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and there is a cyclic part of length 7:
13139, 6725, 4338, 4514, 1138, 4179, 9219.

Therefore there are six different cyclic parts for k = 4.
‘We are now calculating the cyeclic parts for & = 5 by an automatic
computer FACOM as well as IBM 602 A.
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Computation of cyclic parts of
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This paper is concerned with an arithmetie problem. As the problem
was appeared in H. Steinhaus, Sto 2adast (100 problems), we call it
Steinhaus problem. (For the related terminologies, see [1], [2]). Some
of the present writers found all cyclic parts of Steinhaus problem for
powers 3 and 4. (For power 4, see [1]). In this paper, we shall decide all
cyclic parts for power 5.

For the purpose, we calculated the cyclic parts of natural numbers
less than 3 x10°, as stated in [2]. For the numerical calculation, we used
two different types of the automatic computers: Fuji Automatic Computer
(FACOM) 128 B and IBM punched cards system 602 A. The calculation
from 2 to 10° and from 2 x10° to 3 x 105 was automatically done by FACOM
128 B, the other by IBM 602. We found the following cyclic parts:

length 1:

(1)
54748 (247)
93084 (3489)
92727 (22779)
194979 (147999)
length 2:
145 4150 (145)
76438 58618 (199)
157596 89883 (38889)
length 4: .
50062 10933 59536 73318 (4)
length 6:
44155 8299 150898 127711 33649
68335 (16)
length 10:
83633 41273 18107 49577 96812
99626 133682 41063 9044 61097 5)
92873 108899 183635 44156 12950
62207 24647 26663 23603 8204 17

i * This research was supported by the Facom Computing Center, Yulin Denki
Seiki Company. We express our cordial thanks to Director T. Matsunawa, Yulin Electric
Company, Osaka Branch.
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length 12:

24584 37973 93149 119366 74846

59399 180515 39020 59324 63473

26093 67100 (2)
length 22:

9045 63198 99837 167916 91410

60075 27708 66414 17601 24585

40074 18855 71787 83190 92061

66858 84213 34068 41811 33795

79467 101463 ®)
length 28:

70225 19996 184924 93898 183877

99394 178414 51625 14059 63199

126118 40579 80005 36893 95428

95998 21304 1300 244 2080

32800 33043 1763 20176 24616

16609 74602 25630 W

The numbers with brackets denote first natural numbers appeared
ag cyclic parts.

Therefore we have 15 cyclic parts: five cyclic parts with length 1,
three cyclic parts with length 2, one eyclic part with length 4, one cyclic
part with length 6, two cyclic parts with length 10, one cyclic part with
length 12, one cyclic part with length 22, and one eyclic part with length 28.
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Introduction

1. In 1944 Linnik (see [13]) proved the existence of an absolute
constant ¢ > 0 such that the least prime in any arithmetical progression
Du+1[(D,1) =1, % = 0,1, ..] does not exceed D°. In 1954 Rodosskil [15]
gave a shorter proof of the same theorem. In 1955 I proved [3] the existence
of an absolute constant ¢> 0 such that there is at least one prime
p =1(modD) with (D, 1) =1 in the interval (z,2D° for any 2 > 1 (%).
It is the aim of the present paper to prove an analogous result for an
algebraic field as stated in the following

THEOREM. Lét K, f, § denote respectively any algebraic field of degree
n =1, any ideal in K and any class of ideals modulo f. Further let

=4]-¥f>1,

where A denotes the discriminant of the field and Nf the norm of f. Then
there is a positive constant ¢ (which depends on n only) such that for all
x > 1 in the interval (2, xD°) there is at least one prime p representing the
norm of a prime ideal p e H.

In particular for n =1, f = [D] we get the result concerning primes

p =1(modD) as stated above. Taking n>1, # =1, f =0 (the wunit

ideal) we deduce that in any class of ideals (in the usual sense) there is
@ prime ideal p with the norm < |4,

Taking # =2, { =[k] (¢ any natural number > 1) we deduce the
exigtence of a prime p, € (z, zD°) representable by the prescribed primitive
binary quadratic form y with the diseriminant A%?, where 4 is a fundamental
discriminant and D = |4|k?. For 4 < 0 only positive forms are considered.
See further §§ 3 and 6-8, where the statement will be improved for intervals
(z,2D°) (0 < & < ¢, D > Dyfe), &> D710, -

(*) In 1960 I improved (see [4]) this theorem for intervals (z, xDf), 0 <e < e,
Dc’ log (c/e) .,
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