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This, (4.3) and (4.6) give

R
]og~l
1\v2 1 5 1 Lyus
= —logiBz 9 e =) -
> (6) exp—log 5 log30 i 8 (1(>g 6) 24.
loglogg
! log1
12 5
> 2(1) exp -—8-—~—l—>~—
é 1
loglog 3
Using now (3.14) and (4.2) we obtain
1 1
y 1\1/2 og < L4 v
(4.7) % max |F(y)|> (5) exp | —8-- 9 1 —092—9—«.—1.
' eogy< loglog 3 - (»—1)
But
elogji ’
a_i" < ] < eam:’l-——z;—/fﬁ log log log 1/3
v P

and also

»
i) «’
B <02
7,211(1'“7)! S

whence by (4.7)

1
logs
1\v2 ] 1
max|F(y)| > —) exp | —4 ————logloglog= |,
d=y<t (6 loglog %» 8

Q.E.D.
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ACTA ARITHMETICA
VII (1962)

A theorem on ‘‘ordered” polynomials in a finite field

by
L. Carrnirz (Durham, North Carolina)

Let F denote the finite field GF(g) of order g, where g = p» is odd.
Put p(a) = +1, —1or 0 according as a is a non-zero square, a non-square
or zero in F. Then we have
1) y(a) = a™,

where ¢ = 2m 1. The writer has proved the following theorem.
THEOREM A. Let f(x) be a permutation polynomial such that

.

@ () =0, fA)=1
and )
(3) p(H@)~1W) =vl@—y)
for all ,y e F. Then we have

(4) flz) = a®’

for some § in the range 0 <j < m.

We recall that a polynomial f{x) with coefficients in ¥ is a permutation
polynomial if the numbers f(a), « « F, are distinet. Also two polynomials
f(&), g(x) are defined as equal if f(a) = g(a) for all a ¢ F; this is equivalent
to the statement

f(x) = g(x) (modx2—a) .

Now it is evident that the hypothesis (3) implies that f(#) is a per-
mutation polynomial. Also we may drop the hypothesis (2) and replace
Theorem A by the following slightly more general theorem.

THEOREM B. Let f(x) be a polynomial with coefficients ¢ F' such that

p(f(@)—1(y)) = dyp(a—y)
for all @,y e F, where A= +1 is fived. Then we have
(B) fl@) = az®+ b

for some j in the range 0 <j <mn and where a,beF, p(a) = 2.
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We now consider polynomials f(w,y) with coefficients elf’ such that

(6) " '/’U ®,y)—f(z ;y)) = Myp(w—2),
(7) ’P(f(%y)-‘f(ﬂhz) m:"""/’(y"z)

for all #,y,7eF, where A= +1 are fixed.
By Theorem B it follows from (6) that for each yeF

® fl@,y) = aly) o +o(y),
where 0 <j(¥) <n and

(9). vlaly) =2

for all y e F. Similarly from (7) we get

(10) f@, y) = b(@)y?™” +d(a)
where 0 < k(o) < n and

(11) yb (@) =p

for all # eF. We may evidently assume that a(y), b(y), ¢(w), d
polynomials in the respective variables.
The cage ¢ = p is particularly simple. In thig caze (8) and (10) become
fl@, 9) = a(y)o+o(y) = b(w)y +d(w) ,
from which it is clear that
(12) fla,y) = any+br+oy+d
By (6) we get

(a) are

(@,b,0,deF).

v((ay +-b) (@—2)) = Ap(@—2) ,
- for all #,y,2eF. In particular for x—2 =1 this becomes

ylay+b) = 2
for all y ¢ F. Consequently a = 0 and (12) reduces to
(13) T Heyy) =botoy+d,

where y(b) = 4, (c) = u, while d is arbitrary.

The general case is not quite so easy. Let M, denote the set of y e F
such that the exponent j(y) in (8) satisties j(y) = ». Lot g.(«) be the unique
polynomial of@degree < ¢ such that

1 (yeM,),
oY) = {
’ 0 (y¢M);
it M, is vacuous it is clear that g{u) = 0. Then (8) becomes
n-1

Hoyy) = aly) D) giy)a” +o(y) .

a0

icm®
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Changing the notation, we may write

n—1

= 2 a‘r(y)m”"*- G(y) ’

r=0

(14) fle, v)

where the a,(y) are polynomials e F[y]. Similarly it follows from (10)
that

n—1

(15) = D b@)y* +dl@

8=0
where the by(@) are polynomials ¢ F[x].
Compaxring (15) with (14) it follows that

n—1 n—-1 n=1

= Y aparyr' + 3 b+ D oyP+d

f,p-o r=0 8=0

(16)  fl=,9) (rgy by, Goy d € F) .

If we apply (6) to (16) we get

(17) p{ > trla— 275"

7.8

+ X bo—2"} = ip(a—2)
7
for all «,y,2 e F. In particular, for y = 0, (17) reduces to

2 ( 2 bf(w—z)”’) = Mp(w—2) .

Applying Theoremn B to the polynomial

n—1

= Db

. re=0
it follows that all b, = O except by, say, where p(by) =i A similar
argument applies to the coefficients ¢e. Hence (16) reduces to

n—1

= D tnoyP L ba - oyr 14,

,8=0

(18) fl@, )

where p(b) = 4, p(¢) =
Applying (6) to (18) we get

(19) ] trla—

For fixed y define

¥ b(a— z)”"'} = p(z—2).

EIW E‘laﬂgﬂ" bar' .
=0 =0

12%*
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In view of (19) we have
p(f(@)—F(2)} = dp(z—2).

By Theorem B, f(#) must be a monomial in @ for each y. Assume
that not all the coefficients @y == 0. If for some 7, not all ans = 0, then
the equation

n—1

2 a/na?/p' + barorl =0

8=0

has at most pr—t solutions y. If 7 # 7o then not all a,, = 0. But by the
above remark it is evidently impossible to have two non-vanighing rows.

Thus in the matrix (a,) all elements except possibly those in the
o-th row vanigh. In like fashion we can show that all elements except
possibly those in the sp-th columm vanish. Consequently (18) becomes
(20) H(@,) = awPypot bors - oyr4-d.
where @ = @yyq).

Applying (6) once more we get

p((ay™ +0)(@—2)"") = Ip(2—2)
for all z,y,2¢F. For o—z =1 thiy veduces to
(21) p(ayPh+b) ==
It a # 0, we take
y = —(bla)"™

to get a contradiction.

We have therefore proved the following resalt.

TeEOREM C. Let f(2,y) be a polynomial with coefficients ¢ F such
that (8) and (7) hold for all 2, y, 2z ¢ F, where 4 = 41, y= +1 are fived.
Then

fl@, y) = bo?" - ey?* -,

where 0 <r<my, 0 < s<n and

p®) =24, o) =p.

The general case is covered by the following theorem.

TaeorEM D. Leét f(@y, ..., 2 be a polynomial with coefficients eI
such that

(22) V’(f(wlr ooy Bpeyy Bpy Bpgyy vy wk)""f(mly cony Bpety Yoy Doy oovy wk))

=t —yy)  (r=1,2, .., k)

©
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for all ;, y; € F, where the A; are fized, Ay = +1. Then

(23) f(aflh () mk ybyﬂ’ip —+ d
where
pby =24 (=1,2,.,k.

It will suffice to sketch briefly the proof of the theorem. We assume
the truth of the theorem for k variables. Then for fixed # = @, it follows
from the inductive hypothegis and (22) with % replaced by %k-+1 that

k
Fas ey 2, @) = ) by} o™+ d(a) .
=1
Then, exactly as in the proof of (14), we get
: [
(24) fl@yy oy @, m) Z Zbr! ().
=0 j=1
On the other hand, for fixed , ..., #x, we have
(25) F@1, e 1y @) = 0l ..., YT+ 0(ay, ..., )

for some ?. Comparison of (25) with (24) yields

k. n—-1 n—1 fn-1
(26) f(@5, .., 5%, © ; D ety 0¥ + ;Zﬂ‘b,,w”r-f—Zc,m"'-i—d
=1 7,6=0 =1 r=

For z = 0 the inductive hypothesis requires that for each § all b;, = 0
except by, say; similarly, for #; = ... = @ = 0, all ¢, = 0 except ¢, say.
We then show first that all ajs = 0 except possibly a,,. Thus (26)
reduces to

k k
(27) f@y oo, Tg, ) = Zaiw}wwp,o_i' Zbiw?r§+olom+d’

i=1 =1

where a; = @y, b5 = bjpy-
Now by (27) and the hypothesis of the theorem

K
P (2 0§+ 0«0) = Mot1
=

for all @y, ..., #; € F. If any a; # 0 this is impossible since the equation

2“7 +csn"0

F=1
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is solvable in F. Hence (27) reduces to

k
fl@y ey Gay @) = me;’ri'f'aaowp'n-f'd ’
7=0

where clearly
V’(bi) =l1' (7 =1,., k)7 W(oao) :}'k+ly

and the induction is complete.

Reference

{1] L. Carlitz, 4 theorem on permulations in a fimte field, Proc. Amer. Math.

Soo. 11 (1880), pp. 456-459.

DUKE UNIVERSITY

Regu par la Rédaction le 9. 3. 1961

ACTA ARITHMETICA
VII (1962)

Congruence properties
of certain linear homogeneous difference equations

by
L. CArLiTZ (Durham, North Carolina)

1. Introduction. In a recent paper [1] the writer considered the
recurrence

(1~1) Unt1 = f(n)“n"f' g('”’)'“n-l H

where f(n), g(n) are polynomials in n (and possibly some additional
indeterminates) with integral coefficients. It was assumed that

(1.2) w=1, w=f0), g(0)=0.

The main result of [1] is contained in the congruence

(1.3) -1y (:) Unsomti® = 0(modm™),
=0

for all # >0, m>1,r>1 and where
(1.4) 1 = [(r+1)/2],

the greatest integer < (r-+1)/2. Indeed, to get (1.3) it is only necessary
to assume that the coefficients of the polynomials f(n), g(n) are integral
{mod m).

A number of applications of (1.3) were given, in particular to the
polynomials of Hermite and Laguerre.

Tt seems natural to consider the recurrence

{1.5) 6%, = agy(n)ul® + ay(n) ul + .. + ax(n) Uiy

of order k+1, where the as(n) are polynomials in n with integral coef-
ficients. Corresponding to (1.2) we now assume that

(1.6) as8) =0 (s=0,1,...,j—1,5=1,.., k)%

also we suppose that (1.5) holds for all » > 0. In view of (1.6) it is not
necessary to explicitly define u®), vy u®,. We take u$® =1 and it follows
that

4® = a0),  uf =a1)uP+a,(1), ete.
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