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§ 1. In the preceding paper [5], I considered the following two
problems

P. Decide for a given integer-valued polynomial f(n) whether
Imlp V7{n) < co.
(IpVf(n) denotes the length of the shortest period of the expansion of
]/ f(n) into an arithmetic continued fraction).
P,. Decide whether for a given polynomial f(n) of the form

(1) 2+ et ey (u, @y a;—integers, 4> 2, a # 0)
there exist polynomials u; of positive degree with rational coefficients such that

1] 1
Tt ()

= 1 I
(2) Vi) =wolm) + s+ e

(the dash denotes the period).

I indicated a connection between them. Now I prove (in § 2) that
for polynomials f of form (1) problem P can be completely reduced to
problem P,. The proof follows the ideas of H. Schmidt [6] rather than
those of paper [5]. Since for polynomials f not of form (1) problem P is
solved (negatively) by Theorem 3 [5], one can limit oneself to the investi-
gation of problem P;. In § 3 I show how problem P, can be reduced to the
case where the polynomial f(n) has no multiple factors. Finally (§ 4),
I discuss the results concerning problem P, which I have found in papers
about pseudo-elliptic integrals (they contain in fact a complete solution
of problem P, for polynomials f of degree 4 without multiple factors)

* This paper was written when the author was Rockefeller Foundation Fellow
at Uppsala University.
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and I generalise some of them to the hyperelliptic case (x > 2). The con-
nection between problem P, and the theory of Abelian integrals was
already established by Abel [1], who also proved that the answer to P,
is positive if and only if the equation

X2—f¥? = const

iy solvable in polynomials X, Y where Y # 0. Furthermj?re, if X, is
X .
a golution of the above equation and —1;(00) = oo, then v iy necessarily

equal to one of the reducts of expansion (2). I shall make frequent use
of these theorems.

As to notation, I shall follow [5]; in particular, I shall denote throug-
hout by [by(n), bsy(n}, ...] the expansion of V/(n) into an arithmetic continued
fraction, by Ai(n)/Bi(n) the corresponding reducts. Besides, I shall pus
LPYj7=K it K is the smallest number >0 for which (2) holds, and
LPYf=oo if such a number does not exist. Putting

I shall assume simultaneously
T—1=17 T0=“07 -TvzuvTv—l‘l“Tv—Z,
U,=0, U,=1, U, = U1+ Uz .

[4] and (¢) will denote the integral and the fractional part of ¢, respectively,
@, (x)—the n-th cyclotomic polynomial.

§ 2. LeMMA 1. For every polynomial f of form (1) which is not a perfect
square and every k> 0 there exists o finite set of sy systems of polynomials
with rational coefficients [0, 87, ..., 807 (1 <j < sp) such that integers
> no(k) can be divided inio si classes K, K,, ..., Kg, so that if n ¢ K; then
bi(m) = bP(n) (0 <i<h, 1<)< s

Proof by induction with respect to k. To avoid the repetition of
the argument, we shall start the induction from k = —1, where for all »
we can assume b_;(n) = 0 and no division into classes is necessary. Suppose
now that the theorem is proved for k—1 (k = 0), and let X,, K,, ..., K,
be corresponding classes and [b, %, .., b{2,] (f <) corresponding
gystems of polynomials. For # ¢ K; we have

Vin) =8 (n), ¥(n), ..., 8li(n), &)1,

where evidently &(n) = ()/f(n)-+7(n))/s(n), r(n) and s(n) being polyno-
mials with rational coefficients completely determined by the class K;
(this is true also for ¥ = 0). Now

VI +r(n) _

&(m) g(n)+e(n),

icm
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where g(n) is a polynomial with rational coefficients, o(n) = o(1) and,
for sufficiently large n, o(n) has a fixed sign. Therefore for n > ny(k)
g(n)—1

[g(n)]

Put g(n) = Q(n)/m, where @(n) is a polynomial with integral coefficients
and m an integer. If n = r (modm), we have [g(n)] = ¢(n)— (q(r)). There-
fore, putting for 0 <7 <m

1
i is i d =(o0) =—
bu(n) = \ g(n) is integral an Q(oo) oo,

otherwise .

4(n)—1
q(m)—(a(r)
we have for n € Kj, n > ny(k), n = r (modm)

be(m) = b§"(n) .

; 1
b n) = it {gr)) =0 and * (o) = —oo,

otherwise ,

» This determines the required subdivision of the class K; into a finite

number of classes and completes the proof.

TEEOREM 1. If LPYF = oo, then limlp Vf(n) = co.

Proof. Let % be an arbitrary integer >0. For all classes
E,, K, ..., K., whose existence is stated in Lemma 1, we form polyno-
mials A;4(n), Biyn) defined by the formulae (0 <4<k, 1 <J <)

Aym) =1, Aogn) =bPn), Aijn) =bP(n) Aisj(n)+ Ai-as(n) 5
® : ()

B_,jn) =0, Bogn) =1, Bij(n) = b(n)Bi—1i(n) + Biai(n) -
Since LP ]/f: oo, among the polynomials A;j(n), Bij(n) there is no
pair satisfying identically the equation

Aij(n)—f(n) Bis(n) = const .
It follows that if n > ny(k), we have for all ¢ <k, j < 8:
A3j(n)—f(n)Bis(n) # £1.

On the other hand, by Lemma 1, for n> no(k), bi(n) = b?)(n) for some
j< 8 and all ¢ <k, and thus Ay(m) = Ay5(n) and Bin) = Byj(n). The
last inequality implies therefore that for all n > max(no(k), nl(k))

A¥n)—F(n)Bi(n) # £ 1

whence 1p V7 (n) > k. . N
Levma 2. If R(n) is any rational function with rational coefficients,
then

(0<i<h),

fimlapR(n) < oo.

20
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290 A. Schinzel

Proof. We shall prove it by induction with respect to the degree ¢
of the denominator of R(n) in its irreducible from. If d = Q, we have
R(n) = P(n)/m, where P(n) is a polynomial with integral coefficients
and m is an integer. Obviously

lapR(n) < max lapR(r) .

m

Suppose now that the lemma is vahd for all rational functions with
denominators of degree < & and let R(n)= P (n)/@(n) where P, @ are
polynomials and the degree of @ is equal to d. We have
r(n)
R(n) =q(n)+ ~—=

(n) = q( )+Q( )’

where g, 7 are polynomials and r is of degree < d. Putting g(n) = ¢,(n)/m,

where ¢;(n) is a polynomial with integral coefficients and m is an integer,
we have for n = » (modm)

1ap R (n) =1ap(qu(’z")+5§:;) =1&p(ql( LL;(%) )7

). Since by the inductive assumption: limlap &(n) < oo,

it follows nnmedmtely from Theorem 1 [5] that limlapR(n) < oo, which
completes the proof.

TueoREM 2. If LP VT

where £(n) =@ (n)/r(n

=K >0 and
F_ I 1]
]/f_u"—l—lu Tu, T +|u

denote by B the set of all integers n such that 2 Tx_1(n) is integral, and by CE
its complement. Then
(4) lim Ip y/f(n) = oo,

N—->00

neQE
(5) imlpyi(n) < .

nem
. Proof. We begin with a proof of equation (4). Let & be an arbitrary
integer > 0, and define Kj, 4;j(n), Byn) (0 <i <k, 0<j<s) a8 in
the proof of Theorem 1. Suppose that for some 4, we have K;CH s 0
and identically

Adjin)—f(n)Bi;s(n) = +

Since the continued fraction expansion furnishes the fundamental-

solution Tg_s(n), Ux_y(n) of the Pell equation X2—f(n)¥? = +1, we
must have, for some ! and suitably chosen signs, identically
£ 4s5(n) £ VF(n)B

41(1) = Tig—1+VFn) Ugy = (Tg_y+ Vim) Ug_of

icm
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(the proof of this is completely analogous to the corresponding proof
for the ordinary Pell equation and will be omitted).

Now let n, ¢ K;CE. Since n, € K;, }/f(n,) is irrational; 4;;(n,) = Ai(n),
B;jimg) = Bi(ny) are integers, whence - A;;(ng) VF(ng)Bsin,) is an
integer of the field K ()/f(n,). On the other hand, since 2 Tx_1(n,) is not
a rational integer, Tx_i(ny)+ ]/?_(_ﬁ;_) Ux—1(n,) and therefore also (TK_I(%O)
+Vi(ne) UK_l('n,o))l cannot be an integer of the field K(]/mo—)).

The contradiction obtained proves that for all § such that K;OF # 0,
and all ¢ < k.

Aij(m)—f(n)Bijn) = £1
does not hold identically. There exists therefore a number =,(k) such
that for all n > n,(k)

Aij(n)—F(n) Biyn) # +1.

Thus if » > ma.x(nu k), nl(k)), n ¢« CF, then

—f(n)Bi(n) 5= £1
for all 4 < k, whence lp 1/ 7‘ ) > k, which completes the proof of (4).
To prove inequality (5) put Ug_.(n) = W (n)/m, where W(n) is an
integer-valued polynomial and m is an integer and consider all rational

functions
Ty Taga
Uig—1’ Unr—

By Lemma 2, there exists a number M such that for all 4 < 3m?
T@K—l(’"’)
lap e K1)
PE Tegaln) S
We shall prove (5) by showing that for all n ¢ B
Vi) < M+2.
Tn fact, if n e B, 2 Tg_(n) is an integer. Tf T'x_,(n) is itself an integer,
then it follows from the equation
Thka— () Uk = (= 1)%
that f(n n) Uk-1(n) is also an integer. Therefore if mn|m is the denominator

of Ug_y(n) represented as an irreducible fraction, the number f(n)/ms,
must be integral. The equation

1
Tix—a(n l/"“— My, U () = (TK—l(”)+]/—‘ anK-l(’”))

implies that Tpe_1(n) and m,Ux—i(n) are integers and, a fortiori, Tix_(n)
and mU;g_,(n) are integers. :

(1=1,2,..,m).

<M (¢=1or—1).

20*
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Consider therefore all systems (Tix—:(n), mUx_1(n)) reduced modm.
Since the number of all systems (a, b) different modm is m?, we have
for some 1 i <j < m?+41 ,

Tig-a(n) = Tjg—o(n) (modm) ,
} mUig_1(n) = mUsg_.(n) (modm) .
Hence

Trig—i—2(n) + Vi) Uggoiy—s = (TKJ-l(”) Tria(n)—f(n) Ugs-a Ugioi)+
+ ﬁyh(—y—b-) (Trj-mUkj1— Tgixm Ugg—y) .
Bince

Trj—imUgiy— Tgi-ymUgy_y = 0 (modm),

the number Ug;-y)-1 i3 an integer.
Since the numbers Try_y-1(n) and Ugg-y—i(n) form an integral
solution of the equation

?—fn)y? =1,

TK(i—i)—-l("")‘ - . - .
—Ux(j—i)~1(n) must be a reduct of the arithmetic continued

fraction for ¥f(n), and if Ipy/f(n) = &, we must have

A
By, '

the number

Tr(-i—i(n)
Uk(i—y-1(n)

whence

Trg-i—1(n)

b k< lap Urg-9-1(n)

2<M+2.

If 2Tx_s(n) is an integer but Tx_,(n) is not, then it is evident from the
formula

Tsg1 = T (4 Tk —3(—1))

that Tig_i(n) is an integer. Mutatis mutandis, the whole previous argument
applies.

Theorem 2 immediately implies

TEROREM 3. If LRYF = K < oo and formula (2) holds, then Limlpy/f(7)
< oo if and only if 2Tx_(n) is an integer-valued polynomial.

.Theorems 2 and 3 generalise Theorems 4 and 5 of [56]. Their proofs
furnish also independent proofs of the latter theorems.

In view of Theorem 3 [5], problem P is now completely reduced to
problem P,.

icm°®
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§ 3. THEOREM 4. If f(x) = ¢*(x)h(z) where h(x) has no mulliple roots,
then LPVT < oo implies LPYh < co. Furthermore, if (@) = ¢«)g3()...
gs%(»), where g; are distinct irreducible polynomials of degree y; respectively,
LPVh < co and T, U is the fundamental solution of the Pell equation
(6) X2—h(x)¥Y2=1,
then LPVF < oo if and only if for each i < s we have

(i) U =0(modg?) f g:|hT,

(i) I1 [22—2T (1) & +1] = Dy (z)2ile™ for some n satisfying (n)|2y:

m(r;=0
and T' = 0 (modg¥™") if g:1hU.

Proof. If polynomials X,, Y, satisfy the equation
(1) X—fla) T2 =1, ,
then polynomials X,, g(»)Y, satisfy equation (6) and thus LPVT < o
implies LPYVR < oo

In order to prove that conditions (i)-(ii) are necessary, let us observe
that for some I and suitably chosen signs we must have

+ X,+ Vhg¥, = (T+ VaU).
If ¢:|hU, we have (T, g;) = 1 because polynomials 7', U satisfy (6).
On the other hand,
! 2%—1q i 2
+9Y, =) (2i+1)1’l'"i o,

i=0

(8)

and thus g; divides gY¥, in exactly the same power as it divides ITy.

Hence condition (i).
If gt kU, let » be any of the roots of g;. Since polynomia}s Xy, Y,

satisfy (7),

Xi =1 (mod (z—r)™),
whence for some ¢ = 41 we have
(9) X, =& {mod(z—1)™) .

From (8) and (9) it follows first of all that T(r)+Vh(r)U(r) =¢
satisfies the cyclotomie equation @,(z)= 0 for some »|21. Since T*—AU?=1,
T(r)—Vh(r)U(r) = ¢ satisfies the same equation. Therefore

(z—C&)(w—C71) = 2?— 2T (r) z+1|Da(m)
and the same divisibility holds for each root r of g;. Since both ‘polynomials
¢: and @, are irreducible, [)7 (z2—2T(r)o+1) must be a power of Op(x).
gi(r)=0
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By comparing the degrees we obtain
” (w“——2T(r)m+1) = Py, (@)2rilom)

r
0i(r)=0

i.e. the first part of condition (ii).
Further it follows from (9) that

Py =0 (G=1,2,..,2-1),

and since gW)(r) =0 (j =1,2, ..., 4—1), h(r) % 0, we have

& ‘ —
[aﬁ(iXu(w)i-l/h(w)g(w) Y°(w))]m=, =0 (=1,2,..,4-1).

It follows from (8) by easy induction that

[%. (T(2) + V(@) U(w))L =0 (j=1,2,.,a1),

and hence T7r) =0 (j=1,2,..,4—1), ie
T'() = 0 (mod (x— 7)) .
Since the last divisibility holds for each root r of ¢;, we have
T" =0 (modg*™),

ie. the second part of condition (ii).

It remains to prove that conditions (i)-(ii) are sufficient. Suppose
therefore that they are fulfilled.

If giarhl./', denote by =(¢) the index of the cyclotomic polynomial
that occurs in condition (ii) and let 7 be the least common multiple of
all numbers n(¢). Define polynomials V, W by the identity
(10) VA+VAW =(T+V30)™
In view of (ii) we have for each root r of gt hU

(TO£VRE T )" =1,
and thus for each root of each g:ithU:

V) £VROWE) =1, W(r) =0

and

(11) Wi(z) =0 (mod ”gi) .

athU

icm°®
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_ Now since for all githU, T' = 0 (modgi'™"), we have

T9(r) =0 for each 00t 7 of g; (g:1hU, 1 < < a;—1). This, in view of

T:—hU? = 1, gives also

L@ e =0 (-12.,4,
and since h(r)U(r) 0,
[gg,(p/m")v(m))]m =0 (j=1,2,..,a4-1).

By identity (10) we get

& L
[551 (Vh(m)W(w))Lr =0 (j=1,2,..,a-1),
which, in view of (11) and since h(r) 7= 0, gives
W(a) =0 (mod [] g¥).
githU
On the other hand, it follows from condition (i) and identity (10) that
Wiz) =0 (mod ng?‘) ,

ailhU
s0 that Wi(z) =0 (modg(m)) and equation (7) has the solution V(z),
W (x)/g(x), which completes the proof.
CoroLLARY. If h #0, LP(w—w)}/mz—h< co holds if and only if
a =0 or h =4a* 2a® or 4a2

Proof. We have here T'(w) =1~2£, U(x) = —2x/h. Conditions

1
(i)-(ii) take the shape :
h # a?
and
a=0 or wz—Z(l-—g—Z:)m—f-l = @}(x), Da(w) or By(z), Dyx), De(®).

The last identity gives 1—2a%h = +1, -} or 0, which leads to
the four cases stated in the corollary.

§ 4. Now we shall make some remarks about problem P, in the
really important case where the polynomial f has no multiple factors.
Suppose that LPYf = K and (2) holds, so that

Ty — (@) Uk-1 = (-1)%,
and let Tx_, be of degree A
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Applying the theorem of Abel to the function
Tx-i2)+yUr—s(2)

on the Riemann surface § defined by equation %® = f(z), we find
Py Py

lf wdm—lfwdm =a period ,
4 A

where [ wds is any integral of the first kind on §, A is an arbitrary place
and P, P, are two places in infinity on §. Taking 4 = P, we get
2
/Ifwdw = a period ,
Py
which means that
- P2
If LPY} < oo, then the value of [ wdw is commensurable with the
P

periods of the integral [wdz, w being amy integrand of the first kind.

For polynomials f of degree 4, the inverse of the above statement
is also true, which has been known for a very long time ([2], Vol. IT,
p. 592). Furthermore, if » is the smallest integer such that

i dz
y | —== = a period
r.’ Vi 1Y ’
Py
then LPYf =r—1 or 2(r—1). More precisely, » is the smallest integer

=2 such that
T5_o()—F (£) Ur—o(2) = C = const

and LPYf =r—1 or 2(r—1)if ¢ = (~~1)’“1 or not, respectively. According
to Abel ([1], p. 213), if # is odd, we have necessarily O = 1 and LP)7
=r—1.

These statements in themselves do not form a solution of problem P,
for polynomials of degree 4, smce they do not supply any method of

deciding whether the value of f l/_ is commensurable with the periods

or not.

A method of deciding that was given by Tchebicheff [8], and its
justification was later furnished by Zolotareff [9].

Now, after the theory of rational points on curves of genus 1 hag
been developed, another method can be indicated, actually based on
the same idea but leading to the end more rapidly. Without loss of
generality we can assume that

(@) = 2t + 60,22 + 4o+ qy .
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According to Halphen ([2], Vol. I, p. 120 and Vol. II, p. 591),
Py
‘ —d-- =a period
Vi)
if and only if
o ry = a period ,

where if p is the function of Weierstrass,

gz==3a§'+a4, 93=a2a4~«ag-a§; P 0 ) =— 0, P;0,0) =

This means that the point (—a,, a;) is exceptional of the order »
on the cubic y* = 44®*— g,&—g,. Now, a method has been given by T. Na-
gell [3] which permits us not only to decide whether a given point is
exceptional or not but also to find all exceptional points on a given cubie
of Weierstrass. This method seems to work more rapidly than the method
of Tchebicheff, however, it is noteworthy that, with the use of com-
pletely different terminology, the first problem concerning exceptional
points mentioned above was already solved by Tchebicheff.

From known results regarding exceptional points further conclusions
may be drawn regarding the functional LPV7, f of degree 4. It follows
in particular that LP]/f can take the values 1, 2, 3, 4, 6, 8, 10, 14, 18, 22
and possibly also 5, 7, 9,11 (I have not verified this) and, if the conjee-
ture of Nagell [4] is true, no other values.

For polynomials f of degree > 4 I do not know any method which
would always lead to the solution of problem P,. However, the following
rule solves the problem for almost all (in an adequate sense) polynomials f.

If LPYf < oo, then f is reducible in a certain gquadratic field.
The proof given below does not differ essentially from Tehebicheff’s
proof [7] of an analogous theorem for polynomials f of degree 4.

Suppose that LPVF < co, (2) holds and s is the smallest integer
> 0 such that

Ti—f(@)U; =C.
Since 7,, U; have rational coefficients, C is rational. We have
f(2)Us = Ti— C = (T,—V/C)(T: +VC).
If {() were irreducible in the field K()/C), we should have
F@)|T,—syC (¢ =1 or —1), whence
(12) Ty—ey/C =f(z)W?, Ts+ey/C=V2 and
V2—f(z)W? =26)/C.
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In virtue of the theorem quoted in §1, one of the fractions V/W
and —V/W must be a reduct of expansion (2), and thus we have, for some
>0 £V/W =1T,/U,, .

T2—fU; = const,

and the degree of T, equal to the degree of V, is less than the degree
of T, by (12). Since this is incompatible with the definition of s, f(x) must

be reducible in the field K(}/C), which completes the proof.
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ACTA ARITHMETICA
VIT (1962)

Uber die Normalitit von Zahlen
zu verschiedenen Basen

von

WorrcAne M. ScEMIDT (New York)

1. Einleitung. Cassels [1] zeigte die Existenz reeller Zahlen, die
zwar nicht zur Bagis 3, jedoch zu jeder Basis r normal sind, die keine
Potenz von 3 ist. Unabhingig davon bewies der Author [2] kurz darauf:
Normalitit zur Basis r impliziert Normalitdt zur Basis s genow dann, wenn s
rationale Potenz von v ist. Wir bezeichnen daher natiirliche Zahlen r, s
dquivalent und setzen r~s, falls jede der beiden Zahlen rationale Potenz
der anderen ist. In dieser Arbeit beweisen wir den folgenden

SATZ. Gegeben sei eine Binteilung der Zahlen 2,3, ... in zwei fremde
Klassen R, 8 derart, daf dquivalente Zahlen in dieselbe Klasse fallen. Dann
gibt es reelle Zahlen, die normal zu jeder Basis aus R und anormal zu jeder
Basis aus 8 sind.

Wir konstruieren Zahlen mit den erwihnten Eigenschaften explizit,
und geben daher mehr als einen reinen Existenzbeweis. Am Ende der
Arbeit skizzieren wir einen Beweis dafiir, da8 die Menge M (R, S) dieser
Zahlen die Michtigkeit ¢ des Kontinuums hat. Da die Menge der Klas-
seneinteilungen R, S ebenfalls kontinuierliche Michtigkeit hat, ergibt
dies eine nette (freilich komplizierte!) Illustration der Gleichung c-¢ =c.

Der Bequemlichkeit halber nehmen wir im. folgenden an, .S gei nicht _
leer. Fiir leeres § ist der Satz wohlbekannt. AuBerdem werden wir am
Ende zeigen, wie sich unsere Konstruktion auf diesen Fall tibertragen 1a8t.

2. Milfssiitze. Wir schreiben [»] fiir die ganze Zabl n, die n <
< n+1 leigtet, und {»} fiir —[—»]. In diesem Abschnitt sind r, s feste
ganze Zahlen groBer als 1, die r+s erfiillen, und a, o5, ... sind positive
Konstanten, die nur von » und s abhingen.

Sind

r=pf. . pk, s=p..pv (ditea+#0)
die Primzerlegungen von r und s, dann dérfen wir

dllel == d}./ﬁh
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