On addition of two distinct sets of integers

by
Vsevolod F. Lev (Tel-Aviv) and
Pavel Y. Smeliansky (Wollongong, N.S.W.)

What is the structure of a pair of finite integers sets $A, B \subset \mathbb{Z}$ with the small value of $|A+B|$? We answer this question for addition coefficient 3. The obtained theorem sharpens the corresponding results of G. Freiman.

1. Introduction and historical comments. Let $A=\left\{a_{1}, \ldots, a_{k}\right\}$, $B=\left\{b_{1}, \ldots, b_{l}\right\}$ be two sets of integers, so that $k=|A|, l=|B|$, and suppose $0=a_{1}<\ldots<a_{k}, 0=b_{1}<\ldots<b_{l}$. As usual, we write $A+B$ for the set $\left\{a_{i}+b_{j} \mid 1 \leq i \leq k, 1 \leq j \leq l\right\}$, and put $2 A=A+A$. $\operatorname{By}\left(a_{1}, \ldots, a_{k}\right)$ we denote the greatest common divisor of a_{1}, \ldots, a_{k}, and by $\left(a_{1}, \ldots, b_{l}\right)$ the greatest common divisor of $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{l}$.

In [1] G. Freiman proved the following:
Theorem 1. (i) Let $a_{k} \leq 2 k-3$. Then $|2 A| \geq a_{k}+k$.
(ii) Let $a_{k} \geq 2 k-2$ and $\left(a_{1}, \ldots, a_{k}\right)=1$. Then $|2 A| \geq 3 k-3$.

The present paper is devoted to the generalization of this theorem to the case of summation of two distinct sets A and B. Without loss of generality, we may assume $a_{k} \geq b_{l}$, and put

$$
\delta= \begin{cases}1 & \text { if } b_{l}=a_{k} \\ 0 & \text { if } b_{l}<a_{k}\end{cases}
$$

Our main result is:
Theorem 2. (i) Let $a_{k} \leq k+l-2-\delta$. Then $|A+B| \geq a_{k}+l$.
(ii) Let $a_{k} \geq k+l-1-\delta$ and $\left(a_{1}, \ldots, a_{k}\right)=1$. Then $|A+B| \geq k+2 l-2-\delta$.

We would like to note at this point that Theorem 2 will be deduced in the next section from the following lemma, which in turn will be proved in Section 3:

Lemma 1. Let $\left(a_{1}, \ldots, a_{k}\right)=1$. Then $|A+B| \geq \min \left\{a_{k}, k+l-2-\delta\right\}+l$.

The question which so far remains unanswered is: how can one estimate $|A+B|$ in the case of $a_{k} \geq k+l-1-\delta$ and $\left(a_{1}, \ldots, a_{k}\right)=d>1$? We may, of course, assume that $\left(a_{1}, \ldots, b_{l}\right)=1$ (else both A and B should be reduced by the greatest common divisor) and then the following technique may be used.

Break B into the union of pairwise disjoint sets, $B=B_{1} \cup \ldots \cup B_{s}$, where s is the number of residue classes modulo d having non-empty intersection with B, and $B_{i}(i=1, \ldots, s)$ are those intersections. Then obviously $A+B_{i}$ also are pairwise disjoint, hence

$$
|A+B|=\sum_{i=1}^{s}\left|A+B_{i}\right|
$$

Using the well-known estimate $\left|A+B_{i}\right| \geq|A|+\left|B_{i}\right|-1$ and observing that $s \geq 2$ (in view of $\left(a_{1}, \ldots, b_{l}\right)=1$) we immediately obtain:

Lemma 2. Let $\left(a_{1}, \ldots, a_{k}\right)>1$ and $\left(a_{1}, \ldots, b_{l}\right)=1$. Then $|A+B| \geq$ $2 k+l-2$.

The more accurate approach is to estimate $\left|A+B_{i}\right|$ using Lemma 1 (which firstly requires the application of a suitable linear transformation to both A and B_{i}). This readily gives

$$
\begin{equation*}
|A+B| \geq l+\sum_{i=1}^{s} \min \left\{a_{k} / d, k+l_{i}-2-\delta_{i}\right\} \tag{1}
\end{equation*}
$$

where we set $l_{i}=\left|B_{i}\right|$ (so that $l_{1}+\ldots+l_{s}=l$) and

$$
\delta_{i}= \begin{cases}1 & \text { if } 0 \in B_{i} \text { and } \delta=1, \\ 0 & \text { if } 0 \notin B_{i} \text { or } \delta=0 .\end{cases}
$$

The sum on the right-hand side of (1) should now be estimated on the basis of specific features of a particular problem. Actually, we will use this approach later on in this paper to deduce Theorem 2 from Lemma 1.

And now a brief historical reference. The first generalization of Theorem 1 to the case of two distinct summands was done by G. Freiman in [2]. The results obtained may be formulated as follows:

Theorem 3. (i) Let $a_{k} \leq k+l-3$. Then $|A+B| \geq a_{k}+l$.
(ii) Let $a_{k} \geq k+l-2$ and $\left(a_{1}, \ldots, b_{l}\right)=1$. Then $|A+B| \geq k+l+$ $\min \{k, l\}-3$.

Later, J. Steinig gave in [5] a somewhat simplified proof of Theorem 3.
Note that this theorem follows easily from Theorem 2 and Lemma 2 according to the scheme below:

1) If $a_{k} \leq k+l-3$, we apply Theorem $2(\mathrm{i})$;
2) If $a_{k} \geq k+l-2$ and $\left(a_{1}, \ldots, b_{l}\right)=1$:
2.1) If $\left(a_{1}, \ldots, a_{k}\right)>1$, we apply Lemma 2 ;
2.2) If $\left(a_{1}, \ldots, a_{k}\right)=1$:
2.2.1) If $a_{k} \geq k+l-1-\delta$, we apply Theorem 2(ii);
2.2.2) If $a_{k} \leq k+l-2-\delta$, then $\delta=0, a_{k}=k+l-2$ and we apply Theorem 2(i).
2. Deduction of the main theorem from Lemma 1. We assume $\left(a_{1}, \ldots, a_{k}\right)=d>1$ and

$$
\begin{equation*}
a_{k} \leq k+l-2-\delta \tag{2}
\end{equation*}
$$

(else Theorem 2 follows from Lemma 1 automatically) and make use of (1). First observe that B is situated in s of the d available residue classes modulo d. Therefore

$$
l \leq s \frac{a_{k}}{d}+\delta
$$

which together with (2) gives

$$
a_{k} \leq k+s \frac{a_{k}}{d}-2, \quad a_{k}(d-s) \leq(k-2) d
$$

and then, in view of $a_{k} \geq(k-1) d$, we obtain $s=d$. Hence, the result will follow from (1) as soon as we show that for each $i=1, \ldots, d$,

$$
\begin{equation*}
a_{k} / d \leq k+l_{i}-2-\delta_{i} . \tag{3}
\end{equation*}
$$

Using (2) once again we obtain

$$
\begin{aligned}
\#\{0 & \left.\leq c<a_{k} \mid c \notin B\right\}=a_{k}-l+\delta \leq k-2 \\
l_{i} & =\#\left\{0 \leq c<a_{k} \mid c \in B_{i}\right\}+\delta_{i} \\
& \geq a_{k} / d-\#\left\{0 \leq c<a_{k} \mid c \notin B\right\}+\delta_{i} \\
& \geq a_{k} / d-(k-2)+\delta_{i}
\end{aligned}
$$

which proves (3) and therefore the whole theorem.
3. Proof of Lemma 1. Let G be an abelian group, and let $\bar{C} \subseteq G$ be a finite subset of G. By $H(\bar{C})$ we will denote the period of \bar{C}, that is, the subgroup of all those elements $h \in G$ which satisfy $\bar{C}+h=\bar{C}$. Obviously, $H(\bar{C})$ is always finite. If $|H(\bar{C})|>1$, the set \bar{C} is called periodic.

We will need the following result, due to M. Kneser ([3], [4]):
ThEOREM 4. Let $\bar{A}, \bar{B} \subseteq G$ be finite non-empty subsets of G satisfying

$$
|\bar{A}+\bar{B}| \leq|\bar{A}|+|\bar{B}|-1
$$

Then $H=H(\bar{A}+\bar{B})$ satisfies

$$
|\bar{A}+\bar{B}|+|H|=|\bar{A}+H|+|\bar{B}+H| .
$$

Hence, $\bar{A}+\bar{B}$ is periodic if

$$
|\bar{A}+\bar{B}| \leq|\bar{A}|+|\bar{B}|-2 .
$$

Proof of Lemma 1. Suppose

$$
\begin{equation*}
|A+B| \leq k+2 l-3-\delta \tag{4}
\end{equation*}
$$

and prove that

$$
|A+B| \geq a_{k}+l .
$$

Set $q=a_{k}, \bar{A}=\varphi A, \bar{B}=\varphi B$, where $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}_{q}$ is the canonical homomorphism of \mathbb{Z} onto \mathbb{Z}_{q}. Then $|\bar{A}|=k-1,|\bar{B}|=l-\delta$, and obviously, $\bar{A}+\bar{B}=\varphi A+\varphi B=\varphi(A+B)$. As the first step, we show that

$$
\begin{equation*}
|\bar{A}+\bar{B}| \leq|A+B|-l . \tag{5}
\end{equation*}
$$

To this purpose, in the case of $b_{l}<a_{k}$ it is sufficient to observe that

$$
\varphi\left(a_{1}+b_{i}\right)=\varphi\left(a_{k}+b_{i}\right) \quad(i=1, \ldots, l)
$$

while all the sums $a_{1}+b_{i}, a_{k}+b_{i}(i=1, \ldots, l)$ are pairwise distinct:

$$
a_{1}+b_{1}<\ldots<a_{1}+b_{l}<a_{k}+b_{1}<\ldots<a_{k}+b_{l} .
$$

And in the case of $b_{l}=a_{k}$, here we have

$$
\begin{gathered}
\varphi\left(a_{1}+b_{i}\right)=\varphi\left(a_{k}+b_{i}\right) \quad(i=2, \ldots, l-1), \\
\varphi\left(a_{1}+b_{1}\right)=\varphi\left(a_{1}+b_{l}\right)=\varphi\left(a_{k}+b_{l}\right)
\end{gathered}
$$

while all the sums above are pairwise distinct:

$$
\begin{aligned}
a_{1}+b_{1} & <a_{1}+b_{2}<\ldots<a_{1}+b_{l-1}<a_{1}+b_{l} \\
& <a_{k}+b_{2}<\ldots<a_{k}+b_{l-1}<a_{k}+b_{l} .
\end{aligned}
$$

In either case, (5) holds, and thus (4) implies

$$
|\bar{A}+\bar{B}| \leq(k+2 l-3-\delta)-l=|\bar{A}|+|\bar{B}|-2,
$$

which in view of Kneser's theorem shows that $\bar{A}+\bar{B}$ is periodic. Put $H=$ $H(\bar{A}+\bar{B}) \subseteq \mathbb{Z}_{q}$ so that $H=d \mathbb{Z}_{q}$ for some $d \mid q, d>0$ (the requirement $d>0$ effectively means $|H|>1)$. Moreover, if $d=1$, then $H=\mathbb{Z}_{q}$, that is, $\bar{A}+\bar{B}=\mathbb{Z}_{q}$, and hence

$$
|A+B| \geq|\bar{A}+\bar{B}|+l=q+l=a_{k}+l,
$$

which was to be proved. We now assume $d>1$ and show that $d \mid\left(a_{1}, \ldots, a_{k}\right)$, in contradiction with the assumptions of the lemma.

Denote by σ the canonical homomorphism $\sigma: \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{q} / H$, and let $\widetilde{A}=\sigma \bar{A}, \widetilde{B}=\sigma \bar{B}$. Since

$$
|\bar{A}+H|=|\widetilde{A}||H|, \quad|\bar{B}+H|=|\widetilde{B}||H|, \quad|\bar{A}+\bar{B}|=|\widetilde{A}+\widetilde{B}||H|,
$$

Kneser's theorem gives

$$
\begin{align*}
|\widetilde{A}+\widetilde{B}| & =|\widetilde{A}|+|\widetilde{B}|-1, \tag{6}\\
|(\bar{A}+H) \backslash \bar{A}|+|(\bar{B}+H) \backslash \bar{B}| & =|H|-(|\bar{A}|+|\bar{B}|-|\bar{A}+\bar{B}|) .
\end{align*}
$$

Each element $c \in A+B$ satisfies either $\sigma \varphi c \in \widetilde{B}$, or $\sigma \varphi c \in(\widetilde{A}+\widetilde{B}) \backslash \widetilde{B}$.
We will now separately count the number of elements c of both types:

1. Since $\bar{B}+H \subseteq \bar{A}+\bar{B}$, we have

$$
\begin{align*}
\#\{c \in A+B \mid \sigma \varphi c \in \widetilde{B}\} & =\#\{c \in A+B \mid \varphi c \in \bar{B}+H\} \tag{8}\\
& \geq l+\#\{\bar{c} \in \bar{A}+\bar{B} \mid \bar{c} \in \bar{B}+H\} \\
& =l+|\bar{B}+H|=l+|\widetilde{B}||H| .
\end{align*}
$$

2. We have
$\#\{c \in A+B \mid \sigma \varphi c \in(\widetilde{A}+\widetilde{B}) \backslash \widetilde{B}\}=\sum_{\tilde{c} \in(\tilde{A}+\tilde{B}) \backslash \tilde{B}} \#\{c \in A+B \mid \sigma \varphi c=\widetilde{c}\}$.
For each $\widetilde{c} \in(\widetilde{A}+\widetilde{B}) \backslash \widetilde{B}$ fix $\widetilde{a} \in \widetilde{A}, \widetilde{b} \in \widetilde{B}$ in such a way that $\widetilde{c}=\widetilde{a}+\widetilde{b}$. Then

$$
\begin{aligned}
\#\{c \in A+B \mid \sigma \varphi c=\widetilde{c}\} & \geq\left|\varphi^{-1} \sigma^{-1} \widetilde{a} \cap A+\varphi^{-1} \sigma^{-1} \widetilde{b} \cap B\right| \\
& \geq\left|\varphi^{-1} \sigma^{-1} \widetilde{a} \cap A\right|+\left|\varphi^{-1} \sigma^{-1} \widetilde{b} \cap B\right|-1 \\
& \geq\left|\sigma^{-1} \widetilde{a} \cap \bar{A}\right|+\left|\sigma^{-1} \widetilde{b} \cap \bar{B}\right|-1 \\
& \geq 2|H|-1-|(\bar{A}+H) \backslash \bar{A}|-|(\bar{B}+H) \backslash \bar{B}| \\
& =|H|-1+|\bar{A}|+|\bar{B}|-|\bar{A}+\bar{B}|
\end{aligned}
$$

(we used here (7)). Therefore, in view of (6),
(9) $\#\{c \in A+B \mid \sigma \varphi c \in(\widetilde{A}+\widetilde{B}) \backslash \widetilde{B}\}$

$$
\begin{aligned}
& \geq|(\widetilde{A}+\widetilde{B}) \backslash \widetilde{B}|(|H|-1+|\bar{A}|+|\bar{B}|-|\bar{A}+\bar{B}|) \\
& =(|\widetilde{A}|-1)(|H|-1+|\bar{A}|+|\bar{B}|-|\bar{A}+\bar{B}|) .
\end{aligned}
$$

Summing up (8) and (9) and taking into account (6), we obtain

$$
\begin{aligned}
|A+B| & \geq l+|\widetilde{B}||H|+(|\widetilde{A}|-1)(|H|-1+|\bar{A}|+|\bar{B}|-|\bar{A}+\bar{B}|) \\
& =l+(|\widetilde{A}|+|\widetilde{B}|-1)|H|+(|\widetilde{A}|-1)(|\bar{A}|+|\bar{B}|-|\bar{A}+\bar{B}|-1) \\
& =l+|\bar{A}+\bar{B}|+(|\widetilde{A}|-1)(|\bar{A}|+|\bar{B}|-|\bar{A}+\bar{B}|-1) .
\end{aligned}
$$

Now (4) gives $|A+B| \leq(k-1)+(l-\delta)+l-2=|\bar{A}|+|\bar{B}|+l-2$, hence

$$
|\bar{A}|+|\bar{B}|+l-2 \geq l+|\bar{A}+\bar{B}|+(|\widetilde{A}|-1)(|\bar{A}|+|\bar{B}|-|\bar{A}+\bar{B}|-1),
$$

that is,

$$
1+(|\widetilde{A}|-2)(|\bar{A}|+|\bar{B}|-|\bar{A}+\bar{B}|-1) \leq 0,
$$

and the obtained inequality shows that $|\widetilde{A}|=1$. But in view of $0 \in \widetilde{A}$ this means $d \mid\left(a_{1}, \ldots, a_{k}\right)$, a contradiction.
4. Consequences. Two situations permanently arise in applications and are worth mentioning here.

The first is when B is a subset of A. This is an additional information, and we use it to reject in Theorem 2 the restriction concerning the greatest common divisor of elements of A. This also allows us to put the conclusion of the theorem in a more compact form, like that of Lemma 1.

The second situation is when we cannot decide in advance which one of the two sets A and B is longer. We have to pay for this uncertainty by relaxing the estimates in Theorem 2.

In this section, we do not assume that the minimal elements of A and B are 0 , so the definition of δ should be changed, to say, as follows:

$$
\delta= \begin{cases}1 & \text { if } A \text { and } B \text { are of the same length, } \\ 0 & \text { otherwise. }\end{cases}
$$

Here by the length of a set we mean the difference between its maximal and minimal elements.

We need also the notion of reduced length. For $A=\left\{a_{1}, \ldots, a_{k}\right\}$ put $a_{i}^{\prime}=a_{i}-a_{1}(i=1, \ldots, k)$, and denote by d the greatest common divisor of the elements of the set $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right\}$. Then the reduced length of A is defined by $a=a_{k}^{\prime} / d$.

Theorem 5. Let A be a finite set of integers of reduced length a, and $B \subseteq A$. Then

$$
|A+B| \geq \min \{a, k+l-2-\delta\}+l .
$$

Proof. We define A^{\prime} and d as above and put

$$
\begin{array}{llll}
a_{i}^{\prime \prime}=a_{i}^{\prime} / d & (i=1, \ldots, k), & A^{\prime \prime}=\left\{a_{1}^{\prime \prime}, \ldots, a_{k}^{\prime \prime}\right\}, \\
b_{i}^{\prime \prime}=\left(b_{i}-b_{1}\right) / d & (i=1, \ldots, l), & B^{\prime \prime}=\left\{b_{1}^{\prime \prime}, \ldots, b_{l}^{\prime \prime}\right\},
\end{array}
$$

so that $a_{k}^{\prime \prime}=a$ is the reduced length of A. Then our theorem follows immediately from Lemma 1 as applied to the sets $A^{\prime \prime}$ and $B^{\prime \prime}$.

The second situation of the two discussed above is covered by
Theorem 6. Define $d=\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}, b_{1}^{\prime}, \ldots, b_{l}^{\prime}\right), a=a_{k}^{\prime} / d, b=b_{l}^{\prime} / d$ (where $a_{i}^{\prime}=a_{i}-a_{1}, b_{i}^{\prime}=b_{i}-b_{1}$) and put $c=\max \{a, b\}$. Then

$$
|A+B| \geq \min \{c, k+l-2-\delta\}+\min \{k, l\} .
$$

Proof. We may assume $d=1, a_{1}=b_{1}=0$ and also (due to the symmetry between A and $B) c=a_{k} \geq b_{l}$. Then in the case of $\left(a_{1}, \ldots, a_{k}\right)=1$ we apply Lemma 1 , and otherwise, Lemma 2.

It should be pointed out that theorems of this type are usually utilized to estimate the length for a given value of $|A+B|$, like the following:

Corollary 1. Let A, B, a be as in Theorem 5, and assume that $T=$ $|A+B|<k+2 l-2-\delta$. Then $a \leq T-l$.

Corollary 2. Let A, B, c be as in Theorem 6, and assume that $T=$ $|A+B|<k+l+\min \{k, l\}-2-\delta$. Then $c \leq T-\min \{k, l\}$.

References

[1] G. Freiman, On addition of finite sets, I, Izv. Vyssh. Uchebn. Zaved. Mat. 1959 (6), 202-213.
[2] -, Inverse problems of additive number theory, VI. On addition of finite sets, III, ibid. 1962 (3), 151-157.
[3] M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459-484.
[4] -, Ein Satz über abelschen Gruppen mit Anwendungen auf die Geometrie der Zahlen, ibid. 61 (1955), 429-434.
[5] J. Steinig, On Freiman's theorems concerning the sum of two finite sets of integers, in: Preprints of the conference on Structure Theory of Set Addition, CIRM, Marseille, 1993, 173-186.

SCHOOL OF MATHEMATICAL SCIENCES
SACKLER FACULTY OF EXACT SCIENCES TEL-AVIV UNIVERSITY
69978 TEL-AVIV, ISRAEL
E-mail: SEVA@MATH.TAU.AC.IL

2/56 SMITH STR.
WOLLONGONG, NEW SOUTH WALES 2000
AUSTRALIA
E-mail: PAVEL@SBDEV.OZ.AU

