j,hz
h, Bi(z) =

s∑

h=0

bi,hz
h,

T (z) =
d∑

h=δ

phz
h, (T (z))l =

dl∑

h=δl

p
(l)
h z

h,

the functional equation implies

∞∑

h=1

fi,hz
h =

m∑

j=1

( s∑

h=0

ai,j,hz
h
)( ∞∑

l=1

fj,l

( dl∑

h=δl

p
(l)
h z

h
))

+
s∑

h=0

bi,hz
h

=
∞∑

h=δ

( m∑

j=1

h∑

k=max{δ,h−s}
ai,j,h−k

( ∑

log k/ log d≤l≤log k/ log δ

fj,l p
(l)
k

))
zh

+
s∑

h=0

bi,hz
h,

and from the identity

(20) fi,h =
h∑

k=max{δ,h−s}

m∑

j=1

ai,j,h−k
( ∑

log k/ log d≤l≤log k/ log δ

fj,l p
(l)
k

)
+ bi,h

(with bi,h = 0 for h > s) assertion (i) follows immediately. Since

p
(l)
h ≤

∑

h1+...+hl=h

ph1 . . . phl ≤ exp(γ0l)
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(notice that δ ≤ hi ≤ d for i = 1, . . . , l), the first part of (ii) follows from
(20), if we choose D ∈ N as a suitable denominator for the coefficients of
T (z) and the entries of A(z) and B(z). Then (iii), (iv) can be derived from
(9), (10) respectively (notice that the number of h ∈ Nj0 with |h| = h is
bounded by

(
h+j−1
j−1

) ≤ exp(j log(h+ 1)).

Lemma 13. For N ∈ N there exists a polynomial RN (z, y) ∈ OK [z, y1, . . .
. . . , ym] \ {0} with the following properties:

(i) degz RN ≤ N , degy RN ≤ N ,

(ii) H(RN ) ≤ exp(c37N log(N + 1)),
(iii) c38N

1+m ≤ ν(N) = ord0RN (z, f(z)).

P r o o f. Analogous to Lemma 8.

Lemma 14. For k ∈ N with δk ≥ c39N log ν(N),

exp(−c40ν(N)δk) ≤ |RN (T k(α), f(T k(α)))| ≤ exp(−c41ν(N)δk),

where c39, c40, c41 ∈ R+ depend only on f and α.

P r o o f. Analogous to Lemma 9. Notice that

|βh| ≤ βh ≤ exp(γ0N log h), D[γ0N log h]βh ∈ OK
and h ≥ ν(N).

Now we define polynomials Rk,N by

R0,N (z, y) = RN (z, y),

Rk+1,N (z, y) = (detA(z))NRk,N (T (z), A(z)−1(y −B(z))),

where the degree of the entries of A(z) and B(z) is at most s.

Lemma 15. Suppose k,N ∈ N. Then

(i) Rk,N ∈ K[z, y],
(ii) degz Rk,N ≤ c42(dk − 1)/(d− 1) + dk ≤ 2c42d

k, degy Rk,N ≤ N ,

(iii) H(Rk,N ) ≤ exp(c43N(log(N + 1) + dk))

with c42 = sm, c43 ∈ R+.
If δk ≥ c44N log ν(N) and Ndk ≤ c45ν(N)δk, then

(iv) exp(−c46ν(N)δk) ≤ |Rk,N (α, f(α))| ≤ exp(−c47ν(N)δk).

P r o o f. Analogous to Lemma 10 resp. Lemma 11.

Suppose that D1 is a denominator of α, D2 is a common denominator of
the coefficients of T (z), and D3 is a common denominator of the coefficients
of the entries of A(z) and B(z). Then we define

Qk,N (y) = (D1D2)[2c42d
kN ]+1DmkN

3 Rk,N (α, y).
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Thus for N ≥ N0 and δk ≥ c48N log ν(N) and Ndk ≤ c49ν(N)δk we have

Qk,N ∈ OK [y], degQk,N ≤ N, H(Qk,N ) ≤ exp(c50d
kN),

exp(−c51δ
kν(N)) ≤ |Qk,N (f(α))| ≤ exp(−c52δ

kν(N)).

With sufficiently large γ0, γ1 ∈ R+, which depend on f and α, we choose

k0 =
[

log(N log ν(N))
log δ

+ γ0

]
, k1 =

[
log ν(N)−m0 logN

log d− log δ
− γ1

]
.

This implies δk ≥ c48N log ν(N) and Ndk ≤ c49ν(N)δk. Furthermore,

ν(N)δk1 ≥ γ2N
m0dk1

for N ≥ N0(γ2). Since m0 log d < (1− ε)(m+ 1) log δ for some ε ∈ R+ and
ν(N) ≥ c38N

1+m, we have for all N ≥ N0(γ0, . . . , γ3, ε),

δk1 ≥ γ3N
m0−1δk0 .

Thus let

Φ1 = N, Φ2 = c50Nd
k1 ,

Ψ1(k) = c51δ
kν(N), Ψ2(k) = c52δ

kν(N), Λ = δc51/c52,

where N is fixed sufficiently large with respect to γ0, . . . , γ3, ε, δ, f, α, and
c5, and put

Qk(y) = Qk,N (y)

for k0 ≤ k ≤ k1 and this value of N . Then

Ψ2(k1) ≥ c5Λm0−1Φm0−1
1 max{Ψ1(k0), Φ2},

and since all other assumptions of Lemma 3 are fulfilled, the assertion of
Theorem 3 now follows from Lemma 3.
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