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Contributions to the theory of the distribution of prime
numbers in arithmetical progressions II
by
8. KnaPowsKI (Poznan)
1. The subject of this paper “will be some further questions con-

cerning the distribution of prime powers in two different progressions
modk. I shall keep throughout the notation of the previous paper:

(L1) plo k)= Y logp= Aln),
pM=1(mod k) n=l(mod k)
pm<r n<T
-1
(12) e kb= D =
pM=l(modk)
pM<E
(1.3) a@)= > 1,
p=1l(mod k)
pLT

p—primes, p™—prime POWers, 6, Cy, ... Positive numerical constants.
Similarly to [i] the following conjecture will be of importance in
the sequel:

(1.4) In the rectangle 0 < o<1, t] < max (e, k"), § =0+, L-func-
tions modk may vanish only at points of the line o = 3.

On this conjecture I shall prove the following
THmorEM 1. Let k>3, 0 <ly, <k, L#L, (hyk)= (L k) =1
Suppose (1.4) to be satisfied. Then

.
(1-5) fMm’k’ll),—w(m’k’l“)‘dww.m/zexv (‘2 el )
X o

x log]ogT
and
T\H( k, L) —Hwm, k, L)} log T
@ — Iz )| o _togd
(1.6) J — @ P> Tl/zeXp( ologlogT)
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with

X = Texp(—(log Ty -
for
(a.7) T > max ey, exp (k)

where ¢, is a calculable numerical constant.

Further, similarly to [1], we have a result holding without any
conjectures.

THEOREM 2. Let k>3, 0<l, lLi<k U by (k)= (L, k)= 1.
Then

r
(1.8) . J.]"P(xyk7ll)""/’(wakyl2)|dm> s
X L
and
.
(1.9) ‘J | (, &, L) —I(z, &, L) do > Tt
P >
x
with
A = Texp(—(log 7))
for
(1.10) T > max (g, exp (F))

where Ly is Linnik’s constant (*) and c, is numerically calculable.

Theorems 1 and 2 refer to the distribution of prime powers in arith-
metical progressions. Results concerning the distribution of primes
=1, (modk) compared to those = = I, (mod %), i.e. concerning the behaviour
of the function

T
(1.11) J‘ (e, &, L)—=n(w, k;_lﬁi
z

dw ,

b
a8 T'—oco, will be presented in the third paper of this series. However,
in one case we can state immediately a result for the functlon (1.11),
deriving it directly from Theorem 1. This is

TEROREM 3. Let k>3, 0<1l, lL<k I =1 L, k) = (1 =
Let the congruences v PR B = B =1

(1.12) {% =1, (mod#),

2 =1, (mod k)

() By Iannik’s constant 1 understand, as in [1], such a number that to arbitrary

ven inte,
%1<Pm< kgj}e:rs Lk, 0<l<¥k there exists a prime number P =1 (modk) with

Contributions to the theory of the distribulion of prime nwmbers IT 327

have no solutions and suppose (1.4) to be satisfied. Then

7a

z
(1.13) , ‘7[(‘7'7 k, l])”;n(m’ ka_l_a_)J de > T”Zexp (_31 ].OgT _)
4 T oglog T
with
X = Texp(_(log .T)“)
for ‘
(1.14) T > max (¢, exp(k®)) .

In fact, by our assumption concerning the congruences (1.12), we have

H(z, k, L) = z(z, k, L)+ 0('B)
and
O, kb, L) = =(x, k, L)+ Ox13)

which together with (1.6) yield (1.13).

2. Progfs of Theorems 1 and 2 will rest on the following lemmas.
LevmA 1. Let m be a non-negative number and z,2,, ..., 25 complex
numbers such that

, o N
=gzl =..2al=.. =k, 20| > zﬁt{—l\’ .

Then there exists an integer v with m <v <m-+N such that

s b oo AN o iy by - +b|(

Hl h| h<;<

N )N
b

23 24 ZN—;—m

where b, < N is any integer for which |a,| < |2a|—N/(m +N). In that case
when there do not exist numbers h, satisfying the latter inequality, we put ‘at
the right-hand side of (2.1) min |by +by+ ...+ by| instead.

h<FEN

This lemma—which is a modification of Turén’s second main theo-
rem—has been proved in [1]. .

Lemua 2. Let k=23, 0 <, <k L #h, (l, k) =, k) =1. Sup-
pose (1.4) to be satisfied. Then there ewists a number D, $max(cs, k°) < D
< max(¢s, k*) such that

L N ey N (e Dlog D
2 | 2 =) 01252V > aibtog

where y = 1/3D, yx runs through all characters modk and o = p(y) through
the zeros of L(s, x) Zu'mg in the strip 0 < o < 1.
+23
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LeMMA 3. Let k>3, 0 <l,ly <k, I, #1l, (I, k) = (L, k) = 1. Let L,
be the comstant of Limwik. There ewists a number D,,max(c;, ) <D,
< max(cg, k) such that

1 — - o [ere —e=e 2
(2.3) W;(x(h)—x(la))le( e

o)

= ¢y log D,

with v, = 1/3 Dy and x, o(y) running as in lemma 2.
Proof of lemma 2. Ag in [1], proof of lemma 2, we shall confine
ourselves to &k >e¢, and, correspondingly, suppose [1L(s, x) # 0 in
@)

>4, [t| <K. Let D be a prime or a prime square with J&* < D < &3,
D =, (modk) (the existence of which has been proved in [1], p. 423).
Let, further, y, be the principal character and y; an arbitrary non-principal
character modk. We have then (see [1], formulae (3.3), (3.4))

. —em: _ A(D)
2.4 - DL’(eW e w?) - Dilog D
(2.4) mm% e 5+ 0(D*"10g D)
and
2.5 - 1)9<6W e ”"") AD)_p 1 o(pelegD) .
(2.5) M)% ) =5 (DiPlog D)

. 1 _ 1 -
Multiplying (2.4) and (2.5) by m)ﬁ(ll)%l(lz)a m%o(ll)ln“z)a respectively
and summing up we obtain

ﬁ;y(zﬂzzy@(@”;f:@f:~ o WA ARRIR

e(x) (z)

Henece
1 Y _ eve — g—ve\2
(2.6) — (L) D“(-——w——) = O{(D
«p(k)% Zi 5\; Ty (D)
gince -
Bt .

5.2 £ WA =0,
)
this being equivalent to I, =& 1, (mod k).

N Similarly, multiplying (2.4) and (2.5) by 1/e(k) and summing up, we
ave

en o 2 am Y (R - AP o).

G el

Subtracting (2.6) ‘and (2.7) we come to (2.2).
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Proof of lemma 3 does not essentially differ from that of lemma 2
(compare [1], D. 425) and can be dropped.

3. Proof of Theorem 1. As in [1] it will be enough to consider
only the case of sufficiently large k. Consequently the rectangle in (1.4)
can be taken as being 0 << o < 1, |t| < ¥". Further, one can content oneself
only with a proof of e.g. (1.6); proof of (1.5), in fact, would run completely
parallel.

Let us write

T _, .
T, = B¢ (D,y as in lemma 2),
log T,
A+ B

A = 06loglogT,, B=(logT)>%¥, m= —log*¢ T, (loglog T,)?,

7 an integer, to be fixed later, satisfying

o logT,y 5 log T, )
(31) "t <A~|—B ( 3 loglog 1./~
Putting further
1 \1. r
F = [ s
i (S) zp(k)%l (Z( ) — (1)) (8, %)

we consider the integral

1 > evs — e—rs\2 eBs__e-Bs r
(32) T =55 }D‘*( o ) (e-“ = )lek(S)(ls

VAW [ oo\ e e Tyds
27 2ys 2Bs ns
=l (mod k) 2
T ALY [ (e
ori T 2ys 2Bs ) m’
n=l, (mod k) ()]

Noting that terms of the series in (3.2) are # 0 only in
(X, %) Dewreld-Br o < Detved+Hr (&t X,

we obtain

A(n) [ pefem e e e ds
Iy, = 2 *§;{_JD (” 2ys ) ¢ 2Bs ne

X<n<Xp (0)
n=1 (mod k)
—ps\ 2 Bs __ p—Bs\r
. 5‘ A(n) st et — N2 e e Q’i
Lo 27 2us 2Bs ns
i<n<X, [}
n=ly (mod k)
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Using Stieltjes integral we have further
J L, =

X,
loga; 5 ovs — e~ vs\2 s@BS_g*L’s * ds
Xf {211:1:(0_)fD ( 28 ) (eA 9Bs ) "ﬁ}d(ﬂ(‘rv kyly—1I(x,k, 12))

log.z: o evs — g8 2 ng_e—Bs 1 dsl;\
(7@, %, W)~ @, , ) ,,M(JD( = )(;; - )J‘*’h,

I

I

Xy

P ].Og’.Z' r se'ps_e—-ws'z Rells__ﬂ--l?s rds
— J (H($7 k, l_,_)—]](w, k, Zz)) d{—m@j D( s ) <g«1 5B ) ;35}

Xa ©

—f(l](aa,k,ll)——ﬂm k1) {IOg”J cos(t(log D+ Ar—log))
X 0

I

X

singpt|? (sin By
><( wt"’) ( = ) dt}:x_ (@, b, b)— (2, &, ) X

—1 1 oo (SRt (sin Bi\
x{ J cos{t(log D+ Ar logw))( o )(_I—%?—) dt +

log ) : t\ [sinyf\* (sin B\
1 490 _—— ) — i
Hence

sy,

X3 .
[Jl,l,l\ﬂ ‘ IH(wgkyll)h‘H(-T}y ky ZZ)I logmdm J t—rl(bl]’llpt)
{ z PO )

X,
But

ey

sin Bt

® !
17 sinur
= — wdu
B (.‘ |

}

du 9 —
q‘ﬁ‘_’l) << T*}E< 2y log 1

e
dat < ft}' t =
| Bt |

0

o

1
éﬁ(l'l'

[ (et it

— A+Byr+2p
X2 = Del -2 < De2v Tl =T

e

and similarly

sin Bi" qt < 21/log T

Further by (3.1)
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and
X, = Det4—Br—2

> Dexp(—2y—2Br +log T, — (4 + B)log®t T\(loglog T,)?)

> Texp (" v— 13? 1ol§1i§T (log 7)™ — (log T)**(loglog T,
> Te-UoeT)

whence .

(3.3) || < (log T)" )J (=, &, ll);n(as, ko)l 4

with

X = Texp(—(log T .
Similarly to [1] there exists an infinite connected broken line U consisting
of segments alternately parallel to the axes, all lying in
f< o<y,

and such that

I

%5, )] < cutlogt i +1) 5 o),
over U.

Applying Cauchy’s theorem of residues to the integral (3.2) we obtain

1 — — eve — g~ ve\2 ¢Be— g~ Bejr
Ji =———Z 1)~ Z D"(————) (e‘"‘ ) +
" o (k) () ( o=e(0)>U e : QBQ

ws __ p—ys\2 Bs __ p—Bs\r

+ glﬁ—@ D (6 ?np‘; ) (GM -t ) Fyg(s)ds
(]
(here, as in [1], ¢ > U means that the o’s are to be taken to the right
of U).
The above formula can be converted, as in [1], to

(8.4)

T = o7 (2) =) ) D (T (e ) 0T,

4
[RHES ¢
‘where

¥ % (log 7))
Let g, = §+iy, be that zero from 0 <o <1, |t < &*° which has
the greatest imaginary part. We have (see 1], (4.8))

gBe. g~ Be|

6321_3—‘3&'1{
e 1 >
%Be |~

3Bo, |

l

(3.5)
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for all zeros p = §-+4y with || < |y;]—1. Denoting, further, that zero
o g—Be
from 0 < ¢ < 1, Jt| < ¥ at which 'e@%— is maximal by g, = f,+

+ 14y, and putting

1 eve — g —ve\2
b — — (7 () —z( D"(——-——)
AR e
2 = et w ST 0

eBex _ g—Bes 0 !

é 91_6—391 QZ

2 = edla—e)

B e——Beg Q

we make the double sum in (3.4) equal to

(3492( eBez — g—Bee ))"’

"
2Bg, 2 b

F=1
with

N = [klog®® T, (loglog T,)%]

(it ¥> 3 3 1, we put z; = b; = 0 for the remaining j’s). We check
) [':(: D
as in [1]
2N
N+m’

so that by lemma 1, (2.1), we have with an appropriate »
(3.6)

|zhl > a

|2h gBEs_g—nglr i N N
10|+ 0151048 > Aoy 1 ) .
[T1s] + 10 & 2B, - | (24g 2N+m) bgﬁgx by by ..+ by
Owing to (3.5) .
bitby+. 4B
1 N\, — AW eve _ g—we ' D logh
== M (Z)-7W) > D° (~__-._) ( og m)
o( )Tx)J ZSn[i—l:( . 2yp nzﬁ ro——
1 I - e — !
"o p) (2 —7m) ) D“(e sz @) +0(klog?k) ,
) e(z)
80 that by lemma 2, (2.2),
(3.7) min |by+by+ ... +by| > e,k logk .

h<i<N
This and (3.6) give, similarly to [1],

)
which combined with (3.3) yields (1.6).

©

m . Contributions to the theory of the distribution of prime numbers II 333

4. Proof of Theorem 2. As in the preceding seetion we shall
limit ourselves to a proof of (1.9). Again there is no loss of generality in
supposing % to be sufficiently large. We write

T, =7)—le—2'/'l (Dyy w, as in lemma 3),

A, = 041loglogT,, B, = (logT,)~*

— log Ty 0.4 2
My = A1+Bl_10g T, (loglog Ty)?,
integer r; with
R log T, 5 logT, )
M SNS LR, ( 3 Toglog T,

and consider the integral

~ 1 "‘ evs — g—mis\2 eB1s — g~ Bis\11
= s (- 18 F(s)ds .
Ju 2mi Di\ 2y 2By ) s (5)

Similarly to the preceding section we obtain

J (e, by 1) — I (2, &, L) o

(4.1) il < (log TV 7

X
with
X = Texp(— (log 7)*?) .

On the other band we get as before (cf. (3.4))

~ 1 — _ Y1 , [evie—e—re 2 P eBie— g—Biu\r
(12) Tu= o D=7 Y D) e g,
() oe>Uz
|Vl <Y1
_i_ 0(1"1/4-!—1/150) ,
where U, is a certain broken line lying in

55 < 0 < afy
and Y, == (logT,)**. , .
Let gy = fs+iys be that zero from 0 <o < 1, <Y, at which

Bie _ g~ B
e“lgf—l:Te—m is maximal. Denoting, further, that zero irom the
ab,0 |
rectangle
. Ss<o<l, fiI< i,
Bjo . p—Bie . .
at which ‘e‘me—fo—i—i is minimal by o, = f.+iy, and putting
: 1

_(7(L)—7 (W) D} (e—%f)
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eBie —g=Bie
2 = glile—ee) —_ T 53
7 eBies — g—Biey 0

!

Bies . g— Brey
o = e e—en & e

eBies é*Blﬂx 94

we make the double sum in (4.2) equal to

3-4123(33123 —_— g—BJQs) 7y )
( 2B, 0, ST b7zi ’

j= 1
with
N, = [klog® T, (loglog T;)*]
(again, if N, is greater than the actual number of zeros in the considered

domain, we can put 2 = b; = 0 for the remaining §'s).
The inequality

can be easily verified, whence by lemma 1, (2.1), we have with an ap-
propriate r,
W] + g T+110

< i eAsz(eBxe:{_g—Bws) 1 N, Ny .
=31 e v i, et

and further

(4.3) J, | - 6y, TUA+1150 > 2 ( logT
|+ 6 = [>49) Sloglog T h<1<v by By .y
In order to estimate min Ib +by+ ... + ] we use the following density

<IN
theorem (see [2], Satz 1. 1, p. 299 and p. 323).

Let 0 <a<1 and N(a, T) = N{a, T, k) stand for the number of zeros
of all L-functions modk in the rectangle

a<o<l, |t

< T.
Then, if T > E,

(4.4) Na, T) < os(RAT53) " “1og8 T .
We have (with b <j < N;)
bbbt by = s Z P —7(0) N D@(-Vi‘ffiff>g+~
(k) = 2y 0
R Ing% 1 10 e pie |2
+0 \ Ds) ( 1 } e leme — g-wie
2 > e
=Dty (ky (_J o(z) J I Q

Ro<7/27

©
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The first error term is (ef. [1], p. 433) O(D}” log*D,, the second one can

be estimated using (4.4). In fact it ix (cf. [1], p. 434)

g (N .
O(D N(o ) D ‘i.dN(zolzbf—))zowl).

p(k) \27 o(k); vi 2
This and lemma 3, (2.3), give
min  |b; +by+ ...+ b} > exDlog Dy,

hsj<Ny

so that by ('4.1) and (4.3) we obtain the desired (1.9).
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