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ACTA ARITHMETICA
VII (1962)

On the representation of a number as the sum

of any number of squares, and in particular of twenty

by

R. A. RanxiN (Glasgow)

1. Introduction. We begin by considering the general problem of
determining, for any non-negative integer m, the number ry(n) of re-
presentations of » as a sum of s squares, where s is any positive integer.
Thus 74(n) is the number of solutions of the equation

2 2 2
T+ Tt T =N

in integers @y, &y, ..., %, Positive, negative or zero.

There is 2 considerable literature on this problem (}) and there exist
different points of view as to what constitutes a solution of it. It is well
known that it is possible to express rs(n) in the form

(1) ’I‘s(ﬂf) = 93(”)+Rs(") ’

where gq(n) is a “divisor function” and Re(n) is & ‘“remainder term’’ of
smaller order. For example, when s >4, gs(n) is of the order of n¥**
for large n and Re(n) = O(WJ?‘(S"”“) (e > 0). The function g4(n) can be
expressed in various explicit forms, for example as a ‘‘singular series”
of the type derived by Hardy and Littlewood, or as a summation over
divisors of n of different types. When ry(n) is only required ‘to within an
error of O(n“-’“"l), the problem can be regarded as having been solved
when g(n) has been found.

However, if an exact determination of 74(n) is required, more detailed
consideration is neeessary. Probably the most illuminating way of re-
garding the problem is in terms of the theory of modular forms, as was

(1) For a very readable account and references to literature before 1940, see [4],
Chapter IX and the notes at the end of this chapter. The most recent work on the
problem is due to Lomadze [5], [6], who gives explicit formulae for all s < 32.
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first done by Mordell [7], [8]. Write, in the usual notation for theta func-
tions,

(2) By = 95(0]7) = 2 Z q(n+-1;)z ,
n=1
(3) Py = 293(0"5') = 1+2an! :
| n=1
) 9= 0,07) =1+2 3 (1) ",
n=1

where ¢ = e~* and Imv > 0. Then, for any positive integer s,
(=<}

(5) 9= D rem)g".

n=0

s [10] o0t 11
Slolr T Tl o) U=[01]’

0 —1 N C 2 1
‘1:[ ] P=A"1UA:—U"“V=| ]

1 1 -1 0]’
7 @ b
e al’

where a, b, ¢ and d are integers satistying ad-—l be = 1. The set of all such
matrices T forms the full modulay group I'(1) and is generated by V
and U. The subset I'; of I'(1) consisting of all matrices 7'« I"(1) for which
] T'=I1 or T =V (mod2)
is a subgroup of index 3 in I'(1) and is generated by V and U2. Further,
the subset I'(2) of I'(1) and I, consisting of all 7'eI'(1) for which
T = I (mod2), forms the principal congruence group of level 2, which is
of index 2 in I%. :

The function 4, is an integril modular form for [y of dimension —%,

pos.sessing a multiplier system, which we denote by ». Le. v is a function
defined on I'y with the property that '

(6) , B5(0] Tx) = (e + )0 (1)95(0 )
for all v with Im7 > 0, Here

Put

and let

Tr = a,rfi—l}
) cr--d
and fractional powers of cr+d are determined by taking

% <arg(ev+d) <,
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The values of v(T) were determined by Hermite and ‘may be found from
Table XLIL of [15] (» =V = 0, u = 2, m" = —1). For each T e[}, »(T)
ig an eighth root of unity and, in particular,
(UM =1, o(=U"=-i (n=0,+1, £2,.),
and
(V)= e 7ilt, o(P)= ¢,
More generally, i
I(-Zi) gri@-nt (d odd and positive),
) o) = |
l(-{:) grite-21 (¢ 0dd and positive) .

In general, we write {I, k, w} for the set of all integral modular
forms of dimension — k belonging to a subgroup I" of I'(1) with mulbiplier
system w, and put, in particular,

By = {I%, &8, v}
for any positive integer s. Clearly 95 € Bs.
Tt 5 = 0 (mod8), (T) =1 for all T eIy, while, if s=4(mod8),
o [ 1 if 7'=1(mod2),
(8) I =1_1 it 7="7(moa2).

As a fundamental region for I'y we may take the region D of the
z-plane for which |Rev|<1, Im7>0 and |r|>1. The region D has
three cusps. Two of these, namely v = 41, belong to one parabolic cycle
at whieh 9§ vanishes; the third, namely v = oo, forms a second parabolic
cycle at which 9% takes the value 1.’

More generally, if f is any member of Bs, then f has an absolubely
convergent Fourier expansion

flv) = ; ang"

and takes the value @, at co. Except when § = (mod 8), however, f always

" vanishes at the cusps =1; for P is the “fundamental matrix’ (see [11],

p. 169) of the cusp —1 and v(P) =1 if and only if s = 0 (mod8).

The Fisenstein series in %, that is associated with the cusp oo is

I NV
(9) Go(r) = 3L () (r+ D

for s > 5; see [9]. Here the summation is over any maximal system of
matrices T of I'y having different second rows. ‘Write

(10) ) = D) eulm)d"-
2=0
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Then - ps(0) = 1 and, for » > 1,

%ﬂrnﬁs 1
11) oaln) = = Z Aam)
=1
‘where
k
\] g
(12) Ak(n) = ,_’}/ (%ﬁ) o~ minhflk ,
e

and Sz is the Kloosterman sum

k
(13) Snp = Z gimihi¥k
j=1
This is the “singular series” form of g4(n). Its expression as a divisor fune-
tion is, in general, much more complicated; see, for example, Suetuna [13],
Hilfssatz 7 (s even), [14], Hilfssatz ¢ (s 0dd) or Lomadze [3], [6]. However,
when s = 0 (mod4), we have the simpler expression

%a 3s-1 -
. -t s N7\ ga-gs)
W) el =5 T 2£rﬂ){ }d —ut Y (e,

din
d Odd deven

If we put
== ﬁg - Gs 3
then f, is a cusp form; i.e. f, vanishes at all the cusps of D. If &, denotes
the vector subspace of B, consisting of all cusp forms, then G, has di-

mension #; = [}(s—1)]; this can be deduced from the Riemann-Roch

theorem (see [11], p. 188) or, in this special case, by more elementary
methods.

In particular, %, = 0 for s < 8, so that fo(z 7) is identically zero for
8§=25,6,7, 8. When s> 8, the forms

(15) BV (r=1,2,.., %)

form a basis B;” for G, as originally shown by Mordell [7 1, [8]. It follows
that, for 9 < s < 16,

(16) 9 = G+ Co3 %0804 y
where [5]
2 22
Cﬂ:ffz" Op = 5, 011=-ﬁ, Cp=1,
_ 811 91 © 13 39
13—6_917 Oldaﬁa 015='{i:§, Cw——ﬁ.
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~ However, x;>1 when §>16 and the problem then is to find
a suitable basis for'€; and to express fs as a linear combination of the
cusp forms in this basis. For this purpose B need not be the most con-
venient basis. Another possible basis, for example, would be an ortho-
normal basis formed by means of Petersson’s scalar product

(17) fff Yyt dedy

where [ and ¢ belong to G and 7= x+iy (x, ¥ real).

It iy therefore relevant to ask what principles should guide one in
the choice of a basis. To answer this question one must know the purpose
for which r¢(n) is being determined. If the approximation p(n) does not
suffice, it would seem to be desirable that the remainder R4(n) should be
expressible in & form that can be caleunlated without too much trouble.

One method, which has been used by Bulygin [2], Glaisher [3],
Mordell [7], [8], Walfisz [16] and Lomadze [5], [6], is to express Ry n)
as a sum of.functions of the type

(18) ple, rs m) = § D) {(@n+im) + (@ —iw)}
where % and » are positive integers, and the summation is taken over
all integral solutions @, %, ..., % of the equation
m%+m§+...+wi = 1.
For example, when s = 20,

1296

64
—31—<p(12 1; n)—

(19) Ryy(n) = 317’

The identities
950408 = 16 D p(s—8, L m)q* (s >10),

n=1L

(4,2; n).

and
89404405+ 9Y0%) = 16 D) p(s—16,2; n)gr (s >18),
n=1

make it clear why functions of the form (18) appear. In fact, if s =1 (mod8),.
the x, functions

(20) - ) = 3 (= o) AT
m=0
(1 <7< #) form a bagis 2322) for ©; and
(21) fralz) = 4 D) p(s—8r, 15 m)g* -
n=1

In (20) the derivatives of &, are with respect to 7. For s =1 (mod8), the
funetion 9x9¢ P92, whose coefficients can be expressed in terms of
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summations over #(s—1) squares and }(s+1) half-odd squares mugt
be added to the functions f.s (1 <7 < x;) to form the basis BY. For-
mulae for Ry(n) of the type (19) have been given by the four authorg
just mentioned, and have been extended as far as(*) s =32 by ILo-
madze [5], [6].

Such- formulae are satisfactory in the sense that they are perfectly
explicit and can be used to give a numerical value for r,(n) in any given
case. On the other hand, if used for several values of n, the provision of
tables of the functions ¢(k,r; n) becomes necessary. If this has to be
done, it is not clear that these functions are the most suitable for the
purpose. In this connexion, it would seem that Glaisher had the right
idea. In this choice of cusp forms for even s < 18, he always preferred
those whose coefficients have multiplicative properties. It is rather re-
markable that, with the methods at his disposal, he was able to do this,
although he could not always prove the multiplicative properties suggested
by the tables he constructed.

For subgroups of the modular groups, our knowledge of these multi-
plicative cusp forms is still incomplete. In particular, for G, and s > 16,
these mulbiplicative cusp forms seem to be known only for s = 24. In
the case of 20 squares, however, I recently noticed that two of the three
multiplicative cusp forms of dimension —10, that I constructed by
elementary methods in 1946 [12], form a basis for €,, and the remainder
of the paper is devoted to the determination of Ry(n) in terms of these
cusp forms and to related questions.

2. Twenty squares. We write 1 and —1 to denote the multiplier
systems o8 and o* (= o), respectively; see (8) for the latter. Suppose
that Fe @y = {I3,10, —1}. Then clearly Fe G = {I(2),10,1}. Let
#g9, %320 a0 25 denote the dimensions of the vector spaces ©y, €, and
€ = {I, 10, 1}, respectively. Then

=2, wp=3, ouj=1.

As a basis for € we take single form

(22) B = Y wng” = s 0bsiolol— o))
ne=1
(23) = ¢—16¢*—156¢° — 25644 - ...
As a bagis for G, We may take the forms
(24) L) =D nn) g = 040solo8 —okot
n=1
(25) =q+228¢+ ...,

(*) When' s = 1 (mod8), formulae of a slightly ditferent type are required.

* ©
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and

(26) Pr) = 21/)'{(1’11)9” =y D505 04(05 -+ 2059%)
n=1

@) — g+ 482 —186¢° + T68¢* + ...

That ¥, ¥, and ¥ are cusp forms is clear; it is easily verified that they
belong to the vector spaces stated, and that ¥, and ¥} are linearly_ in-
dependent. The three functions form a basis for €5, In [12] the fgnctmns
v, ¥, and ¥} were denoted by Fs, G5 and G, respectively, theu"eoef-
ficients wy(n), yi(n) being denoted by fs(n), gs(n) and gi(n), respectively.
It was shown in [12] that the coefficients yy(n), y,(n) and yf(n) have
the multiplicative property
(28) p(mn) = yp(m)p(n) ’

whenever (m,n) = 1. Also, for any odd prime p and positive integer I,
the equations

(29) p(pH1) = p(p)y (") —pp (™)
holds for each of the three functions. Further
(30) p(2) =0, i) =316 (1>0).

In [12] no explicit formula for y,(2%) was given. However, by using the

eagily verified fact that

(31) Y (r) = Wy(r)— 64Fy(2c+1) ,
we deduce that
(32) w(2Y) = —160 (1> 0).
Also, by (14),
(33) omim) =4 { D &~ dZ (—1)%} .
n/glor:ld n{de‘gen
‘We have
(34) 822(0 |7) = Gylr) + AP(7) + A*PH(7)

where A and A* are constants to be determined. Hence

7o) = po(m) +Apn(n) + A*y¥(n) .
By using the values r,g(1) = 40, 75(2) = 760, ex(1) = 8/31, en(2) = 4104/31,
(1) =1, p(2) = 0, pi(l) = 1, y}(2) = 48, we deduce that
2480 .« 1216
A=—g5 4 =Tg
8o that, for n > 1,

(38) 7u(n) = ew(m)+ §§ (L85wi(n) + TopT(1)} -

28
Acta Arithmetica VII
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Tt can also be shown that Bulygin’s functions ¢(12,1; ») and
{4, 2; n) (see (18), (19)) are related to w(n) and vi(n) by the formulae

‘P(lz’ 1;n) = 5’%(”«) + ;’Pf(") ?
@4, 25 0) = Hp(n)+ Pypi(n) .

The functions @(12,1;n) and @(4, 2; ») are not multiplicative.

We note, in conclusion that the functions ¥, and ¥{ are orthogomal
in the metric on Gy; ie. (see (17) with s = 20) (¥, ¥¥) = 0. Further,
in the metric on G}, the three functions ¥, ¥; and ¥¥ are mutually or-
thogonal in pairs.

To prove these facts we obgerve that D’ = Dy VD is a fundamental
region for I'(2) and write

(f,9) = £ff(f)%—)yedmdy

for any two forms of ©,. Write Ve =2 = X +iY (X, Y real). Then,
since
Wo(Vr) = 70%(7),

(W, B)' = (P, B) + [ [ W) B8 dody
VD

Py(Vz) = —70%y(7)

= (B, V) +[ [V By (Vo) YeaXaY .
D
= (To; }[11)._.(1}’10, lPl) =0
and (¥,, ¥¥) = 0, similarly. Further,
2(¥,, ¥1) = (¥, PP

The doub'le integral for (¥, P¥) we split into two parts corresponding
to_tihe regions D, (z > 0), D, (x < 0) to which we apply the transformations
U™ and U respectively. Since ¥(v+1) = —¥(r) and

Pir41) = $¥PH(z)— § Polv)
‘we have

(¥, V1) = (¥, 1 Wom P0) = §(%s, Yo — (%%, ¥2) = —§ (%4, 1),

from which it follows that
(F, P1) = (W, ¥1) = 0.

These results on orthogonality with respect to I'(2) can also be deduced
frf)m Petersson’s.results on Fuler products for Dirichlet series associated
with cusp forms in €, [10] (Sitze 5, 6; note that ¥ = 2, t =1, e(n) = 1).
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