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On the zeros of Hecke’s L-functions III

by
E. FoceLs (Riga)

Introduction

1. In the two previous papers (see [1], [2]) some results were proved
about the location of the zeros near the line o =1 of the Hecke-Landau
function {(s, ) (corresponding to a field K of degree n > 1) with charac-
ters y modulo § for D = [4|- Nf—co (where 4 denotes the diseriminant
of the field) and » < 1. In the present paper we will prove the following

THEOREM. Let N(a, T) denote the number of the zeros of the function
Z(s) = []e(s, x) in the rectangle (1—a <o <1, [t| <T). Then there is

a aonsm:),t C > 0 (which depends only on n) such that for any 4 [0, 2logD],
D>=D,>1
N (\logD, ¢*flogD) < exp(C4).

The method used in this paper is in the outline the same as that
employed by Rodosskil for Dirichlet’s L-functions (see [9], pp. 332-341
or [8] X §2). There is however an essential digression from his final
arguments as will be shown at the end of the paper.

The notation used here is the same as in [1], [2].

We shall need the known estimate h < D (see [4] § 3 and [5] p. 66)
for the number of classes $, the proof of which must be postponed to
the next paper of this series, where it fits in more conveniently.

Estimates for the number of ideals with the norm <z

2. By the fundamental properties of group characters (see, for
example, [12] § 13)1

Z\ ( 5.' B if $ is the principal class,
" x(2) 0 otherwise,
whence

_ b if a~Db (i.e. a and b are in the same class $),
) ;x(a)x(b) _{ 0  otherwise.
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226 E. Fogels
Let us introduce the function
) i(s, $) = D Na¥(o>1).

aEeH
For a fixed ¢ € § we have, by (1), (2), [1] (8)

(3) Els, ) =17 Y E0E (s, 7).
x
Hence {(s, $) is regular in the whole plane, except for a simplé pole at

s =1 with the residue
Res{ (3 ’ 55)

8=1

=1 Res{ (s, 1)
§=1
which does not depend on $.
(3) and [1] (32) implies that for [s—1| >} we have uniformly in o
C('S', 5) < 6_"1)(1—6)/2(1+It1)(1+d—a)n,2
(=0<o<1+4, 0< 6 1logD) .

The results of this paragraph are based on the following lemma.
Let a(x) for & > =, be a positive non-decreasing function of » such
that a(22) < a(«) and for all m > x,

an < a(m).

(4)

Further suppose the series

(5) 1) = D tmm=s

m=1

is convergent for ¢ > 1, and for some fixed I
(6) =1 D lanim=<1 i l<p<2.
< .

Then we have uniformly in 1 <9 <2, T>0, z> 2

n+iT
1
(7) Zam——é—ﬁ. { %f(s)ds <% {@(n—1)"" 4 wa(z)loga} 4 a(x) .
m<e n—iT

] For 1=1 and a(») = logz this lemma is proved by Landau ([3],
Hilfssatz 3) and the proof still holds under the generalised conditions.

Levma 1. Let v(z, ) denote the number of ideals of the class § having
the norm < w (x> 1), and let v(z) = Y v(w, $). Then
5
(8)
and
(9) ¥(@) = huz+ O (DRl3gi—1k) |
where p = h‘lfat._elsé'(s, %)y k=3%(n+3).

¥(2, §) = pw + O (DAsg1-1k)

icm°®
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Proof. Since there are only < 1 ideals of the field having the norm
< 3, for » < 3 the lemma is evidently true. In what follows we suppose
x> 3.

For any of the functions f(s) =I(s, 1), £(8, H) the coefficients
ay, in (5) are < d,(m) (in the notation of [2]§ 13). By [1] (3) and induction
(with respect to n) do(m) < ¢(e)yms for any &> 0. By (2), [1] (8), [1] (14),
we have, for o> 1, {(o, 9) <(0, ) < (6—1)"". Hence (6) holds for
l =n.

Taking # =1+1/logz, T = ¥+ we have, by (7),
n+il
1 a8
V@, 8) =g | 220, $)ds+0(@-Hnidrloga)
27 2 8
(the constant in O depending on &). For & = 1/{(n+2)(n +3) the remaining
term in (10) is <€ gl—n+d) — g1-1k,

Passing over a pole of the integrand at s = 1 with the residue uz
we replace the path of integration in (10) by Ly +L,+ Ly, where Ly, Ly, Ly
denote straight lines joining the points (n—iT, 1flog Dz—iT), (1/log Du—
—iT, 1flogDz +iT), (1flogDz+iT, n+4iT), respectively. By (4) (with
6 = 1flogDx)

[Zes, 9)as < D" 1"10g" Do 2 D0
L

(10)

f < max (D" T log" Dz, T 'log" Dz) + D2z’ ¥ < D¥*a' 7 .
Lils
From this and (10) we deduce (8). Using [1] (32) instead of (4) by
the same argument we get (9).

- LeMMA 2. If v(z; §, b) denotes the number of such ideals a of the class §
which are divisible by b and have the norm <z (=1, (b,f) =0, Nb < »),
then
(1) »(@; $, b) = pa/Nb+0(D(z/Nby—k ) ,
where u, k& are defined by (9).

Proof. Write a = be. If a runs through the ideals of the lemma and
be$' (say), then ¢ runs through the ideals of the clags $/9’ having the
norms < #/Nb, and conversely. Hence (11) follows from (8).

An application of Selberg’s sieve method

3. LeMMA 3. Let
(12) (m=1,..,X)

be. a set of ideals in K such that for any b
(13) D1 =X/f(6)+Bs

am
blam

Um

16*
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where f(b) is a multiplicative function # 0, i.e.
(14) flab) =f(a)f(®) i (a,b)=0.

Further let Q be o fized set (empty or not) of prime ideals, generally denoted
by q, and let for 2> 1 N, denote the nwmber of ideals (12) not divisible by
any prime ideal p # q having the norm Np < 2. Writing

(15) Fe) = D i (}),
b
= Y#0) = ) #0b)

(16) Sz - ZF(b) ? Sz(t) - "b"J F(b) ’

No<z (b,c)=0

ard Nb<z/Ne

afbe
‘ w©) [ A=1/f(p)7'8c)Ss  if  qre, Ne <z,
17) de = Pl
0 otherwise,

we have
(18) N, < X8, + 2 [AclzcaRh‘a/(‘lyCi)l .

€1, €2
Ney<z, Neo<z
atecy

It is understood that all the ideals used in this lemma and further
on are prime to f.

Proof. (The method used in this proof is borrowed from Selberg’s
paper [10] where an analogous result is obtained for a set of natural
numbers. But there are no exceptional primes ¢ in his paper corresponding
to the ideals q of the present lemma.)

We begin the proof by taking A, =1 and i = 0 whenever qlc or

N¢ > z (or both). For all other ¢ let for the pregent A be any real numbers.
Then

(19) ¥.< (),

am  clam

since the inner sum is 1 if a,, has no other prime divisors than g or p # g
with ¥p > 2 (or both), and > 0 otherwise. By by, ..., by denoting all the
divisors of a, we have

(2 L)z = (Ao, + o0 + Ab, ) = hoi oy
= bib

1 k)
7
(u,m‘“"‘

since ‘bilan and bjla,’ is equivalent to

DDy
(b, o) | ™
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Hence, by (19)

(20) Ne< D 2gdq D) 1. )
. 51,5\27 < &ee
clfrzc,lo:zxz [CTY)]

By (14) f(0) = 1. It may be proved by induction with respect to the
number of different prime factors of H = (a, b) that

(21) Flabfb) =f(a)f(B)/f (D).
(This is evident for b = p. Let a = a’p™, b = b’p™ and let o (for exa;ml?le)
be prime to p; then (a, b) = (a’p™, b'p™) =p™(a’, b) =p™(a’, b). Supposing
(21) is true for a',b we have, by (14),
y J‘L) - f( pma’t’ ) _ j(a’(n’”b’)‘) _;f( a’b )zf(a’)f(b)
((a, b) pm(a’, b) G @, B f{@,b)
_1@EMF@)B) __f@fb) _f(a)f®)
Femf (@, )  fEma,b)  f((, D)

3

whence (21).)
By (21), (13),

GG _Xj (e c2))
Z 1 =XJf (m) + Reyfiernen = OB FRescritcren) -

€1l
(€1,63)

Hence, by (20),

(22) N, <XU+ D) MalaRoaaenls
NC1511<72:<2
G™
if we write , A
(23) 7= D i),
Nc:,}'\%;<5
afcics
From (15) by inversion (ef. [6] Satz 38),
1(6) = ) F(v)
76
whence
1 (@ @) = ,,ZF(D)
b::

and, by (23),

(24) v= Drm( ) = 2 ro,
J 3
Nb<z

e No<z
atd Ne<z atv

ate
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if we write
\7 4
= 2% =
b]c
Ne<z
atc

Hence (since S%:'#(b) =1 if a =0, and =0 otherwise)

\! A
> #(D) Y = 2;,; u(d) g f_(é

Nb<z/1vc No<N
afed :rbl ‘ Nggzlgqfu
! A
S X D e Y S
Nbgb N f f 4‘1 ﬂ(b (C)
N Nb<;/l\c NK’Z/NC
or
25 A
(25) ok 2 (D) %ep
NbNe

afcd

1= D udn

o
Nbgz

whence, putting ¢ = o,

(26)

Now we choose the numbers A (1 < Nc <2, g+c) satisfying

27 #(D) -1
° P S
1.e.
3 e _ud) e
— f(c) F(b)™"’
N:g:‘gquc

whence, by the argument used in prow‘ng (25)

c)Z -

Nhgn/Nc
ated

(28)

If ¢ is a quadratfrei ideal (i.e. not divisible by a square s£p), then

by (15), (14),
(29) 7o) =) [ [(1=2L).
]n,:[ ( f(p))
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Owing to the factors x(d), u(cd) we may suppose that the ideals ¢, D,
n (28) are quadratfrei and prime to each other. Then, by (29), F(cb)
= F(c)F(b) and we have

(C)H( o 2 56

[LX c)=ro
Nd<s/Ne
afbe

(¢f. (16)), which is (17). For A satisfying this equation we have, by (24),
(27), (26)

1; (1—1—(%)"1 S0/ 8s

®) ot o
U= ZF y,,F(b;s;_s,,lzpb)yb s
Nb<z Nh<z

From this and (22) we obtain (18).
4. TEMMA 4. Let (12) be the set of ideals a of a class $ having the norms
Na<w, o> D%, k=3%(n+3), and lo
(30) 2> max (gt D%)
(31) D1Ng <1
qQ

for q running through all the prime ideals q € @ of Lemma 3. Then the main
term in (18) satisfies
X8, < x[hlogx.
Proof. Since h < D, we have, by (8), [1] (13),

» (¥, 5) (D 2[3 1—-1/k) n= h_lReSC(S’, xo) > D—o/s
g=1

(82) my+0

it D> D,. Hence for

Y=Yy = D%
the order of magnitude of the principal term in (32) is larger than that
of the remaining term as D—co. By (32)

(33) X = pa+ 0(D¥gr—2lF) .
Hence, by (11),

»(7; $,0) = Mw/NB+0(D2/s H/k) L+ 0(D i

ofm(z ™
ol

Comparing with (13) we deduce

(34) fB)=Nb, Re< DS(w YL
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Let v(y) denote (as in § 2) the number of all the ideals of the field K
prime to f and having the norm < y. We have, by (32),

(35) v(y) > thuy for ¥ >Y,.
By (16), (29), (34),

o he - Sl [

b p|b
Nb<s Nb<le
atb atd
= §1/Nb,
be(z)
atb

where (2) denotes the set of ideals b (prime to f) in K such that the product
of all different prime factors of any b is in norm < 2. Let g denote a typical
ideal in K which is divisible by no other prime ideals than the q € @; then

1<[]a+1Fg+yNg+..) = Y 1Ng =7,
q g
say. Hence, by (31), V < 1. (If @ is an empty set, then, by definition,

¥ =1)
By (35), (36), (30), [1] (6

'S,.-V>21/Nb> 2

be(z) Nbs
2
(®,f)=0

hulogz

(since 2/y, > 2'/%). Considering that logz > {logz we deduce

8.V > e,hulogw,
whence

8, > eyhuloga,
(since V < 1). Combining this with (33) (where the remaining term may
be dropped, since > ,) we obtain

X/8, < pw/hploga = w/hlogw,

the desired result.

S. LeMMA 5. Let W denote the remaining term in (18) and let in
Lemma 4
1/k
37 R .
(37) “7 = D yhloge = '
then

W < a/hlogx .
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Proof. If b, denotes the product of all the different prime divisors
of b, then, by (16), (34), (29) and the a,rgument used in proving (36)

H(l—-l%)—lsz(c) ”(1+Np TRt )2 v

] E {z|N¢)

&% o G=o
1
= Z b 2 wp S Z wp =S
Byje be(z/Nc) 1<.
Yo
Hence, by (17), for all ¢
(38) [ <1
By (38), (18) and (34)
N ey, cp) 1%
2/8 01— 1)K
(59 W< pgon ) (Flas)
NC:?\%;<Z

LR TY

Using (9), (37), [1] (6), [1] (13) we obtain

T
(40) Z Ne-t-1h — (1— 1/k)f iz, o)
Nc<z

dw hus - D=k
< h;uf =1k +D2}8 T & 21—k

< hyzll"-}-DZ/slogz < h/zz"’“ )

(41) Z Nc_lﬁllk < f m2+1lk +21+][k

Nc<z
huz + DRsg1-1k
< by f Zimw T D f ik T T ik
< hu —I—D"/3 < D8
By (40)
N [N (ey, o)\ —rtk) hu)2 22k
(42) (——— < Ne < (hu)2e® .
% N¢, - Ne,, -
Ney, Nep<s Ne<z

(€,c2) =0
Denote the left-hand side in (42) by So(2). Writing (¢, ¢2) = ¢, ¢ = ¢a,
¢, = b we have (a,b) =0 and, by (42),

. N(C Cz) 1-1/k _ B 1 )1——1/k=N —1tikg (_i)
Z (Nc;,Ncg) =Nemnk Zh: Na- b ¢ °\ ¥

Ntlyc R’Z<¢ Na, Nb<<z/N¢

(e1ta)=c (aB)=0

€ (PN =3 = (RPN e

»


GUEST


234 . Fogels

Denoting the first term in this sequence of equations by 8c(z), we have

2 (gc: > N cz) - 2 8c(z)

\
< (el ) Nem1=0 < D (i,
Ncl,c K’ccz<z N c~<_z Nccéz
by (41). Hence, by (39), (37),

W < D8(hu)eat—Vk2% = gfhlogw .
This is the desired result.
Taking = > D% we have (since b < D, hu < D)

D (huyhloge < 2% (D> D)
‘whence, by (37),
> wl/t’ 2> Dk

which is (30).

6. LeMma 6. If m(x,9D) denotes the mumber of prime ideals of the
class § having the norms < x, then

(43) n(z, H) < zfhloge for a=D%, k=}(n+3).

Proof. Let in Lemma 3 (12) be the set of ideals a of the class $ with
Na < # and let the set @ be empty. Since ¢z <V, by (37), among the
N, ideals (18) there are all the prime ideals of § with the norm > 2z and

< «. Hence, by (18), Lemmas 4, 5 and (32) (where the remaining term
may be dropped, for y =}/ '

T > Yo)
z, H) KN, +n(z, 9H) <
the desired result.
COROLLARY. We have

D)

pme S
NPz, m=1

wfhlogz + =Yz, ) < w/hlogw,

logNp <afk  for o2z=DS% k=3%(n+3), D>D,.

Proof. Writing #, = D% we have x> x,D. By (43), [2] (2), [1] (6)

(45) 2108‘1\713 < vlogp+ Z log Np < @+

A;pfﬁz pg:co zo<pN%<z
7y,
+ [ M2ty (2, $)10g0 < 5, (a, $)logs < afp
and "
Z log Np < logw- Z_logp < Yaloger < o/

pm€S
Npmp, m>2 2<Va

(since h < D), whence (44).

icm°
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LzmMA 7. Let V(z; 9,y) denote the number of ideals g (Ng < #) of
the class § which are divisible exclusively by the prime ideals p with y < Np
< 9% then

(46)  V(z; 9,y) < x/hlogz for w» =D,

uniformly in

k=%(n-+3), D>D,,
1<y<V=.

Proof. Let in Lemma 3 (12) be the set of ideals a of the class § with
Na < # and let @ be the set of all the ideals q in K (prime to f) such that
y < Ng <y Then, by [2] (4),

Suyrg< D 1p<t,

q y<p<y®
which is (31). Among the ¥, ideals (18) there are all the ideals g e with
Ng < @, whence (46) follows from Lemmas 4 and b.

An estimate for the number of functions (s, x)
having a zero in the neighbourhood of s =1

7, LEmMA 8. Let (s, y) has a zero go = fy+it, in the rectangle
Byl—2logD <o <1, [t <éMflogD) (0 <e<A< 2log D) and yx be neither
the principal nor the ewcepmonal character (x % %6, % 7 %'). Then there is
a number v, =1,(x) < leflogD and there are two rectangles

Ri(l—a <o <1+3a, t—ul <4a),
Ru(l+e2 <o <1+30/2, t—7) <a), (a = AflogD)
such that either (I) for appropriate s, € Ry
\ (p)log N
(@7)  |Fys)|>logD, where Fy(s) = ) x( vas Ve

Z<N:>=1J<I)°’c

7 — pUosHeta g 10y 1 3), or (L) for appropriate 8; € Ry

N
where  Fyfs) = Z _Z_(R%%%___B

P
Np=p>D%

(48)  |Fys,)| > exp(—cod)logD,

and 6,> 0 depends only on n.

This is a simple consequence of [2] Lemmas 1, 2 (with 4 =logD,
hele, 3 4], yo =64, M =D%); cf. [2] § 6.

TEvma 9. Let Q =Q(D,2) for ¢<A< 2logD, D> D, denote the
number of the functions {(s, x) having af least one zero in the region

Ry(1—AlogD <o <1, [t| <¢flogD).
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Then for appropriate constant Oy > 0 (which depends only on n)

(49) Q@ < exp(CA).
The proof of this lemma is the object of the rest of this paper.

For 1 > 2logD (49) is evidently true, since then k (which is the total
number of the functions {(s, )) does not exceed ¢. And if » < 1, then
taking C, large enough (49) holds for all A > ¢. Hence it remains to prove
the lemma for the range ¢ < A < log D supposing » > 16 (say) in which
cage the functions £(s, x,), £(s, ') may be left out. By @’ we denote the
number of the funetions (s, ) with x % x,, # x’ having a zero in R,.
To these functions we may apply Lemma 8. By ¢, and @, we denote the
numbers of the functions ¢(s, x) for which there holds respectively the
conclusion (I) or (II) of that lemma.

8. Let us suppose first that

(50) Q> 19"

The rectangles Ry (where 7, depends on x) lie in the region
R(l+ta<<o<<1i+ia, |t <alelogD)

(for a suitable a < 1) which can be covered by a set of

(51) N <o, 2exp(l+2¢,)4

(¢, defined by (48)) congruent squares with the side of the length

n = 1/bexp(c,A)log D

running parallel to the axis. Then there is at least one square, R,, say,
in which there lie

(52) Q> G/ N
of the points s, = s,(y). By (48), [1] (6), [2] (2), in R,

=)
/ log?p wlogw
]FR(s)l < 0y rai '3 W{Z@
p>D% D%

=616 log” D+ 1 7% * 10" D) < e5 A~ e 10g? D .
Hence by s, denoting the centre of R,, we have, by (48),
IPy(s0)| > |Pa(s0)| —| Foloe)— Ffso)] > [Fiofs)] — | f oﬁé(s)dsl
> exp(— col)logl)—nﬂagmé(s)i > %e;]ﬂ)(-« coA)log D
(if b< 1 is large enough), whence
(53) [Fa(80)]2 > } exp{(—2¢,4)1og* D .

7/

e ©
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Now we add (B3) over the @, characters for which this inequality
holds and compare with the corresponding sum over all ¥ in which we
use (1). Dividing through by log®D and using (50), (51), (52), (48), (45),
[1] (6) we get the inequalities

Qou1-2exp {— (14 46) 2} < @~} exp(—26y1)
1 s 2
< Dlgs 2 e Nplopmy

x P
Np=p=>D

h log Np-log Np,
< fog? D gj (Vp- Np,)iree

P~ %
Np=p=D" o
Npy=p;=>D

3
h log Np\? o
y=1 peyp,

Np=pz=D%
(since

00

log N alh 1._
2 N_—fﬁ% < f m2-{a/2 dr < % Ale~%ilog D) ,
peH Dok

Nu}D‘k

whence Q' < exp(¢sA). This proves the lemma in the case of (50).
9. Now we suppose that
(54) & >19Q'.
The ¢, rectangles Ry (with 7, depending on y) lie in the region
R{l—a<o<1+3a, [t]<cieflogD)
which can be covered by a set of
(b5) N, < cp2exp(1+12k) 4
congruent squares having the length of the side
n = 1/bexp(6ki)logD .
There is at least one square, E,, say, in which there lie
(56) Q. > /W,
of the points s, = &(y). By (47), [2] (3), we have in R,

1—a

2 r3
I1Fi(8)] < ¢ logp < ¢, 68k 2 12%2 < ¢geflog? D .
p<D¥ P p<DS
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Hence, by s, denoting the centre of R,, we have, by (47)

So
Fyfs0)| = [Pylse)|— | Filsy) ~Fulso)| > logD— | [ Fi(s)ds |
81
> log D —nese**log? D > log D—$log D = }log D

(supposing b < 1 large enough). o
Now let the idealsp with Z < Np =p < D% = M, p+{ be distributed
into sets 8, ..., S,, the set S; containing all the p satisfying

(57) 277logM < log Np <21_7'10gM, v < Gglog (24 24) .
Then there is at least one set §; = §, say, such that for at least

(58) Qs = Qufv

of the characters y we have

\ 1
(59) lz x(p)Np“é’Olong‘ > Q;logl)‘

pes

Raising to the power 277! we get the inequality

(60) Y e

[4
M<Ne< M?

"> (log D) exp(— cid)

where

61) 0<a<2! [[ logNp <2t (log M)” < (logD)” exp(csd) .
1<l
PeS

Let a and b denote ideals all the prime divisors of which are in the
set § defined by (57), (58). Then we have, by (61), (1),

62) Y| 3 z(QacNe

2

M<N‘C:<}VI’
< (log D)¥** exp (2¢52) M*h Na—t. Z Nb™! < (log Dy¥* exp(cyl) ,
M<Na<m2 3
Mo

since, by (46), [1] (6),

e
do  M?hlogM?

- S
. dw
% Nb <JJ Togn s T ap <k,
M<Nb< M2 )
beH
h
L) Nar=) D Mi<l.
" M<Na<h =t M<Y;v(b5<"Mz

icm

©
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Summ?n’g-(59) over the corresponding characters, comparing with (62)
and dividing through by (logD)** we obtain, by (54), (55), (56), (58),
(60),

Q" exp(—¢d)
610 P10g (2 1 24) exp (L 1 127%)7 < @OXP(— k) < exp(cod)

whence Q' < exp(e,A). This proves the lemma.

The theorem of §1 is an immediate consequence of Lemma 9 and
[1] (43).

Note. In the original method of Linnik and Rodosskii for Dirichlet’s
L-functions (see [9] p. 339, [7] p. 173 or [8] X (2.66)) some numbers v,
corresponding to Nb in (62) are treated as numbers of arithmetical pro-
gression Du+1 with (D, 1) =1 having no prime divisor < Z. An estimate
(63) v(2) < afp(D)logZ (x> DY)
for the number v(x) of such numbers » < = has been proved using the
Brun’s sieve method (see [7] p. 173). The eorresponding result for an
algebraic field K of degree n > 2 may not be true (!} and the method
does not work. The principal difficulty to overcome in proving the theo-

rem of this paper consisted in the construction of a suitable substitute
for (63).(2)
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On polynomial transformations

by
W. NARKIEWICZ (Wroctaw)

1. We shall say that subset X of a field R has property (P) if every
polynomial P(z) with coefficients from R such that P(X) = X is linear.
It is easy to see that any number field in which the “Irreduzibilititssatz”
of Hilbert is true has property (P). Consequently, any algebraic extension
of the field of rational numbers has property (P) and any number field
which is transcendental extension of some (its) infinite subfield also has
this property. (E.g. see [1], [3]). On the other hand, it is trivial that no
finite set has property (P). The problem can be posed, having a fixed
number set Z, to characterize the subsets of Z with property (P). In this
paper we solve this problem in the case where Z is an algebraic number
field. (By an algebraic number field we always understand a finite al-
gebraic extension of the field of rational numbers.) Indeed, we shall prove

THEOREM I. 4 subset X of an algebraic number field has property (P)
if and only if it is infinite.

We shall say that a set Z has property (P) hereditarily if every infinite
subset of Z has property (P). Thus algebraic number fields have property (P)
hereditarily. It turns out that also every finitely generated transcendental
extension of an algebraic number field has property (P)hereditarily. This
follows from

TuroREM II. Let K be a finilely generated transcendenial extension of
a field R. Then K has hereditarily property (P) if and only if R has this
property. (The “‘only if”’ parts of our theorems are of course trivial.)

2. For the proof of our theorems we need the following

Lemma 1. Suppose that T(x) is o transformation of the set X onmio
itself. Suppose that there ewist two functions f(x) and g(x) defined on X,
with values in the set of natural numbers, subject to the conditions:

(a) For every constant ¢ the equation f(x)+ ¢(x) = ¢ has only a finite
number of solutions,
(b) There exists a constant C such that from f(x) > O follows f(T ()
> f(=), ’
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