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Introduction

1. The theory of Dirichlet’s functions L(s, ) with characters x
modulo k—co has been developed by papers of Titchmarsh, Page, Linnik
and other writers (see [6] IV §§5,6; X §§ 2,3) as far as they were able
to prove the Linnik’s estimate p, < &°® for the least prime = I (mod#%),
(k,7) =1. Tt is my aim to prove the corresponding result for prime
ideals of any class modf in any algebraic field of degree = > 1 (which
for n =1 coincides with Linnik’s theorem). The necessary auxiliary
theorems (which may be intersting in themselves) about the zeros of
L-functions of an algebraic field will be given in a series of 3 papers. The
arithmetical deductions will then follow in later paper (The results of
this series of papers have been announced in a short note to appear in the
Doklady Akad. Nauk SSSR).

The L-functions of an algebraic field were introduced in 1917 by
Hecke ([2]) and further investigated by Landau ([3]). In this paper,
being greatly indebted to Landau’s work, we keep his notation (s, x)
for that function, although Hecke himself and many recent writers use
the symbol L. Actually Hecke’s L-functions are in the set of Landau’s
functions ¢(s, x), but not the contrary; c¢f. [3], p. 53.

The principal result of this paper I is the following

TrroreM. Let K, §,{(s, x) denote respectively any algebraic field of
degree m =1, any ideal in K and any Landaw function with o character x
modulo . Let further

D= |4]"Nf>Dy>1
where A4 denotes the discriminant of .the field and NF the norm of §. Then
there is o positive constant ¢ (which depends only on n) such that in the region

(1) o>1—c¢/logD(1+|t]) > 3/4 (o=res, t=ims)

there 18 no zero of (s, ) in the case of a complex x. For at most one real x
there may be in (1) a simple zero = 1— & of {(s, x); 4 is real and, if D, is
large enough, 8> D™
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88 E. Fogels

The method wused in this paper is on the whole that employed by
Titchmarsh ([7]) and Page ([5]), but it is applied to a more complicated
function, the properties of which were unknown for D->co.

Preliminary theorems

2. Throughout this paper =, K, {, 4, D, (s, x) keep their meaning
ag fixed in the theorem. m denotes mnatural numbers in general, d(m)
the number of positive divisors of m. @(m) is the number of natural
numbers I < m, prime to m. a, b, ¢ denote ideals and p prime ideals of
the field in general, o the unity ideal, z(a) the number of divisors of a.
u(a) is the Mébins’s function = (—1)*, if a ix a product of v = 0 different
prime ideals, and = 0 otherwise. $ denotes classes of ideals modulo fin
general and % the number of classes. a,b, 0,0, ... denote positive con-
stants which may depend on 7 (generally they keep their meaning only
throughout the same paragraph). The dependence on other constants is
denoted in the usual way.

For positive @ by y <@ or y = O(w) we denote the inequality |y/z| < ¢
for appropriate ¢. We suppose that the degree of the field is bounded
(n<1) whereas 4| and Nf may increase indefinitely.

The complex variable will be generally denoted by s = o4, but
sometimes we use w or 2.

We take for granted the elementary properties of Riemann’s zetu-
function {(s) and the function I'(s) in such extent as is given in Titchmargh’s
book [8]. We shall need the following estimates and sum formulae (for
the proofs see, for example, [6] I Satz 5.1, 5.2; A Satz 6.2, 1.4, 3.2).

1. We have

(2) p(m) > eymfloglogm  (m > 3).
For any &> 0 and all m > m(e)
, logm A
(3) d(m) <exp{w(1+s)mg 2.
2. If o€l and |t|~>oco, then
(4) |T(o+it)| = /3w e H2g 7= =1 L0 (1¢[™)}

3. Let
f(8) = D apm—r ,

where the series is absolutely comvergent for o> g, > —oo. Them for amy
Y>>0, w=u+iv, b> max(o,, u)

1 b+-doo
(5) Zamm—"’e‘m" =5 yo—el(s—w)f(s)ds .

m b—teo

iom°
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4. Let Ay Ay ... be a sequence of non-decreasing real numbers with
limi, = oo, and let a, (m=1,2,..) denote arbitrary real or complex
numbers. Then for any real or complex function ¢(&) having a continuous
derivative in the segment 2 < & < ® we have

(6) D anglm) = A@)g(@)— [ A©)g(O)5,
21

W<tn<z

where

D dn

M<An<é

A(§) =

3. Let x($) be any of the & characters of the classes $ and let for
any ideal a of the field K

o) (a) = (9 i aeH,
x 0 if  a is not prime to f.
The principal character will always be denoted by yx,.
Writing
(8) Esy0) = D a@Na=r  (0>1)
a
we have in the half-plane o> 1
9) ts, ) =[] —xtp) 9,
P
whence
(10) (s, 1) = D w(@)z(a) Na=s
(1) LJe(s, ) =— Dz Np~mlogNp .

Pym
m>1

The function (s, x,) is regular in the whole plane, except for a simple
pole at s = 1; the others, {(s, x) (¥ 5 %), are integral functions (see [3]
Satz LXIII).

Let (x(s) be the Dedekind’s zeta-function of the field K,

tr(s) = ) Na™* = [[(1—Wp~)™

P

(0>1).

Then we have, by (7), (9),

L(s, z0) = Luls) [ [ (1—2p-9) .
olf

(12)

7*
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B. Brauer has proved the estimate

Res ix(s) = |4 (|d]-+00)
8m=1

([1], (16)). In consequence of (2)

[a-m > (B v @ireo).
ol

Hence, by (12),

(13) Res (s, xo) = D* (D->00).

=1
The estimate of [{(s, x)| in a strip o<1
4, Lemma 1. For any positive n-<1
(14) LA 4n+it, g) <y,
(15) E(=ntit, ) < " DHULA o)
(186) [E(oit, P <e(n, Dye  (—y<o<L+q, i =1).

Proof. Since any prime p in the field K is a product of at most n
different prime ideals p with ¥p = p (see [4] Satz 815), we have

[E@+n+it, 0] <A+, %0) <Lxll+7)
—JTa—mp7 7 < [[a—p™ ™)™ ="+ n) ™.
P »
This proves (14).

If x(a) is a primitive character, then (s, y) satisfies the functional
equation (see [3], pp. 90, 99-102)

wn ¢,
— q — i~
F('z“ff ) J<l7i) (1’(].«-3)

]’('5‘/2) I‘(‘?)

= (O () A )'“c(1~-s, D

where 7, and 27, denote, respectively, the numbers of the real and not-
real conjugate fields of K(0 <7 < n, r+2r, = n), ¢ denotes a non
negative integer <y, |W(y)| =1,

.A(f) — 2—rxn~nl2 VW"{D’“ .

iom
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By (4)
0\ 2
F(l +n— @t)

1y, A2
<@+ p(:nﬂt)

I'(1+49—1t) ) 142
T{(—7n+) <(@-+th,

)

Z

9+ n—it\\ *
=)

m < (1+ et

From this and (17), (14) we get (15) for a primitive yx.

Now let y(a) be an imprimitive character modulo f. Then there is
an ideal f, which divides f, and there is a primitive character X modulo f,
such that

(18) ts, ) =2, X) [ a—X@Np™)
plf.ptfo
(see [3], p. 102); by (15)

(19) L(—n+ 1, X) < =0 ANF 71 [t
We deduce, by (3),

() < ANF) < NF.
Hence, writing = f,f;,

[ a—xwwpro< [ @+¥p)<[]@+5p)
pifptfo plfpifo plfs

— D Np'< Nflz(f) < NfT0
. bR
From this and (18), (19) we get (15) for imprimitive x.
Again let x be a primitive character modulo f and let
05, 1) = AT (52) 12 5 rta)26e, 2
It is proved by Landau (see [3], formulae (52), (65), (41)) that, in the
region G(—n < o< 1+, [t] =1), |B(s, x)] < aln, D). Hence, by (4), we
have in @
E(sy 2)] < eoln, Dyenltl,

which implies (16) for a primitive y. From this and (18) we get (16) for
any x.
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5. Let in the region (—w/2a < o < n/2a,¢>0) F(s) bo a regular
function satisfying the inequality

(20) F(o+it)<expe”

with y < e and let on the boundary |F(s)| < M. Then by a theorem of
Phragmén-Lindelot (see [8], § 5.65) we have in the region |[F'(s)] <
Replacing s by sca/n+ iy, where ¢, 8,1, are appropriate real constants
(e> 0,1, > 0) we get the theorem for any region (o, < 0 << op4-¢,1 = 1,)
in which F(s) satisfies (20) with y < /e,

LemmA 2. Let in the region G(o << o< p,t =1, > 1) [(8) be a reqular
function satisfying the imequality

(21) flo+it) <expert  with y < m(f-—a)?
and let

flati) <i®, fB+in<t’ (1> 1).
Then we have in G
(22) flo+ ,,;t)<ta(ﬁ~d)l(ﬂ~a)-i-b(o—u)/(ﬂ—u) .

For functions f(s) satisfying in @ the inequality j(s)-<¢° the proof
is given in [4] (Satz 405) where it is based on a weaker form of Phragmén-
Lindelsf theorem ([4], Satz 404). If replaced by the aforesaid stronger
form, then the proof holds for functiony f(s) satisfying (21).

6. Let in the strip oy < o < 0y, f(8) be a bounded and regular function
(with exception at most the point 8 = oo), not identically = 0. Let further
0, < 0,< 0y and let M, (r=1,2,3) denote the upper bound of |f(s)|
on the line o = o,. Then, by a theorem of Doetsch (see, for example, [6],
A, Batz 9.1)

(23) ML MM

LevmMA 3. Let in the strip S(a < o < g), F(s) be a regular fundion
satisfying the inequalities

F(o-+it) <expetl  with y < m{f—a)*

and

(24) Flatity <TUQA+[), F(B+it) <V

where v> 0, U> 1,V > 1 are independent of t. Then tn §

(25) lF(G—l-it)l < al(a, 8) U(ﬂ”ﬂ)/(ﬂ—u)V(u—u)/(ﬁ—a)(l+|”)V(ﬁ-ﬂ)/(ﬁ—a) .

Proof. By (22) (and the corresponding result with ¢ replaced by - )
we have in § :

(26) (B (o+it) < ela, B, U, V)(1+[t)) e
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The funetion
f—a
F(l— s—a )
. ooy — | sme2@=a) T\ 50=a)
s—a I’( s—a )
2(p—a)

is regular in § and s 0 at any finite s € §, whence at no such s is a branch-
point (concerning the case of non-integer f— a). Any braneh of this func-
tions is a single-valued function in §; further on we use the principal
branch of g(s) which is positive for t =0, a <o <B. ;

Writing
(28) lg(8)| = G (o, 8)-(L+[e))
we have, by (27), (4),
(29) a<@o,t)<e (e<o<p)

for appropriate ¢, ¢s (which may depend on a, §). Any fixed branch of
the funetion

(30) F(8) =F(s)lg (s)vl(ﬁ*a) Ufﬁ“ﬂ/(ﬂ—ﬂ)v(ﬂ—a)/(ﬂ—-a)

js regular in . Taking the principal values for the powers of U and V
it satisties the inequalities

(31) flatit) <es, [fB+iD)]<a,
by (24), (28), (29), and is bounded in S, since, by (26), (28), (29),
flo+it)| < osla, B, T, 7). '

Hence, if M, denotes the upper bound of f(s) on the line ¢+t (—oo <t
< oo, o fixed) we have, by (28) and (31), M, < ¢;. From this and (30),
(28), (29) we get (25).

7. LEMMA 4. For any positive 6 < 1flogD <} we have wniformly
in —8<o<<1+6
(32) (s, X)’<5~%D(l_u)’2(1+M)(Hd"ﬂwz
provided that |s—1| > § when x = xo.

Proof. Suppose first x # xo. Then Z(s, x) is regular in the strip
—6 < o<1+6 and (32) follows from Lemma 3 in which we can wuse
a=—8,f=1408, v =nj2+ny, mn =28,V =n""<s™", U<6™"D", by
(14), (18).

In the case of y = g, we uge the function

Pl =200, 1)
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which is regular in —é < 0 < 1+ 6 and satisties the inequalities

P+6+ity<s™, F(—0d+it) <87 "DV 1))
by (14), (18). By the argument used before

8

(33) B—:—;C(s, XO) (<6—MD(1-—!1)/2(1+ |t])(l+d—a)7l/2 (__ < o< l—l-(S) .

This proves (82) for y = xo, [8—1| > ¢
Using Lemmas 1 and 3 we deduce that

5(s, 1)< DL ™™ (g 20) 5
(35) (8—1)E(8, xo) < DML 4 Jpfy ot
146 (3} <e<kl).

(34)

uniformly in —¢ <o <

On the zeros of {(s,x) in some regions

8. In the half-plane o < 0 the funections /(s, x) have no other zeros
than the trivial ones = — 2m or = —2m+1 {or both; see [3], Satz LXIIT).
All other zeros (the “‘critical’” ones) lie in the strip 0 <o < 1.

LemMma 5. If N(T) denotes the number of zeros of ((s, x) in the rec-
tangle (0 <o <1, |t—T| < 1), then
(36) N,(t)<logD(1+t]) -

Multiple zeros are (ag always) counted according to their order of
multiplicity.

Proof. Let first x # x,. By (10), (8), (14),

(a)x(a
C(2—|—v§t,x)'=| - ﬂNaa’i(“) <E2, %) 1,
whence
@7 E(@+it, )| > 6.

Write 8, = 2-+it. By (84) we deduce the existence of a constant ¢, such
that for all s in the circle [s—s,| < 12
(38) €8, 2)| < exp {o3log D (L-[t)}

Let v»(@) = »(w, 8, x) denote the number of zeros of (s, y) in
|s—8| <@ Then, by (37), (38) and Jensen’s theorem (zee [8], § 3.61),

2
(@9) [ "D o = L [10gz(s,+ 1209, 7)]a0—log|¢ (50, 2)] < alog DA+t
[} 0 ’
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Since

(8)log4,

and N,(t) < »(3), using (39), (38) we deduce (36).
If ¥ = %, then we use the function (s—1){(s
ments.

, o) and similar argu-

9. Our further deductions are based on the following Landau’s
lemma (see [9], IXIT § 9).
If f(s) is regular and

[F(&)f(so)] < €M (M >1)
in the circle |s—s,| < 7, then
! 1 .
(40) 7(3)— 25—:‘6<M/’l [S‘—Sol < r/4)

where o runs through the zeros of f(s) in |s—s,| < 7/2.
LeMMA 6. If ¢y =1 for x = y, and = 0 for x # xo, then in the strip

8(—1<0<B)
:/
Z‘(syx)— 2 8-—-

lg—ej<1

(41)

Prootf. If y # x,, then we have, by (37), (38) and (40) (with s, = 2 + i1,
r=12), in 8

(42) Sl 0= ) S <logDU+ 1)

eeC
where O denotes the circle |s—s,| < 6. By (36) the sum in (42) differs
from that in (41) by < logD(1+|t]) and we get the required result.
If ¥ = 5o, then we use the function (s—1)I(s, y,) and similar argu-
ments.

10. Lmvms 7. If v = »(r; T, x) denotes the number of zeros of £(s, x)
in the cirde |s—1—iT| < r with r e [1flogD(1+|t)), 2], then
(43) v(#3t, 1) <rlog D(1+t]) .
Proof. Since for r>4 (43) is a consequence of (36), we take
7 < }. Considering that any prime p in the field K is a produet of af
most n prime ideals p with Np = p, we have, by (11),
| s

S, <

lo ! ’
—ﬁ%—%—)z ~~fn%(1 4) < ofr .
s i
mzz1
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From this and (41) (with s = 14744, e(s—1)"t€rtzlog. D(L+|t])) we
deduce the inequalities

7

2P ?«‘%(s,x)\?re

T

%(1 7, 10

o1
Z ;:E——c,logl) (L -+ lt,)

ls—el<1
2
= vz —clog D(1+[Y))
implying (43).

On the zeros of {(s,x) near the line g==1

11 LemwmA 8. If ais a sufficiently small absolute constant, 0 < a < 1,
then

<= for

(44) e

oy = 1+aflogD.

%‘(%; %o)

Proof. On the stretch o > 1 of the real axis £'/{(s, z5) < 0, by (11).
By (41)

%(Gah) -1 +re{

T o1
el Y o=+ datoeo)

le—o]<1
(]6] < 1), whence (since ve Y (o— )t =0 for o> 1)
1 1
Te ——— 0,1 — —_—
{19_02111 = + fe; ogD} € [ alogD, a-—l] .

If @ is small enough, then

log.D

%‘ > ¢, log D,

which implies (44).
12. Lemma 9. There is an absolute comstant o,> 0 such that no

function E(s, x) has a zero in the region (o> 1—oyflogDli|, |t| > 8).

' Proof‘. Lt {(s, x) have a zero f-+dy(|y|>3) andlet o, = 1 a/log|Dy|
with o satisfying (44). If s, denotes any of the numbers Oo-+1y, oo+ 20y,
then we have, by (10), (8), (14),

|1/2(80, )| < ) N~ = £ (04, 1) <a~nlogD|y|,
aQ
(@,f)=0

whence in |s—s,| < §

£ (s, 0/E(80, 1) < a,-—’nl])yfca

icm
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by (34), (35). And we may replace y by x* From this and [4], Theorem 374
(with 7 =}, f(s) = {(sy %) and ={(s, x*), M = c,log|Dy|+nloglia) we
deduce
—rel![/t{oy+ 21y, x2) < 8{cslog|Dy|+nlogl/a),
(45) —rel’jE(oy+%y, 7) < 8(cslog|Dy|+nloglia)—(ge—B) .
‘Writing x(a) = ¢#®, when (a, f) = o, we have, by (11),
—B88'[E (00 xo)—4rel’ (L {0yt 1y, y)—T1el'[C a0+ 2iy, 17)

1 3+4cos {p(p™) —mylog Np} =+ cos {2¢ (p™) — 2mylog Np}
Noas log Np

piimz1
y 2 (1 4- cos {p(p™)— mylog Np})*
e Nypmao

logNp=0.
p,m
ptim=1

Hence, by (44), (45),

15

0T -+ 40 (¢,log | Dy |+ nloglla)

B
whence
16

a
log|Dy| {15 +160¢,a +160nalog (1/a)/log| Dy|

1—8> 1.
Since alogl/e—0 as a—0, the expression in brackets is > a; > 0 when a
is small enough, whence 1—p > aailog|Dy|, is the desired result.

13. LEMMA 10. There is an absolute constant ¢, > 0 such that no .
Junction (s, x) with a complew character vanishes in the region ([t < 5,
o> 1—¢flog D).

Proof. We can use the arguments of the previous lemma. For op=1+
+aflog D, 8y =ay—+iy, |y| <5 we have

Z(s, 2)[E (50, )| < @™"D*  ([s—sl < }),
—vrel’[¢(ay+ 24y, ¥2) < 8(cslog D +nloglfa),
—rel’it (oy+ iy, 7) < 8(eslog D +nlog1/a)—(do— ),

— L't (00, %0) < BlA(cy—1),
whencoe
15

—_ —_ — B\
ToT) T 40(log D+ nloglfa)— 4(a—F)> > 0,

@ 16
—_ —1
1-f> TogD {15 F160c,a + 160nalog (1/a)/log.D } !

and 1—p > ¢flogD, if ¢ >0 is small enough.
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14. Lemma 11, There is an absolute constant ¢, > 0 such that no
function [(s,y) with a veal character yx # y, wawishes in the region
(0 < |t| <8, 6> 1—0flog D).

Proof. First let B4y be a zero of the function {(s, ) such that
ologD < |y| < b. Since x2 = %o, by the arguments of §12,

—3L' [ (00, yo) —4xel’[E (0p+ by, 3)—1el’ /L (00+ 20y, xo) = 0

Let oy = 1+aflogD be defined by (44). We substitute for the first
and gecond term into (46) from (44), (45), respectively, but we increase n
by unity and write elogD instead of ¢log|Dy|. To provide a suitable
substitute for the last term, write

G(s) =L(s, nllE(8)

(46)

8o = 0o+ 21y .
By (10)

11/G (s0)] = [£(80)|[1/Z (05 20)| <a—"~2logn+1D .

Hence in |8 —s8| <}

[G(s)/G(80)| < a™"'D*,

by (35) and the fact that {(s) does not vanigh in the rectangle (0 < ¢ < 1,
|t|‘< 14) (see [9], IL §12, XV §1 and the references given there). From
this and [4] Theorem 374 (with 7 = %, f(8) = G(8)) we deduce

—10@'[G(s,) < 8(¢,log D+ (n+1)loglja) ,
whence
—reZ'[l(89, 2%0) < 8(clog D+ (n+1)logl/a)+ctlogD .
Now we have (cf. §12)

15/4(0y—1) + (40¢,Jog D + (n+ 1) log1/a) — 4/(cy— f) +o-2log.D > 0
or
15/4 (6p—1) + 40 (g,log D+ (n -+ 1logl/ja}—4/(ce—B) = 0,
whence the required result follows for |y| > ¢flog.D.
15. Now suppose that o, = B4y is a zero of £ (s, y) such that
—1/clogD, 0 <y < 1fclogD. Writing * h=

Gp=1+1fblogD, 8¢= op-t-iy,

Ze%hewe, by (10), (14), 1/;(sy, x) <b™log® D, whence in the circle |8— 8|
(s, 2/E(80y 2)| < €M, M = glogD+nlogh ,
by (84). ¢y = p~— 4y is another zero of {(s, 1) Both zeros lie in the circle

ls—s| < 4

icm®
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Now we use Theorem 374 of [4] in the form

—ref'[f(s)) < 4Mr—re 1
So— 0

le—sol<r/2

(47)

with 7 = 4, f(s) = &(

AN S 00— B
= AR e

s, x). Since

we have

—reE’/C.(So, X) <8(0310g])—|-91,10gb)_ {0- 1 ﬂ+ (a 0‘0"‘/3
0 0

=R H

Taking b large enough we have, by (44),

rel'[L(s0; 1) < |[T'1E {0y, x)| < B/A(0o—1),

whence
(48) Loy 9%=B _ _ logD+8nlogh+5/d(s—1)
a—pB ' (op—pR+dy = * ’
or
oo—f 1 1—p
0P glogD+8n)
(oo ety < gD+ 8nlogb+ gy Y (o B

2%
< ¢ ogD+8n-logh+ %bgD + b?logD

< (b/2 +b¥e)logD .
Since
0p—f = 1+1/blogD— B < (1/b+1/e)flog D,
we hawe
1—B+1/blogD < (b/2 + b¥e)log D -[(1/b+ 1y
This is impossible, if

1/b > (Bj2 +bY0)[(1/b +1/c)? +4/c?].

)2+ 4fe2]log2D .

There are positive numbers satisfying the latter inequality (since for
a fixed b the right-hand side tends to 1/2b as ¢->co), whence the lemma.

16, Luvva 12. Let y be a real character # yo. For a sufficiently small
absolute constant ¢ > 0 there is at most one real zero > 1—cllogD of the
Junction (s, x).

Proof. Let 8, f be two real zeros of £(s, x) and ' = . By the same
argument as used in the proof of (48) we get the inequality

1 1
+

Py u‘o——-ﬁ'< cslogD-k_Snlogb +5/4(0p—1)
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whence

< cslog D+ 8nlogh + § blog.D < §blogD ,

2

—8
if b is large enough. Hence .
— B> 4/3blogD,

say. This proves the J-equued regult.

17. Lemma 13. For a sufficiently small absolute oconstant ¢, > 0 the
fumetion [(s, xo) does mot vanish in the region 0 < || < 3, 0> 1L—cyflog D).

Proof. Let B4dy (0 <y <3) be a zero of the function (s, x),
0a = 1+aflogD be defined by (44) and let s, denote any of the numbers
O+ iy, 0o+ 20y. Writing G(s) = (s, x0)/(s) we have in the circle |s— s,
<3
(49) |6 (s)/@(s0)| < a™" 7D
(cf. §14). Hence, by Theorem 374 of [4],

—18G'|G{0y+ 2iy) < 8 (elog D + (n -+1)logl/a)
—re @' |G (o, +iy) < 8 (c,logD +(n +1)1og1/a)~— (op— )2

Suppose first y > ¢flogD. Then '[i(ay+iy) and 'J(og+24y) are in
modulus less than (2/e)log D, whence adding rel’/t(o,+ 2iy), re /(o 1-iy)
to the lagt inequalities we deduce

— 168’ (£ (00420, x0) > 8 (eslog D+ (n +1)log 1/a) ,
—rel’[C(og+iy, o) < 8 (cxlo.gD +(n—+ 1)10g1/a,) —(op— ).
> cflog D.

18. Now let the function G{s) = (s, 1,)/C(8) have & zero g, = f- iy
such that 0 <y <1jelogD, f2=1—1/clogD and let o, ==1--1/blogl),
8y = 0y+4y. Suppose (if possible)

Repeating the arguments used in § 12 we prove the lemma for |¢|

(50) Yo@[650) > B/A(0p—
By (41)
rel’[C (84, 20) = T —1 tre Y b dogD , |8] <<
0y Xo) = ,‘—9-;:—1 “‘l A/_,J<1‘-—;~—"'| 0108 ‘ l"\.
800

whence (since G/ (sy) = £'[ (S0, 20) — &' [E(0))

re G [G(s,) == —168'[¢(8) +Te -?-0:}1 +re

lso—e| <1

1 o beog D,

8o

icm
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or

16 G'/G(s,) = e

|sa—e|<1

L felogD.
0 — @

Hence, by (50),
(b1) Te

\ 1 1.2
PRt —"
|so—eof<1 e °

if b is large enough. By (41)

’

¢ —1 g 1
'E(Uo,Xo) = o,__l'l’l'e 2 P __g—}-@eelogl).

lso—el<1 ©

Since £’/ (a4, xe) is negative and is less in modulus than 5/4(oy—

whereas re ) (0,— o)~ > 0, we have

1 1.1
re — < i
|sp—o]<1 %—e %
Hence, by (51),
1_62:(1_1)>0.1
o Sp— Op— oo— 1
W AL e o — 0O [}
and thus
P— 2 1 - 0.1 ,
l‘,o_m<1|5fo“!."]‘70"@| o6p—1
whence
1 1 b
clog D 2 86— e]]oo— g] 10gD
leg—el<t ' ° 0
or
1 b
Feel[o—e| —log®D .
lso-—el<1| 9' |°'n 10

Taking ¢ > b we have

ao—-g‘>_1_ X 1 %)
So— @

or —_—
/1/5 [og— 0] ~ Js0— e}

This combined with the previous inequality gives

: 1_/_2 } —bﬁlogzl)
Ian—ei<1’ o8
or
_ be
(62) |8o— 0] %> log®D .
Iso—anll 10]/5

101

1), by (44),
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Let »(r) denote the number of zeros of {(s, xo) in & circle having its
centre at § = 1-+iy and radius » > 1/log D. By (43) »{r) <<rlog.D. Hence
for b>1

. - .
D lseerrs D) el D ls—el

Iso—al <1 Js1—gl=<1/log D} 1/logD<[s1—el <1
2! A
< \ |90 81|+ _>_ [gr—~ e[
|51l =<1flog 1/log D<{81—q|<1

1
-« brlog?d) J 2;(—9((7 - blogdD),

1/logD

by (6). Being a contradiction to (52) (if ¢ is large enough) this digproves (50).
Hence, for appropriate b, ¢,
(38) re G'/G(sy) < B/A(o,—1) .

19. We are now in a position to finish the proof of Lemma 13.
It g, = B4y is a zero of G(s), then g, = f—iy is another one. In
the circle |s—so| < %

[G(8)[G(se)| < €M, M = ¢logD+(n+1)logh
(¢f. (49)). Hence, by (47) (with f = G,r =})

—re @ /G(s,) < 8(cslog D + (n-+1)logh)— [Uoi 3 + (o',,—a,%;f— éy’_‘
R N\ 1 1 oy—f
[ e oLyt 00— F  (a— i)
80—e| <r/2

‘ whence, by (53),
1 o—p

b
(54:) %'—[3-{—(%— /3)"’—1-4'}’3< cdog])+8(%+1)logb+m,
or
%8 ., " 1, 1
(G pR dpr < 108D +8(n+1)logb + rro—5 + Ty 6, )

< ¢slog D+ 8(n 1) logh -+3blog.D + (W¥e)log D
< (b/2 +b¥/e)logD ,

if b is large enough. We conclude the proof by arguments used. at the end
of §15.

20. LuvmA 14, For a sufficiently small absolute constant ¢ > 0 there
48 at most ome real zero > 1—oflogD of the function (s, x).
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Proof. Let 3, ' be two real zeros of {(s, x) and let g’ = . By the
same argument as used in the proof of (54) we get the inequality
1

Al ologD+8(n+1)logh+
00— f 4

_5
06— f (0o—1)’
whence

;2—5 < cylogD+8(n-+1)logh+ § blogD < 4 blog D,
—

if b is large enough. This proves the lemma (cf. § 16).
LEMMA 15. For appropriate ¢, > 0 there is at most one function £ (s, x)
of character y modf having a real zero in o> 1—eflogD.

Proof. Let there be two real and different characters yx,xa such
that £(s, x1) and £(s, xe) have real zeros f, > % and f, > %, respectively.
We suppose first that xy # xo and 2, # %0

For o, = 1+1/blogD we have (cf. §13)

—£'/t(00, 11) < 8(czlog D +nlogh)—(co—B1) ",
—{'/E(00, 22) < 8(cslog D +nlogh)—(oo— ),
—'[L (00, xata) < 8(cglog D +nlogd),
L'/t (00, 2o) < B/4(0o—1) .
Since the sum of the left-hand sides in this set of inequalities is > 0,
by (11), we deduce
(Gg— B2+ (09— Ba) ™t < 24 (¢slog D +nlogd) + 3 blog D < § blog.D

(if b is large enough) and conclude the proof as in § 16.

Now let g, = %o, the other premises remaining unchanged. Then we

use the inequalities (cf. § 17)
— &[G (0p) < 8(calog.D+(n+1)logh)—(o,—f)™*
—U' (o0} < B[4(gp—1),
—{'1E(00, 11) < 8(eslog D +nlogh)—(oe— i)™
where @(s) = (s, %0)/C(s). Since, by (11),
=810y 1) =L [E(00) 20) 20,
we have
(69— By) L+ (00— Ba) ™t < cglog D +(16n + 8)logh + $blog D

and may go on as before.

21. LemmA 16. Let f, be the real zero of the function [(s,x,) such
that Bo> 1—cflogD for arbitrarvily small o> 0. Writing 8, = 1—f, we
have for any positive & < %

80> ey(e) D"

Acta Arithmetica VII 8
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Proof. We have, by (33), in the circle O(|s—1| <7 = ¢/2)
(s—1)E(s, go) < D"
(the constant of < depending on ), whence in ¢
G(8) = L(8, zn)/C(8) = (8 —1)L (8, xo)l(8—1)C(8) <D".
Hence, in |s—1] < 7/2

, 1 A U)) i
(55) 6(8) =5 4 w— sy <"
w8 mnf2
By (18) G(1) = D°® (D->co), whence G(1)> ¢(n) D" Since G(fo) = 0,
we have

e(n) D" < G(1 o< on<l.

Hence, by (55),

& (Bo) = 806 (01) 5

86> 6(n) DG (1) > ey(6) D" .

22, Limmma 17. Let B be the real zero of the function ((s,yx) with
a real character y # xo such that § > 1—oflogD for arbitrarily small ¢> 0
and let 8 =1—pB. Then for all large D

(56) 8> D™,
Proof. Writing
(87) glo) = g]x(b)
{4

¢

we have for any a, b, prime to each other,

= D) S al) = > x(dd) = > x(by) =

bla bylb bby|ab balab

g(a)g(b) =
Since, by (57),

1+14..4+1>1 i
1-d+4+—..=0 it

xp) =1,
z(p)=—1, k even,
g(p)=—1, &k odd ,

using the multiplicative property of g(a), we deduce that any g(a) is

a non-negative integer and g(a) > 1, if a is a square, By (8)

' 28, )88, 20 = D 9O Ncr (o> 1).
4
Hence, by (b), for any »> 0
Y 1 24:{00
chgl-(vcczd—”lw":ﬁ —Jw el (s—1)L(8, 1)L (8, o) ds

icm
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In the region o> 0 the integrand has no other singularities than a double
pole at s =1 with the residue

B+ (ey—log)
‘where

n=1C[(1, X)Relsé-(sa Lo »

B =Tm (s, )40, 10— al

s—1)1,
0o =lim {I'(z) — 1/} <1 .
20

Taking » = D™ and moving the contour of integration to the line
o =1/logD we get, by (32), (4),

g(c) o
Fo € = B+ (o + alog D) p+ O(D*log™*+ D) .

Replace a by a+1. By subtraction

g(¢), ~p-a=s —p-a
Nc ( I N:__e D Nc) — /AOgD%—O(D‘"“Iogz"ﬂ.D) .
‘We have
gl\(r c) - D—n—lNC(l_ g—(p—a_n—a—x).m) >3 Z %Q (1— e—}p—am)
Ne<D* e '€
>0 Y g(0),
Ne<Ds
whence
D™ D g(0) < ulog D + 0, D log™*' D .
Ne<Ds
Since g(c) > 1 for every square ¢, and, by (2), for a = 2n+1, D> D,

there are at least D®*flogD squares ¢ = 12,22, 8¢, .
(N¢, D) =1, we have

. with N¢ < D¢,

\D™ E 9(0) = §D~a+1+1/2n,/10gp > ZCgDI—aIOgZM'ID
Ne<D®

(provided that D, is large enough), whence
,ulogD > 081)—2n+1/2n/10gD .

Since u = (1 ,x)R%C( , Xo)y We have, by (13),

5(1, Z) > D—2n+1lm
or

—2n+1/4n
D ;

680y, 1) > f<o<l

8*
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(cf. the arguments at the end of § 21). Using (32) and the integral formuly,
for ¢(s, ) (cf. (85)) we deduce that £'(y, x) <D™, Combining this with
the previous inequality we get (56).

By a more careful account of the number of squares ¢ whose norm
does not exceed D? it can be proved that 8 > ¢ D™ for any » > }(n+3)
and ¢, = ¢,(»). But for our prospective arithmotical applications we can
do ag well with (56). _

The theorem of §1 is an immediate consequence of Lemmas 9-17,
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On sign-changes of the difference =(x)—lix
by
S. KNAPOWSRKI (Poznat)

1. Let »(T) denote the number of sign-changes of the difference
ni(w)—liz for 2 < » < T. Littlewood ([7]) proved in 1914 that »(T') tends
to infinity together with 7. However Littlewood’s method, as it stands
in [7], does not provide numerical results and in particular does mnot
enable one, even on the Riemann hypothesis, to find an explicit upper
bound for the position of the first sign-change of =(z)—liw. Such nu-
merieal estimation hag been performed only a few years ago by Skewes [8],
the result being

(1.1) »(expexpexpexp(7.705)) > 1.

A conditional estimate for the order of growth of »(T) has been
obtained by Ingham [4]. His theorem reads as follows:

If there emists a C-zero g, = 04+ ity such that [(s) # 0 in the half-plane
o> oy, then

. »(T)
(1.2) ]T%}o@, >0.

I proved recently [5] the following theorem which leads, when
combined with that of Inmgham, to an wunconditional lower estimate for
»(T):

Let gy = fot+ive, Bo> %, 70> 0 be an arbitrary (-zero. Then, for
I > max(cl,expexp(logzyo)), ¢, @ mumerical constant, we have the ine-
qualities

max {I1(t)—1it} > TPexp (— 15 —M—-) ,

9) e<t<T Vloglog T
min {/I(t)~lit} < — T%exp (~ 15—08T
2<t<T Vioglog T
where
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