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Finally, if aigs12 > 0, we have by (34) for ¢, = ¢y(e)
ey > cgyttiate),
1<i<n/2
Thus we have to show that
oo > oz (2",
or, for sufficientl;r large C,
(38) yroelet s
Indeed (38) is trivial for sufficiently large ¢ and #, since from
gy >N, Y > A(n) > Ont and by (19) we have 1 < 80nt-q/(,

In the third case (7) holds. By (7) we have for ¢ >1,, a; > 1 (t/D)e,
Thus )

Cq

a; > ik

I<i<+ 12

yl-l-lllz —C,

where ¢, and éa are absolute constants. Thus we only have to show that

for y > IL*
(39) G

O\ e
Py T — ¢ > BT (—g) .

As before, it suffices to prove (39) for y = L% By (8), (11) and (19),
(89) follows from &®>+a=1 by a simple computation for sufficiently
large ¢ and = (if » is large y = I° is also large).

Thus the proof of our Theorem is complete.
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1. Introduction. Let [a, b] be an interval properly contained in [0, 1]
and define
£ = 1 if
=10
FE+1) =f(£).

f(£) is the characteristic function of [a,b] extended periodically. The
present paper is concerned with the distribution of the sums

a<ELD,

(1.1) 0<ti<a or b<é<l,

&
Z fy+ k)
k=1

which equal the number of terms among y-+&,y-+2%, ..., y+No with
fractional part in [a, b]. We assume that 2 and y are independent random
variables each with a uniform digtribution on [0,1] and show that

N

(log )™ Y (F(y+ ) — (v —a)

k=1
has asymptotically a Cauchy distribution. This is expressed in the fol-
lowing

TrEOREM. If |B| denotes the Lebesgue measure of the sei B, then, for

every real a,

N
(12)  lim P{(log_N)" 2 (fy +F2)—(b—a)) < a}
—+00 k=1

N

= lim } {w, y| logM)™ D (Hy+ka)—(b—a) <a, 0<@, y< 1”
N—»cc

k=1
o
1 toodt
- T J 14"

(*) Research supported by the National Science Foundation under project NSF-G
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¢ is a positive constant depending on b—a and given by (4.2) and (4.3)
below. It has the same value for all irrational values of b —a,.

In the first member of (1.2) we used P{ } for the probability of the
event between braces. This corresponds to the point of view that » and Y
are random variables. The proof is based on probabilistic techniqués
and written in probabilistic terminology even though the final result
can be stated without any probabilistic concepts as in the second member
of (1.2).

The present paper is a sequel to [4] where the theorem was proved
for b—a rational. We use most of the proof of [4] and only replace one
or two lemmas which were based on the rationality of b — . In the next
section we introduce Lemma 1 and show that the proof of [4] can be
taken over with minor modifications if Lemma 1 is used to replace
Lemma 2.6 of [4]. Lemma 1 itself is proved in Section 3. In the last
section we give an expression for o as a function of b —a. Some minor
misprints of [4] are corrected at the end of Section 4.

2. Reduction of the proof of the theorem. Let us first introduce some
notation, some already used in [4]. As in [4] we use probabilistic termino-
logy (*) and base the proof on properties of continued fractions. Any
number £, 0 < &< 1 can be written as a continued fraction ([3])

@1 £ = [a,(8), aule), ...

Except for the zero set of rational £ (which can be ignored) this expansion
does not break off and we can define for irrational £ the nth convergent
Palé)ln(§) DY

@2) Wé =1, @) =08, @ural8) = @118 (&) + gu-1(8),
Polé) =0, p(8)=1, Prsa(€) = Ani1(E) PalE) +Pr-1(&) .

On(£) is defined by (ef. (3 9) in [4])

(2~3) 5411(5) pn

and the functions U and V by

2\ sin2nkesi ) cos 2
Uz, q,y) = 5 n2xn zﬂmnkg](aﬁb @) Cos 2 Ky ’
k=1

(2.4)

.5) Vie,u,y) = __Esm%kvslnnhocm‘?nku

(*) P{E;} and P{E\|E,} are respectively the probability of the event F;, and the
conditional probability of B,, given H,. For any fonction g Hg () and F {g(x)|E,} are
Tespectively the expectation of g(x) and the conditional expectation of ¢ (x) given F,.
Similar definitions hold for functions of other variables.
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For rational b —a this use of U agrees with [4] and it was proved there
without assumptions about the rationality of (b —a) (cf. p. 464) that (1.2)
follows if one proves

(z~¢)log N

m Pl L
(2.6) lm Pl

N-—00

('—1)mam+l(m) U (%’Jyém(x) bl Qm( )73/7)1) = }

m=0

for sufficiently small ¢ > 0 and

(2.7) Limg(e) = ¢

8}0
Here 7 is defined by means of (2.10) in [4] and turns out to equal =~*-121log2
(cf. proposition 2 below). The probability in (2.6) is computed under the
assumption that @, ¥y, ¥, ... are (completely) independent random _vari-
ables, each with a uniform distribution on [0, 1]. By the Lévy continuity
theorem ([7], pp. 48, 49), (2.6) is equivalent to

(z—e)log N

(—1)™ s 2(2) U (5 Nom(@) , gnl) , ym)\

1l )
o(e)

for each fixed ¢ and this is the relation we intend to prove. Lemma 3.3
and most of the proof of Lemma 3.4 of [4] still hold even if b—a is ir-
rational. The difficulty starts when Lemma 2.6 is used on p 469 of [4].
Lemma 2.6 will be replaced by

LemMa 1. If b—a 4s drrational, then there exists a  sequence
= {k; < k, < ..} of non-negative integers of density zero (@.e. such that

i Beso [
(2.8) &EexpuogN “

_ep(

(2.9) limn~t {number of k< n} = 0)
N0
such that
(2.10)  lim Tm ) P{a(w) =bi, i =1,..., k}-log ¥ x
P00 k00 [
ke K
Nowoo
A }EGXP {1—01;1\7(_1)k+p+1ak+p+2(m) U2, Qerpea(®), y)} ai(z) = bi,
' v Ol
P =1,y Ty Greslo) < (0g P, =1,y p 2}~ (1o
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where
111

(2.11) c'rﬁ@fffdqut.dy Wiz, u, )|
000

and the expectaiion in the right hand side of (2.10) is computed wnder the
assumption that @y, are independent random variables, each wuniformly
distributed on [0, 1].

Before we prove Lemma 1 we shall show that it can take the place
of Lemma 2.6 in [4]. More precisely we prove the following

ProrosITION 1. If Lemma 1 holds then the theorem follows. For ir-
rational b—a g is given by v~ O~ with v defined in (2.10) of [4] and O by (2.11)
above.

Proof. Since the theorem has been proved in [4] for b — a rational
(except for the computation of ¢ given in Proposition 2), we may, and
shall, assume b—a to be a fixed irrational number.

Csy Ciay ... will be finite positive constants in the proof below. We
start with O, to avoid confusion with the constants in [4]. Let ¢ be fixed
and & > 0. Choose p, ky, N, such that for k> %, k¢ K, N > N,

1
(2.12) Tog ¥ {number of k; < rlog N} =< ¢,
and
(2.13) 3 Plada) = bi,i=1, ..., k}-log x
breeesbp
it
X Eexp{log 7 (~ 1 tsp1a(0) U e, Geinn(a), y)] a@) = bs
i =1, By Gps(w) < (log NP, j =1, .. p+2}-(1~_q—|1 <o
) rn logN/| ="

We start with proving the analogue of Lemma 3.4 of [4]. Till the top
of p. 4§9 no real changes are needed. Except for the fact that p is not
a function of ¥ now, we put as in [4]

N = %ar"'z s

o= {o] Sup 0le) < 10 & guyte) < exp (20 on )},

1<k<m2

it S .
fmlm, y) = exp{éﬁ.g(—l)s%ﬂ(m) U($ N84, gs(@), ?/8)}_1 .

a=0

icm
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Then we define r,(z), ry(x) and fn(z,y) as in [4] and without change of
the proof one obtains for p <m < (v—e)logN (dropping for shortness

- the argument # of several functions)

it m-+ T T
010) | Bhate, 1) (o0 oy (10" s UG8 s, ] 1]
T R
1
[y fa|inte,n+1) [eolggy X1 an Uten g w1
0 dm 0 - =7

1
H it
% 6’ (GXP {@(*1)%1%% C(2m+1; qmt1, ?/m+1)}~1)dzm+1

_ Cup{loglog NY?

+Cpd ('r;)eXp(f (m “P)B(W))

<7 (log M)
rifz)—1 "
\ loglog N [
4 Cllog NPT N exp ((%+17)(m——p))—i— O ———8%);1%;2 J dz Z Agp1(T) -
Gm s=ry(x}

The expectation in (2.14) is computed for z, Yo, ..; Ym+1 independent

1
random variables, each uniformly distributed on [0,-1]. Of dy stands for
1 1 1 1

1
[ Jdy,...Qymsr and [de stands for f..fdz,...dem—p. A(n), B(n) are
0 0

0 0 0

positive constants introdueed in Lemma (2.1) of [4]. Tt is important to
realize that ry(z) and fi-a(x,y) depend on z only through the values of
ay(T) 5 vy Gin—p(®). L6t mOW M—p¢ K, m—p>=k, N>DN, We then
evaluate in (2.14) first the integral over 0 < Ym+1; Zm+1 <1 and zeGn
with ai(z) = b;,-1=1,...,m—p.

m—p

1
: . it
[(#1—1(~177 y)+1) ’ exp {@ E (— 1 ag1 U (255 s ?/3)}dz_1]
0 §=ry
is o constant in this region and the integral of

exp {E'g'j‘y (*1),"+1am+2{-"(2m+u m+1,y ym+1}"‘1
becomes
- Plag(m) = by, =1, ..., m—P; Gm—pri(®) < (log NP, j =1, vy P2} X
< (Blexp (jogp (1" eV e, g ) ae) = i, =1y =2,
imepes@) < QoGNP [ =1, p+2)=1)

25%
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Summing over the possible choices of by, ..., bim—p for @ e @, gives then,
by (2.13)

(2.15)

! 1 . mop
Udy fdm [(ﬂrl(ac, y) + 1)] eXp{FZTV 2 (= 1) %541 U (s, s g/s)}dz._]} %
0 Gy 0 8=ty

it -
X f (GX]} {lﬁg_l\; (— 1)”H ' Gtz U@ma1y Guty Yma )} - 1) dﬁm_'.l
0

1 m—p
—1 &
_J d"f fdw[ fn—l ] J +1)_J exp :10g‘N (’“1) Qg-|-1 U(z.»’ (s ]/.w)}lf:!-l] >
Gm 0 _—
: o \’\ o 2
( O]ngN) “logh -
TFinally,~as in [4] we can reverse the steps to show
(2.16)
1 ' 1 m-p
, ; it
| Jay [ao] s, 47) [expie 3 (—1fava Uteas g, mlfas—1x
0 Gm 0 s=7
ol Ol
i Olog N Efm 7/)lgﬂ
) —1
_ ¢, ploglog ¥ e O N
OuLgE S + Cad (mexp(—m—p) BOn) + (ot j i Q(J)amm.
8= ()

Combining (2.14)-(2.16) one has for m—pé K, m—p>=k,, N =N,
p<m< (v—e)logh, '

[ 21
(2-17) !Efm("ry f';/) (exp {i@ ("‘1) ik Am+2 U( Nam+15 Gnt1y Ymet 1)} 1)

+ Bfm(e, y)C J’ I

loglog N)? ;
<20, 2E T 20,4 (nexp(—on—p) B ()

+ Cpa(log NPyt exp (('1—5 + 77) (m —~p))

71(0) -1

10g10g]V 2

9 i
+ 205 logN J dx pa m“.wIL ORE logN i
Moreover, for any m, by, ..., by

1
” it m .
(2.18) ‘ jf dydzE{exp (i@ (“1)1 Ham+2 U(z; Gn-i1y ?/)) [(l[(.ﬂ) = by
00 ’

1
t=1, .. ,m-{l} ‘ Cy

log N

©
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(cf. (3.5), (3.41), (3.50) in the next section) so ‘that, replacing 1 by

Cis
logN
which p < m < (v—¢)logN.

Notice that (2.13) also implies

in the right hand side of (2.17) makes (2.17) valid for all m, for

-1

ol |

(2.19) Tog ¥ |

am+2LT(%N5m+ly Gin+1, ym+l)}"‘1+

O
(1ogN i

N 2
+ Cllog NY" N~ exp ((\—1 + 17‘) (m —-p)) 420

— + Cyp 4 () exp(— (m —p) B())

log N
if m —p ¢ K, m—p=ky, N=N, For other m (2.19) again holds with

(o
] og? V replaced by og ¥ *

We now complete the proof as in [4] by Lemma 2.7 in [4]. More
precisely, from the proof of Lemma 2.7 in [4] and (2.17)-(2.19) one deduces

(2.20)
(r—-£)logN (r—g)logN'
1 . Clt
!Eexp {1 ¢ (—1) nam+1 U(é ]\76"1(;1!) H Qm(x') H ym)} - ” (1 iz)’r;";\i?)l
08 m=loglogN m=loglogN'
r—e)logN
/0( og? E . l MC[U“[
S expl CLnL+1 U('g.k 61)1( ) ] q:u 7 llm)j 10g—l\‘v |
m= ]nglng\
(z—e)logN

+ 2 ‘Efﬂl(xy y) (GXIJ {TO% (Al)m—:'lam%—z lv(gjl\?émw%la Gm+1, ;),/17L+1)}—1)
m=loglogN' °
o
"‘Efm ‘I; )/ lOg 7\71
(z—-e)lozN
p(loglog N)* ) .
< 0,43-(#1%55%4)v+ Cua Z A(n)exp (—(m—p)By)
{(z—#)logN 1_
T

+Cy 2 (log NY*"*N " exp ((

m=loglog\'

m=loglogN
+ n) (m —P))

(r—e)logN rile) -1

, loglogN [ Y
+ 0y 2 Tog N j dx 2 s31() + Crats

m=loglogN' Gm s=ry(x)

1 2
+ C’ulogN{number of T; <tlogN, ke K} .
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Tt was shown in [4], pp. 469, 470 that the lirst four terms in the vight
hand side of (2.20) tend to zero as N oo and the last one is at most 0y¢,
by (2.12). Finally
loglogN'
BENI ol
logV L

m=0

— 1)t U(%Ném(-“’): ¢nl(e) ?Im(«”)) -0

in probability (e.g. by [7], bottom of p. 322).

(r—a)log\’
; oy _
AIJ]_{I; !1! ( —EEW).—expC(-z e) |t}
so that
(z—s)logN

i it \' m ¢
1.:[]]:?; Eexp]?;j—v ﬂ%} (—1) amt1 U(?}F-Ném(m), (), ?/m("l")) - OXP Clr— 8) [tl

< 2046 .

Since & > 0 was arbitrary this proves (2.8) with e(e) = 0 v —e)"

the theorem follows.
The proof of the theorem has therefore reduced to the proof of Lemma 1
which will be given in the next section.

and

3. Proof of Lemma 1. Unfortunately, we have not been able to find
a short proof of Lemma I. The proof will therefore be broken down. into
geveral lemmas. The present p1oof shows resemblance to the proof of
Theorem 4 in [2].

First some new notation. For any 0 <

u, v <1, put

w_y(u,v) =10,
(3.1) Wo{th, V) = U,

W%, V) = ag(@)we—1(t, v)+ we—s(u, ), k=1,2,..

Actually w, depends on z also and iy therefore a random variable when-
ever » is. We usually don’t exhibit this dependence. Using (2.2) one shows
by induction

(3.2) wilu, v) = q(@)u+pe(z)v, k=0,1,..

If » is again uniformly distributed on [0, 1] and 4 is some condition
on 2 we put

(3.8)  wlr, 8;u, 0| A) = Blexp(2rirwy(u, v)+ 2niswe(u, v)) |4} .

Before proving the next lemmas we recall some facts about the distribution
of continued fractions (most of which appear in [7] and have been used
in [4]; also {5] containg some of the material). 0; again denotes a finite
positive constant.
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For any measurable set EC [0, 1] put

1 [ dt
”(E)zl—og_sz 1xt-

This measure is stationary ie. u{®: [a(®), as(®), ...] € B} = u{r: [ax(),

appr(#), -] € B}. For any set I of the form Ky = {r: ar+i(®) = bj,
j=1,2,..,n} one has uniformly in ¢, n, a5, b;

3.4)  |Ploedh|ae) = aj, j=1,..., ¢} —p(Bo)| < Cusls~u(B)

for some 0 < A3 <1 (ef. (2.6) in [4], [7] or [8]). Also, for all ap, ..., ax

(Br) Cuspt{ B) -

Moreover, P{z ¢ Ex} depends mainly on the digits just before k, i.e. for
s=—k+gq

|Pi@ e Brlag@) = ar, 1 =1, }
—P{m e Bryo| apaala) = a7, § = b—gt1, s B <

(35) O5'u(B) < PloeBilafe)=a;, j=1,...,k <

(3.68)

GISAS“(EKT)

This follows from [7], p. 292, formula 8 and bas been derived more ex-
X 1 1 .

p]icity in [1], pp. 355, 356, footnote 6. Since l—o—g—z-m, the density of y,

is continuously differentiable and since with aj(x )— @) j=1,..,k
fixed, # can vary at most over an interval of length 217 % , A >1 (ef. (2.3)
in [4]) one has also

3.7 p(Belaf@) =a;, j=1,., k)

- {_1__ Jﬁ_} J
= log2 e 1+t¢ 10g2 £1+t
o tsE;-
* —1
-] 4

aj(t)=aj
iLI,...,k

at(1+2 04, %)
b |
te By

= P{By| aw) = a5, ] =1, .y with |6} < 1.

k(1 +2 6057

Since u(EBxlai(x) = a;, §= k g+1,..,k) is an average of expressions
w(Bylajz) = a;, § =1, ), (3.6) (3 7) combined give

:a,j’j:k——q—!—l k}
— (B lag(z) = a;, 7"7‘ q+1,.

(3.8) | P{Bk|ase)

5 )| < Coolie (Bi)

for some 0 < A < 1.


GUEST


364 0. Kesten

LemmA 2. Let Ay be arbitrary conditions defined in terms oj Wper1(),
@eyo(®), ... and let B stand for the condition ax) = a;, §=1,.., q. Then
for r,8 % 0,0

(3.9) ffdudulma 85 u, v|4g, B 1"\ Oyl

where Gy, depends on 7,8, ¢, ..., ay and A is a constant with 0 < J < 1.
Proof. Write

P {my, my, my, my)
= P{qk(w) = My, Qo—2() = My, Pu(@) = My, Pr—y() = Ny ' Ay, B} .
Then using (3.2)

11 11
ff dud'vlvk(r, 85, 0| Ay, B)!2 = ff dudv 2 P iy, my, mg, Mg} X
6o 00

1<my<<oo
=1,...,

X P {mg, mg, My, Me} X
x exp{2miu(r (my —mg) + 8 (1, —my)) + 2mein(r (g — M) + 8 (0, — mg)) }
Z P {mg, mg, my, mg} Z P{ml, My, Mg, My}

M550eesMB TNy +8Ng =My +Shig
rmy+smy=rmy+smg

< sup P {rqu(®) + $qi—i(z) = m, TPR(%) + $pi-1(@) = n| Ay, B} .

m,n

But ([3]) for any &

o 1 mﬂmn4<me_
a(&) 7i(€) Ge-1(£)

0(€) Gre—a(£)
and for some A >1 (cf. (2.2) in [4])
G €) = I

’

so that for m = 0
(3.10)  Plrgp+sq_, = My P+ 8Pr-1 = n | Az, B}
P{"Qk-quk-l =m, |@(ig+ sgp-1) —n| < <l |+|6I B}x

o PXARIT G+ 8qu-y = m ) rpy+spy = n, B} .
P{B}- P{4;|B}

} PlA|rgr+8qes = m , rpy-+spp_1 = n, B}
P{B}- P{4;|B} )

n
&L——

m

S

<+
mll

<P{

By (8.5), for any @iy ooy Qpey byy oy by

(3.11) Pldslafe) =ap j=1, .., By _
Pldp|as(e) =3, =1, % S

-
(118

©
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and of couwrse

Plx-ﬁ!/ﬂtjﬂ} 2|42
mll M /1{‘

so that the right hand side of (3.10) is at most

3
Ows(r] + Is)

. 2

If m = 0, then by the second member of (3.10) we can only take n = 0
also, as soon as A > ||+ ls|. But then the probability in (3.10) equals
Pt _, Pi
e 4 q

zero. since with probability one. This shows (3.9) for sufficiently
1

large & and by proper choice of Oy, for all £ > 1
LemmA 3. Let A stand for a;x) =a;, j=1,..,q and let I, 1, be
arbitrary intervals contained in [0,1]. Then for any ¢, ey € (%)

(3.12)  Lm P {wy(u, v) ¢ I; (modl) , wp_i(u, v) € I, (mod1), Ap—y1j = G,

P00
j=1,.., tlA} = JIIHIZ|/“(a7'("r) =65, J=1,.., t)
for almost all w, v. (wp(u, v) e I, (mod1) of course means that the fractional
part of wp(u, v) lies in I,.)
Proof. Let us write B, for the condition
Ap-t47 =01, J=1,..,1
and let us drop for shortness the expressions “modl”. Since we know

(cf. (3.4))

lim P{Bpla;z) =a;, j=1,..,¢} = /‘(a'j(ﬁ) =0, j=1, "'7t)

P00

one only has to show

Lm P {wpy(u, v) e I, wp_1(u,v) e | 4, By} = |L||I,] a.e in u,v.

P00

=5

The convergence of Y ;4% and Lemma 2 imply (cf. [9], p. 345) for
E=1
#,8% 0,0

(3.13) lim v, y(r, 85 u, 0| A, Bp) =0 ae in u,v.

P00
Of course, for all u,v,p =1
(3.14) vp—t(0, 03 %, 0| A, Bp)=1.

() || denotes the length of the interval I.
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(3.13) and (3.14) show that the Fourier coefficients of the distribution
funetion
Pl{wp_iu, ) < ¢ (modl), wp—s—1(%,?) < (mod1)|4, By}
converge to the Fourier coefficients of the distribution funetion
Gla, p)=a*f

on the unit square. Consequently (compare [9])

Lim P {wp—s(t, v) < a(modl), wy_i-1(u,v) < B (mod1)| 4, By} = af
P00

in the weak sense a.e. in u, v. It is easy to see that if the fractional parts
of wp—4—1 and wp—; are uniformly distributed on the pnit square, then so
are the fractional parts of

Wp—¢ and  Wp-111 = Ap—t41Wp—i + Wp—i—1 -
By induction one has therefore
Hm P {wy(, v) < a (modl), wp-1(u, v) < f (modl)[4, By} = of
D00

in the weak sense a.e. in u, ». This means that for any continuous func-
tion g(a, B)

tim | [ g(a, B)dP {w,(w, 0) < o (mod1) , wp—s(u, v) < f (mod1)|4, By
P09 9

~ [[g(a, Bydaap.

Approximating the characteristic function of I; X I, by continuous func-
tions, it is now easy to complete the proof.

From now on we take b—a irrational and pu{;
0=b—a.
Furthermore for any event E we put
Fi(y, 1oy B) = P {wi(6, 0) e I, (modl) , w6, 0) ¢ Iy (mod 1), B}

and similarly Fy(, I,, B|F) for the conditional probability, given F.

LemMA 4. There exists a finite constant Cy such that for any con-
ditions Ay, defined in terms of @p41(%), Apio(®), ... only and arbitrary in-
tervals I,, I,, contained in [0,1]

N->00

1 v
i = ) Py, Iy, Ai) < oLl Lol a(4o)
k=1

icm®
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Proof. Again it suffices to prove (cf. (3.5))

Nn—+00

n
Tim DL, L) < Cull 11
Fix I, and I, and let
M= {my <mia< ...}, t=1,2
be the sequence of all integers for which
fractional part of mfe I;.

By the uniform distribution theorem of H. Weyl[9] and the irrationality
of

(3.15) }‘i-l)lclo%{number of myy<ny=\L, i=1,2.

By (3.2) wi(8, 0) = qu(2) 6, so that

n n
1\ 1\ .
816) 5 D 1) =3 2P (@o) €3y, G < I
1 N ]
== Pigu(a) = ma,jiy Go-rl®) = Maz} -
k=1 wmy,j€M;

We split the sum in the last member of (3.16) into two parts. The first
part over
m’Z,i; > e?nlr

and the second sum over the remaining pairs m;

n

317) D) D P{a(®) = Mus, qeal®) = M)

k=1 mijeM;
ms,j’;aﬁﬁ/l

< P {gnr(w) > €M} >0 (n—>00)

(Lemma (2.1) in [4]). Now for any fixed ney, M2y @i = M1, Q-1 = M2
implies
My g®) '

(3.18) = oy = ) Lok, s ()

Since m,/m, can at most be expanded in two ways in a finite continued
fraction ([3], p. 136, Theorem 162) there are at most two possible choices
of k, say %, and k,, and the corresponding ay, ..., ox in (3.18). But a(x), ...,
ax(z) determine px(x) uniquely, so that there are also at most two choices
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for pi(@), sy Pr, and pr,. THUS gu(e) = My, G-2(2) = My is at most possible
for k =k, and

‘m__—’ﬂi - %
my| M
or k =k, and
o—Phl < _];) .
my my
Consequently
n
4
(3.19) D Piga) = mj, Geal®) = Mes} < g
k=1 Lt

whenever msj, < Mg, When gz, > My, the sum in (3.19) is of course
zexro. We get now for our second sum

(3.20)
1 SR
= = Mot <
§ P{ge(@) = Mgy Ge-a(®) = Map} < Loy
k 1 mije Mi Me, o< EMT My, 11>, Ja
M, Jy <R nig g€ My

By partial summation one sees from (3.15) for ¢ =1 and sufficiently
large ms,j,

S 48|l
(3.21) Z A8

m;.ﬁ M, jy

T, 1 >M2sge
ml' i€ II.[’)

and then from (3.15) for ¢ = 2 for large =

- (3.22) 2 8IL| 14

M2, 1y
g, g5 AT
Ma,fs € My

2
p2nlt

The lemma follows from (3.16), (3.17) and (3.20)-(3.22).
LEMMA 5 (). Let Ay stand for

i@y =a;, §=1,..,q.
Then for each r,8 0,0

n
-— 1 ‘
lim ﬁélm(r, 85 0,0]d)2=0.

Proof. Write By_n(b;) for
Opmvi = Dz, t=1,..,1

(*) Lemma 5 and (3.30) are only used to prove (3.39). It would have heen simpler
for this to formulate lemma 5 and (3.30) without the conditions A resp. dx(a). On
the other hand it is interesting to find out whether the limit relation (3.30) holds in
general, without the restriction & ¢ K.

©
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Then for each t < m

1y : .
(3.23) EZ| wilr, 850, 0] Ay)|
=1
1 n 11
m .
<P42 V|3 [ [ @unFial10, 01,10, 01, By m(bi) | 44 X
“Fe=mA1 bp.ndp 00

% Blexp(2mirwy 8, 0)

[

+ 2miswy-1(6 0)) | Breoml(bs), Aiy Wi-m() = w0, Wp_pp—1() == ,v}l?

n
m o, 1 .
\‘: “‘ + ]“I Z 2 ff du,rFk~ 111([01 ‘ll'], I_O, ’I‘], B]c—l:z(bi) 1.:1}9) X
“k=m+1 biyeenbe 00

><|D {exp(2miri (6, 0)

+ 2w iswp_1(0, 0)) | Bi—m(Ds)y Apy Wpem(®) = 1, Wy 1 = ru}lﬂ .

For wi-m = U, Wr-n-1 = fixed, w;_,(0,0) and wy(6, 0) are deter-
mined modl by
Wr-m+1{0, 0) = ag_mra(x)U+0,
Wi—m+2( 0, 0) = C—m+2(T) W-m+1(0, 0) 41,

that is, wi—1(0, 0) and wy(0, 0) are formed in the same way as wy—1(4, v)
and wm(u,v) except for the difference in distribution of ar—m+1, ..., @
and the distribution of a,, ..., a,,. However, given ay_msi(x) =b;, i =1, ...,
the dependence of ag_y41+1(2), Qp—mytea(), ... ON (), ..., Gp—m(x) 18 very
small as evidenced by (3.6). Using (3.6) we may in fact write

(3.24)

E{exp(2rirwy(0, 0)
+ 2riswy-1(0, 0)) | Be-m(bi), Ag; Wp—m(®) = %, wr—m-1(2) = @}
— Blexp (2rirwa(u, v)+ 2niswn_1(u, v)) | By(bi), Am}] < Ol

Substituting this in (3.23) one obtains

n

Rl 5
(3.25) E/"_'f vil?y 83 0; O‘Ak)e‘
11 1 ”1:—41
» LR
< +zomz§+12’ /] d{ﬁr\-’ F4(10, 11, [0, 0], Be(be)| Auen)) x
D1seeiiliy 0 o ==

X

vn(ry S 10, 0] Bo(by), A,,,)}2 .
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Since for fixed m, ym(r, 83 %, v |By(bi), An) 18 & continuous function of u, v
and uniformly bounded for all by,...,b;, one obtains from Lemma 4

and (3.5)

» [0, ], [0, 01, Bulbi) | Arim)
(3.26) hmblZ “d L ka 0, ul, [0, 0], Bu(b) | Axs }

..... ‘vm('ry 85 %, 9| Balbs), m”

11

\ olbi); Am
< O _)_j'ft——(zl—((b;—)ﬂ:)————)!ofdudvlvm(r 851, 0| Bo(bi), 4 )‘

brsaabt

Hence letting n—>oco in (3.25)
1 n
(3.27) T Z (oa(r, 5 0, 0] Az

“ Bo (1), Am)

’m

11
< 203173 + 0y Z fd%dﬂ!wm(T, 85 %5 0| Bolba), Am)‘g '
F .

.....

First we ehoose ¢ large to make 20211§ small. After ¢ is fixed m can be
chosen so large that the last term in (3.27) becomes arbitrary small by
Lemma 2 and the uniform bound |w,? <1. This completes the proof.

- LEMMA 6. Let Axy(r, a;) stand for
Gpri(@) =5, =1,y Qrrpna(®) =7.

For every interval I C[0,1] there exists a sequence K= {k, <<ky<..}
of nmon-negative mtegers of density zero (i.e. satisfying (2.9)) such that for
every fized q and a, ..., aq

fm m Y Plade) = bi,i=1, .., k}x

x sup | P{wesp(0, 0) € T (mod1)]as(@) = bs, i =1, .., by Aiplr, 05)} - I
r < Cpdf .
Proof. Let us put
Awlas) = {apes(@) = ag, §=1,..,4}.

By Lemma 5, for each 7,8 # 0,0, a4, ..., a4

1 S‘;W 50, 01Aka,)|

00 7

@ © .
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A familiar argument ([6], pp. 258, 259) then shows that there exists a se-
quence K = {k;} of density zero such that for all r, s # 0, 0, and a,,
¢g=1,2,..
(3.28) Hm sy, 85 8, 0] Axlas)) = 0.

K—on

kéK

ey Ogy

Of course, also
(8.29) (0, 05 0, 0] dxlay)) =1 .

.It was already pointed out in the proof of Lemma 3 (cf. (3.13)) and (3.14)

that (3.28) and (3.29) imply
(3.30) Lim F4{[0, ], [0, o] | dx{ay)) = G(u,v) = u-v

kéK .
in the weak sense(*). In other words, the joint distribution of wy(6, 0),
wy~1(6, 0) (mod1) tends to the uniform distribution on the unit square,
independent of ayy1(x), aris(x), ... a8 ko0, k¢ K. This would practically

imply the lemma if r were flxed and no sup .over r were taken. In order
to show that we have sufficient uniformity in » we write

(8.31) = wy(, 0) (modl), A= wp_1(8,0)(modl)
if ai(m)-—_bi, ’i=1,...,70.'

Strictly speaking .« and § are functions of a,(z), ..., ax(z). However, just
as in (3.24)

(3.32) |P{wk+p(0, 0) e I (mod1)|dpy(r, a5), afz) =b;, i=1, ...,k

— Pluy(a, ) e I (mod1)| 4o,(r, a5)}| < €
Let us now estimate

sup [P{wp(a, B) e I (mod1)|doy(r, as)}— !IEi .

Let Bp(e;) stand for

Apri(@) = ¢, 1=1,...,1.
Then

(3.33)  Pfwp(a, f) < | dop(r, ay)} _
= D Pgla, ) < I, Byles) | doslr, a,))

N\ Plgla, B) e I, Byle), Aoag)
T P{Aa;)} :

. Plagu(a) = r|wyla, §) ¢ I, Byleo), Aofa)
P{apia(z) = | Aoas)} ’
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Since Bp(e:) 1ixes ap_ti1; ...y dp, One has by (3.6), with k replaced by Pyq
by ¢ and s by 0,

lP{a'p+1(w) =7 |wp(a7 B) e I: By(ei), Agfa))y—Plapi(x) = ""%Bp((?f)}‘

< Cmﬂ#(%g(ﬂp) == 1‘)
and by (3.8)

| P {aps1(@) = 7| By(es)} — p (apsa() = 7| Byles))
Finally by (3.4)

EP{%H(W) = V|Ao(“j)}‘ﬂ(am+1(‘ )= 7)[ Oty ™" ((lp i(z) = T) .
Thus

< Ophlp (‘I}H‘l(m) = 7) '

(3.34) Ip{al’ﬂ(m) =7r|wp(a, f) e I, Byle:), [n(“f)} - Jdp ra(m) == 77 | Byle )

P{a«p+1 ——’) ‘A } (az,\l *?)
< Oplls+ 2+ 571,
Moreover, by (3.5) and (3.34) both ratios in the left hand side of (3.34)

are bounded. There exists then for every ¢ a finite set I of ¢ tuples ¢, , ..., ¢
such that uniformly in «a, 8, a, ..., @, and »

4 B} L
(3.35) 2 P{Bp(ci)|A0(a7)}‘i(f‘1i_m 7| By )g .
it 6 F :“(am l(ﬂ) = ‘)‘)
as well as )
(3.36) D 1 (Bo(6), (@) = 1)

i F !‘(%H(m) = ")

Combining (3.33)-(3.36)

(3.37) sgp|P{wp(a,5)eI|AMv a;)— |1\}[ < e+ Op(A+ 2142579
Hupi Plug(a, ) e I, Byles) | dofay)] p(Bylcr), apia(w) =7)

U
T epioaer # (By(e:) w(apiale) = )) : ll
< 2e+ 022(1; +ll+3§’~q)

+sup #(Bpler); apia(w) = 7) | Plwgla, B) € I, Byles)| Ao(ay)) "
wmer  Blap(@) =17) w4 (By(ed) hl
The lemma will therefore be proved if we show for each ¢, ¢y, ..., ¢

— O
(3.38) Iim lim \ Plafaw) = by ,4=1,..,k}x
Do k-ro00 I’l i
kR

» % f{wﬁ{ ﬂ)e[ L]} !.{1 a;} I[‘ -0
# (B,,(c,))

©
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Let s recall now that «, # are functions of a;(w), j = 1, ..., k as defined
n (3.31), and that (3.30) states

(3.39)  lim D Plafw) = by, i=1,.., k)
kéK gfu
:%1m Plug(0,0) <u (modl), we_1(6, 0) < v (modl)} = u-v
KEK
in the weak sense. Even though
Plwy(a, B) eI, Byle:)|Aglas)}

is not strictly a continuous function of a, § it is easy to deduce by a simple
approximation argument from (3.39) and (3.12) that

N \ 1
lm Y Plasa) = by, § = 1,0, )

P—00 k00
K

P{w,,(a, B) e I, Byle:) |Ao(a'7')}

I

H(Bp(ci)) il
T Plwy(a, B) € I, Byler) | Aolap)} |
—,}LTJ f dats #(Bolen)) —H=

Recall that u is stationary and thus u(Bu(6)) = plala) = ¢, i=1,..,1).
As remarked before this proves the lemma.

Finally we can prove Lemma 1.

Proof of Lemma 1. By (2.7) in [4]

Plagii(w) > (logN)® for some 1 <j<p+2lafe)=b;,i=1,..,k}

2(p+2)
S log Ny’

50 that we can leave out the condition
arri(®) < (logNP, j=1,..,p+2

in (2.10). By Lemma 6 there exists for each interval I a sequence K of
density zero, such that for all ¢, a;,..., @

uniformly in by, ..., b,

(3.40) Tim lim Y P{aa) =bi, i =1, .., k}X

P00 f—00
X 5up | P {wg45(0, 0) ¢ I (modl)|aye) = bi, i=1,...; %, Aralr, ap)}—|I}|
‘ < On2d .

Acta Arithmetica VII 26
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259 we can choose a sequence

Using again the trick of [6], pp. 258,
K = {k; < ks < ...} of DOD- negative integers of density zero such that (3.40)
i+l

holds for the countably many intervals [ﬁ’ —-n—) y 1=0,1, .., n-1;
n=1,2,..

‘We shall prove that this sequence K satisfies the requirements
of the lemma.

Notice that U(z, ¢, y) = — U(1—z, ¢, y) so that for any condition 4
on &

11
3.41) JldydzE{exp( e A g ) U, o), ) | 4]
0o

) 14).

Moreover it is easy to see that the right-hand side of (3.41) depends on
Qr+p1 only through the value of guipsi(2)0 (mod1). Now

i
_“ dydzE{ooq(lb—gNak or2(2) U (2, Qesp(

11
. P §
(3.42) fdl/dzE{COS(ﬂ)'g*ﬁ ak+,,+<_»(m) U (z, Qo+ p+1(2) y)) -1 | ai(®) =b;,

ie fj i ) D Plawei(a) = 05 =1, 000,

ak-{-11+2(m) = 7"“1?('7’)

ir .
' X E{COS (E)EN: U(Z: Qk+1)+1(56) ) :l/)> —1 | ai(as) = bi, = 1, ey

=Dy i =1, .., k} x
/11, AhmA’.l(’)', (L/)} .
For shortness we shall use the abbreviation

By(bs) = {agw) = by, i =1, ..., k}.
Let ¢ > 0 be some small number and choose 7 = n(e) such that

(3.43) sup |V 2y Uy, Y)—V (2, Us, Y)| T &

EAIRETESY
and put :

| e i)
Then
11
.

(8.44) deydzE{cos(]ogNl (2, Gerpia(@), )) ~1|Br(by) , .Aln‘;rl-[()‘,(ll)}

n—1

= D Pl psi(0)0 € I, (mod1) | Blb) , Ayl g
im0 11 ‘
11 "
X;LJOJ dydz {du(cos(l gNI (2, ‘u,_z/))—-l)

+ 6,

ir r
cos ng—jﬂ (2, Uy, y)— cosﬁé»ﬁ V(z, i, g/)i

sup
V22, [ Uy — e | <n

icm

©
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for some 6, with |6,]<C1. Let us first estimate

(3.45) E EP{“k+i(-Tf) =a;, j=1,

4y Oprpis(®) =T IBlc
Apyennsllg T
1 i 7 1
P SU [ V(z Y) —eos —== V(2 .
y,z.\u,._ﬁ\gm log N (25 w1s ) IogNT (25 s y);

?Q: g 171—( ) =17 ‘Bk(b )}
Cs (r+1p _ Oy

= Out{trpealt) = 1) = log2 °r(r+2) S

so that (3.45) is at most

elog N logN/e 0o o
1 1 r
Mo Ny ,Yj fﬁ“’f sup {coslo V(20 9)
r=1 elog\ +1 logNfe+1 vom - s <1fn g

tr
cos l—ogNV(z’ Usy Y)| -
In the first sum we use

Leos - V(s . o Vs | »#r
(3.46) ?c‘oxs fé'gTI (2, 11, ¥) w('ohldgNI (2, Us, y). < (Tog ¥)? Oz

.o
which follows from. |cosz—1| < 5
In the second sum we use

|
Ve, )
It eftlr .
‘ N l” (2, Uy Y)— ¥ (2, s, 1/)3 Iolgx_N if

(3;47) lcosl—o—Z—EV(z,ul,J) vosy
‘ 1

n

[y —u,| <

i |
which follows from }g— o8t <

| 21 and (3.43).‘ In the last sum we use

! tr

| ”. . . .
(3.48) 0N o V(2, i, ;z/)——coslag—l—\ﬁ (2, Uy Y| <2
|

Using (3.46)-(3.48), the left hand side of (3.45) is seen to be bounded by

- tr - |
(3.49) /\ —rﬁ" ~,Iu?2£[f-‘£1/n colegNP(z,ul,y)—~cosi_6-é-ﬁV(z,ua,y)‘
slog—

\ CZSIOgJ\T N

26%
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C,; depends on t. Later on, we shall also need the estimate

-3}

(350) ) ulaa) =) sup

r=1

tro o, (o
cos(mv(z,m,y> 11\10gN'

Again 0, depends on t. For the pr oof split the sum into two parts: 1
< log¥N and logN <7 TUse (3. 46) and (3.48) respectively to estlmate
the sums. We now return to (3.44)

n—1

(3.51) M P{qrip+1(2) 0 ¢ I; (modl) | Bi(Di) y Appalr, a;)}
= ,

1
tr ’ tr o, \
X N If au (cos (T&gﬁ Viz, u, y)) — 1) — UJ du (cos (1@-—1\; Yz, u, ;1/)) —1)‘
i

! tr |
< Cmigmcos (@V(z, %, y)>—1 |

\! 1
P {qrep+a(®) 0 € I; (0041) [ Be(bs) ; Appa(7, (lj)}'——
=0 .

Using (3.5), the stationarity of x and (3.50) we obtain for the error term

(3.52) > D Plaves= 5,7 =1,y 0, Gkspra = 7| Blb)}

Uysennslly T
X SUp co%( T(z “u, y) 1\
jIA-ATA
n—1
y . 1
X sup P{qk+p+1(w) 0 ¢ I; (modl) | Bu(b) , Arpsslry a1)} _ﬁ"
nn l
O )
gib—g'g%\? Z M(ai(x) =0a;,]=1, --'7Q)><
Qs
'ﬂ.—]
1'
P{grspei(@) 0 € I; (mod1) | Bu(bs) , Apprlr, ag)}— ﬂ‘.
Since
n—1
(3.53 P ' i ' 1.
-53)  sup {@erna(@) 0 ¢ I; (modl) | Bu(b) , Aipalry an)} =71 <2,
T i=0 e

uniformly in b;, a;, and

2 ulaf@) = ay, §=1,0p0) =1,

©
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one obtains from (3.40) and (3.2)

(3.54) Tmim Y PBub)} ) slas@ =a;,j=1,..,¢x
P20 1’:;’: [— Gyrenllg

% %11) 1P{Qk+p+1( )0 € I; (mod 1) |Bx(bs) , Awpnlr, a;)}M%! < nCpif.

r

Combining (3.41), (3.42), (3.44), (3.45), (3.49), (3.51), (3.54) gives

(3.55) HmIm > P{Bulb)}-logNx

P00 k—>00

¢K l];_....,llk-
N—>00
S . \ C i)\
tEe\pllogN — 1 a(2) U2 Grapa(®), 3) §Bk(bi)} — (1 _loglti*)]

<0y clogt L Ot -+ T T Z P {Bu(bi)}log N %

P00 J—00

rex brbe
N—00
111
\ P {0gqpra() = 1| Blb; }fjfdz(ludz/(cos( thrT (2, u,y))—l)
066 !
o |
+10gl\71 ’

Pinally, by (3.4) and (3.50)
(3.56)

1
TP (s ) = 7| Balb}log N | | | d~dudJ(eos(1 gvV(z,u,y))—l)
r o0 U
1 1 1

[2 20— )
=log N’ v (uay () = (', { dzdudy <00s (R—gvj\ﬁ (2,1, y)> ~1) + 0505575

for some ]62] < 1. From pp. 453, 456 in [4] we see easily that

(3.57)

111

00

N—»00
00

with ¢ given by (2.11). Lemma 1 follows then from (3.55)-(3.57) since
Elog—i-an(a)Zg can be made arbitrarily small by first choosing ¢ small

and then ¢ large. This completes the proof of Lemma 1 and the theorem.
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4, The function ¢ of (0—a). We shall give here an expression for o
which involves only some definite integrals and, for (b—a) rational,
also a number theoretical function. For this purpose we define the fol-
lowing function, for integers u,v, 0 <u <v—1:

number of s, 0 < § < v—1 with (s, u,») =1
0

number of s,1, D) = 1

(1) plu;0) = < s, t<o—1 with (5, ¢, v) =

Here (s, t, v) is the greatest common divisor of ¢, ¢ and «. We then have
the following

w .
PROPORITION 2. For b—a = g W0 integer, (w, @) =1, o in (1.2)

is gtven by
. v—1 1 ]‘ ,
2 E{ Y (45 f MO
(4.2) z %p(’u, o), "J ey |V (2, ") -
If b—a is irrational then o in (1.2) 48 given by
111 kY
P - :
(4.3) g{f’j dedudy |V (z,u,9)])
000

Remark. The integral

11

[[ayazv(z,u,y)]|

00

can be evaluated by means of the,relation

cos2rkr  {w}({x}—-1) 1
ank: 2 +I§

=1

where {z} is the fractional part of z.

Proof. It was proved in [7], p. 320, formlila (42) that v in (2.10)
of [4] is given by
ng

- T
12log2 -’

Thg v:.aulue (4.3) of g for irrational (b—a) was proved in proposition 1
while in [4] (ef. Lemma 2.6 and formula (3.33)) it was proved that for

b—a= y (wy0) =1

<8

1

v—1 1
e 27_1{;;% Ufof dzdy

V(z, =, u)l}l

©
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with p(u) defined as follows: We say that (s, 1), 0 < s,¢ <v—11s a possi-
ble pair if there exist a & and k with

gr—1(£) = s (mod.v)

qx(£) = 1 (modw) .
Then

number of possible pairs (s,u), 0 <s <v—1
total number of possible pairs T

pu) =

It remains to show therefore that p(u) = p(u; v) or the following: (%)

(4.4) (8,1) is a possible pair if and only if (s,#,v)=1.
Since ([3], p. 131, Theorem 150)
Pl ) Ge—1(E) — Pr—1(&) gu(&) = (=1}

one must have (ge—1(£); g(£)) = 1 and hence (s, ¢,v) = 1if (s, 1) is a pos-
sible pair. To show the converse, let (s,?,v) =1 and (s,?) = . Let

s’znp

2

be the product of all primes dividing s but not » and put ¢' = ¢+s'. We
claim (s,%’) = 1. Firstly no factor of s’ can divide  (or equivalently t')
for then it divides r. Secondly any prime factor of s which is not a factor
of &' must be a factor of » and hence divides ¢ but not s'v since (s, t,v) = 1.
Hence no factor of s divides ¢ and (s,?’) = 1. Moreover s < and by
Euclid’s algorithm ([3], p. 136) there exists a k and integers #, ..., k-2,
@y, ..., ap Such that

t’ = Qg8 -+ tk-—2

§. = g_le—2t+Tr-3
(4.5) th-o = Gp—ale—s + tr—s
ty, =gy +1.

Taking & =[t,, G, ..., ax] We have 90(E) =1, ¢(8) = 4, @(é) = ashy +1
=gy e, qua(E) = 8, qu(§) = 1" =1 (modp). This shows (4.4) and completes
the proof.

Errata to paper [4]

P. 447, line 6, add “for n > 27 after In pmti‘cular.
p. 448, lines 5 and 8 from bottom change 2}, into 2#83} in the exponent.

(%) Recently, P. Sziisz (Acta Arithmetica 7 (1962), pp. 149-160) gave another proof
of lemma 2.5 in [4], even sharpening the estimate of the error. At the same time the
proof of Sziisz implies pw) = plu; v)-
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p. 452; the first two lines of Lemma 2.4 should read: I @y (@) s s Gy () ave fixed
(modv), then one can find for each ¢ (1 <14 < k) exactly one j(i) < & such that
@(m+p) < 8 is equivalent”.

p. 452, line 6 from bottom should start with “= e b {..7.

p. 453, line 9 should have at the end *‘(take a4, =1 and » = 1)”.

p. 454, line 4 from bottom should read

- (A
Amm < ;‘EA'IVL+M g —n + Ok

p. 460, lines 2,3 from bottom should read “Z7 i over k from 1 to iy () but
includes only those k with kg, < N)".

. 464, formula (3.18) should be:. 2@ 1
@) (0u(®) + gua(®))

L=}

p- 464, line 2 from bottom (), ..., Gy(®) ghould be ay(m), ..., tye(ie).
. 466, line 3 A(n)exp(— (m—p)y) should be A(n)exp (- (m—p)B(n)).
; , ¢ [t
P- 469', line 7 GslogN should be _GElogN .
p. 469, formula (3.31). The sum over m should run from m = 2p 1o m = (r—¢)log N,

This requires corresponding changes on p. 470.
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Binomial coefficients in an algebraic number field *

by

L. CarLIrz (Durham, N. )

1. Let K = R(0) denote an algebraic number field of degree n
over the rationals. Let p be a prime ideal of K and let p be the rational
prime divisible by p. Let K, denote the set of numbers of K that are
integral (modp). Put

(;l) _ a(a—l)..;y(f-—m—i-l)

‘We shall prove the following result.
TaEOREM 1. The binomial coefficients (;) are integral (modp) for

all a e Ky and all m =1 if and only if p is a prime ideal of the first degree
and moreover p does not divide the discriminant of K.

Proof. To prove the necessity of the stated conditions suppose
first that p is of degree 7 > 1. Then the residue class ring K,/p is a finite
field of order p’. Since f > 1 there exists a number a e K, sueh that

azEr(modp) (r=0,1,..,p—1).

Therefore the binomial coefficient (;) is not integral (modp).

Next let p be of the first degree but let p divide the discriminant
of K. Then by Dedekind’s theorem on diseriminantal divisors, p2jp. Also
there exists an integer o of K such that ([3], p. 97, Theorem 74]

(1.1) (a,p) = p .
Since p is of the first degree, the numbers
a,a—1,. ..,a—p+1

constitute a complete residue system (modp). Clearly only the first of
these numbers is divisible by p. Therefore by (1.1) the product

ala—1)...{(a—p+1)

* Supported in part by National Science Foundation grant G 16485.
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