On the zeros of Hecke's L-functions I

by

E. Fogels (Riga)

Introduction

1. The theory of Dirichlet's functions $L(s,\chi)$ with characters χ modulo $k\to\infty$ has been developed by papers of Titchmarsh, Page, Linnik and other writers (see [6] IV §§ 5,6; X §§ 2,3) as far as they were able to prove the Linnik's estimate $p_0 < k^{O(1)}$ for the least prime $\equiv l \pmod{k}$, (k,l)=1. It is my aim to prove the corresponding result for prime ideals of any class mod \mathfrak{f} in any algebraic field of degree $n\geqslant 1$ (which for n=1 coincides with Linnik's theorem). The necessary auxiliary theorems (which may be intersting in themselves) about the zeros of L-functions of an algebraic field will be given in a series of 3 papers. The arithmetical deductions will then follow in later paper (The results of this series of papers have been announced in a short note to appear in the Doklady Akad. Nauk SSSR).

The *L*-functions of an algebraic field were introduced in 1917 by Hecke ([2]) and further investigated by Landau ([3]). In this paper, being greatly indebted to Landau's work, we keep his notation $\zeta(s,\chi)$ for that function, although Hecke himself and many recent writers use the symbol *L*. Actually Hecke's *L*-functions are in the set of Landau's functions $\zeta(s,\chi)$, but not the contrary; cf. [3], p. 53.

The principal result of this paper I is the following

THEOREM. Let K, f, $\zeta(s,\chi)$ denote respectively any algebraic field of degree $n\geqslant 1$, any ideal in K and any Landau function with a character χ modulo f. Let further

$$D = |A| \cdot Nf > D_0 > 1$$

where Δ denotes the discriminant of the field and Nf the norm of f. Then there is a positive constant c (which depends only on n) such that in the region

(1)
$$\sigma \geqslant 1 - c/\log D(1+|t|) \geqslant 3/4 \quad (\sigma = \text{re } s, \ t = \text{im } s)$$

there is no zero of $\zeta(s,\chi)$ in the case of a complex χ . For at most one real χ there may be in (1) a simple zero = $1-\delta$ of $\zeta(s,\chi)$; it is real and, if D_0 is large enough, $\delta > D^{-2n}$.

The method used in this paper is on the whole that employed by Titchmarsh ([7]) and Page ([5]), but it is applied to a more complicated function, the properties of which were unknown for $D \rightarrow \infty$.

Preliminary theorems

2. Throughout this paper $n, K, f, \Delta, D, \zeta(s, \chi)$ keep their meaning as fixed in the theorem. m denotes natural numbers in general, d(m) the number of positive divisors of m. $\varphi(m)$ is the number of natural numbers $l \leq m$, prime to m. a, b, c denote ideals and p prime ideals of the field in general, o the unity ideal, $\tau(a)$ the number of divisors of a. $\mu(a)$ is the Möbius's function $= (-1)^{\nu}$, if a is a product of $\nu \geq 0$ different prime ideals, and = 0 otherwise. \mathfrak{H} denotes classes of ideals modulo \mathfrak{h} in general and \mathfrak{h} the number of classes. a, b, c, c_1, \ldots denote positive constants which may depend on n (generally they keep their meaning only throughout the same paragraph). The dependence on other constants is denoted in the usual way.

For positive x by y < x or y = O(x) we denote the inequality |y/x| < c for appropriate c. We suppose that the degree of the field is bounded (n < 1) whereas $|\Delta|$ and Nf may increase indefinitely.

The complex variable will be generally denoted by $s = \sigma + it$, but sometimes we use w or z.

We take for granted the elementary properties of Riemann's zetafunction $\zeta(s)$ and the function $\Gamma(s)$ in such extent as is given in Titchmarsh's book [8]. We shall need the following estimates and sum formulae (for the proofs see, for example, [6] I Satz 5.1, 5.2; A Satz 6.2, 1.4, 3.2).

1. We have

(2)
$$\varphi(m) > c_1 m / \log \log m \quad (m \geqslant 3) .$$

For any $\varepsilon > 0$ and all $m \ge m_0(\varepsilon)$

(3)
$$d(m) < \exp\left\{\frac{\log m}{\log\log m}(1+\varepsilon)\log 2\right\}$$

2. If $\sigma \ll 1$ and $|t| \to \infty$, then

(4)
$$|\Gamma(\sigma+it)| = \sqrt{2\pi} \; e^{-|t|\pi/2} |t|^{\sigma-1/2} \{1 + O(|t|^{-1})\}$$
 3. Let

$$f(s) = \sum_{m} a_m m^{-s} ,$$

where the series is absolutely convergent for $\sigma > \sigma_0 > -\infty$. Then for any y > 0, w = u + iv, $b > \max(\sigma_0, u)$

(5)
$$\sum_{m} a_{m} m^{-w} e^{-my} = \frac{1}{2\pi i} \int_{b-i\infty}^{b+i\infty} y^{w-s} \Gamma(s-w) f(s) ds.$$

4. Let $\lambda_1, \lambda_2, \ldots$ be a sequence of non-decreasing real numbers with $\lim \lambda_m = \infty$, and let $a_m \ (m=1,2,\ldots)$ denote arbitrary real or complex numbers. Then for any real or complex function $g(\xi)$ having a continuous derivative in the segment $\lambda_1 \leqslant \xi \leqslant x$ we have

(6)
$$\sum_{\lambda_{1} \leqslant \lambda_{m} \leqslant x} a_{m} g(\lambda_{m}) = A(x) g(x) - \int_{\lambda_{1}}^{x} A(\xi) g'(\xi) d\xi,$$

where

$$A(\xi) = \sum_{\lambda_1 \leqslant \lambda_m \leqslant \xi} a_m .$$

3. Let $\chi(\mathfrak{H})$ be any of the h characters of the classes \mathfrak{H} and let for any ideal \mathfrak{a} of the field K

(7)
$$\chi(\mathfrak{a}) = \begin{cases} \chi(\mathfrak{H}) & \text{if } \mathfrak{a} \in \mathfrak{H}, \\ 0 & \text{if } \mathfrak{a} \text{ is not prime to f.} \end{cases}$$

The principal character will always be denoted by χ_0 . Writing

(8)
$$\zeta(s,\chi) = \sum_{\alpha} \chi(\alpha) N \alpha^{-s} \quad (\sigma > 1)$$

we have in the half-plane $\sigma > 1$

(9)
$$\zeta(s,\chi) = \prod_{\mathfrak{p}} (1 - \chi(\mathfrak{p}) N \mathfrak{p}^{-s})^{-1},$$

whence

(10)
$$1/\zeta(s,\chi) = \sum_{\alpha} \mu(\alpha) \chi(\alpha) N \alpha^{-s},$$

(11)
$$\zeta'/\zeta(s,\chi) = -\sum_{\substack{\mathfrak{p},m\\m \geqslant 1}} \chi(\mathfrak{p}^m) N \mathfrak{p}^{-ms} \log N \mathfrak{p}.$$

The function $\zeta(s, \chi_0)$ is regular in the whole plane, except for a simple pole at s = 1; the others, $\zeta(s, \chi)$ ($\chi \neq \chi_0$), are integral functions (see [3] Satz LXIII).

Let $\zeta_{K}(s)$ be the Dedekind's zeta-function of the field K,

$$\zeta_K(s) = \sum_{\alpha} N\alpha^{-s} = \prod_{p} (1 - Np^{-s})^{-1} \quad (\sigma > 1).$$

Then we have, by (7), (9),

(12)
$$\zeta(s,\chi_0) = \zeta_{\mathbf{K}}(s) \prod_{\mathfrak{p} \mid f} (1 - \mathbf{N} \mathfrak{p}^{-s}).$$

R. Brauer has proved the estimate

$$\operatorname{Res}_{s=1} \zeta_K(s) = |\Delta|^{o(1)} \quad (|\Delta| \to \infty)$$

([1], (16)). In consequence of (2)

$$\prod_{\mathbf{p}\mid\mathbf{f}} (1-N\mathbf{p}^{-1}) \geqslant \left(\frac{\varphi(N\mathbf{f})}{N\mathbf{f}}\right)^n = N\mathbf{f}^{\mathrm{o}(\mathbf{i})} \qquad (N\mathbf{f} \!\to\! \infty) \; .$$

Hence, by (12),

(13)
$$\operatorname{Res}_{s=1}^{\zeta}(s,\chi_0) = D^{o(1)} \quad (D \to \infty) .$$

The estimate of $|\zeta(s,\chi)|$ in a strip $\sigma \ll 1$

4. Lemma 1. For any positive $\eta \ll 1$

$$\zeta(1+\eta+it,\,\chi) \ll \eta^{-n}\,,$$

(15)
$$\zeta(-\eta+it,\chi) \ll \eta^{-n} D^{1/2+\eta} (1+|t|)^{n/2+n\eta},$$

$$(16) \qquad |\zeta(\sigma+it,\chi)| < c(\eta,D) e^{\eta|t|} \qquad (-\eta \leqslant \sigma \leqslant 1+\eta, \ |t| \geqslant 1).$$

Proof. Since any prime p in the field K is a product of at most n different prime ideals p with Np = p (see [4] Satz 815), we have

$$\begin{split} |\zeta(1+\eta+it,\,\chi)| &\leqslant \zeta(1+\eta,\,\chi_0) \leqslant \zeta_K(1+\eta) \\ &= \prod_n (1-Np^{-1-\eta})^{-1} \leqslant \prod_n (1-p^{-1-\eta})^{-n} = \zeta^n(1+\eta) \ll \eta^{-n} \; . \end{split}$$

This proves (14).

If $\chi(a)$ is a primitive character, then $\zeta(s,\chi)$ satisfies the functional equation (see [3], pp. 90, 99-102)

(17) $\zeta(s,\chi)$

$$= (-i)^q W(\chi) A(\mathfrak{f})^{1-2s} \left(\frac{\Gamma\left(\frac{2-s}{2}\right)}{\Gamma\left(\frac{s+1}{2}\right)} \right)^q \left(\frac{\Gamma\left(\frac{1-s}{2}\right)}{\Gamma(s/2)} \right)^{r_1-q} \left(\frac{\Gamma(1-s)}{\Gamma(s)} \right)^{r_2} \zeta\left(1-s, \overline{\chi}\right) ,$$

where r_1 and $2r_2$ denote, respectively, the numbers of the real and not-real conjugate fields of $K(0 \le r_1 \le n, r_1+2r_2=n)$, q denotes a nonnegative integer $\le r_1$, $|W(\chi)|=1$,

$$A(\mathfrak{f}) = 2^{-r_2} \pi^{-n/2} \sqrt{|A|N\mathfrak{f}} \ll D^{1/2}$$
 .

By (4)

$$egin{split} rac{\Gamma(1+\eta-it)}{\Gamma(-\eta+it)} &\ll (1+|t|)^{1+2\eta} \ , \qquad \left(rac{\Gamma\Bigl(rac{1+\eta-it}{2}\Bigr)}{\Gamma\Bigl(rac{-\eta+it}{2}\Bigr)}
ight)^2 \ll (1+|t|)^{1+2\eta} \ , \ & \left(rac{\Gamma\Bigl(rac{2+\eta-it}{2}\Bigr)}{\Gamma\Bigl(rac{1-\eta+it}{2}\Bigr)}
ight)^2 \ll (1+|t|)^{1+2\eta} \ . \end{split}$$

From this and (17), (14) we get (15) for a primitive χ .

Now let $\chi(\alpha)$ be an imprimitive character modulo \mathfrak{f} . Then there is an ideal \mathfrak{f}_0 which divides \mathfrak{f} , and there is a primitive character X modulo \mathfrak{f}_0 such that

(18)
$$\zeta(s,\chi) = \zeta(s,X) \prod_{\mathfrak{p} \mid \mathfrak{f},\mathfrak{p} \neq \mathfrak{f}_0} (1 - X(\mathfrak{p}) N \mathfrak{p}^{-s})$$

(see [3], p. 102); by (15)

(19)
$$\zeta(-\eta + it, X) \ll \eta^{-n} |\Delta N f_0|^{1/2 + \eta} (1 + |t|)^{n/2 + n\eta}$$

We deduce, by (3),

$$\tau(\mathfrak{f}) \leqslant d(N\mathfrak{f}) \ll N\mathfrak{f}^{1/8}$$
.

Hence, writing $f = f_0 f_1$,

$$\begin{split} \prod_{\mathfrak{p}\mid\mathfrak{f},\mathfrak{p}\nmid\mathfrak{f}_{0}}(1-X(\mathfrak{p})N\mathfrak{p}^{\eta-it}) &\ll \prod_{\mathfrak{p}\mid\mathfrak{f},\mathfrak{p}\nmid\mathfrak{f}_{0}}(1+N\mathfrak{p}^{\eta}) \ll \prod_{\mathfrak{p}\mid\mathfrak{f}_{1}}(1+N\mathfrak{p}^{\eta}) \\ &= \sum_{\mathfrak{b}\mid\mathfrak{f}_{1}}N\mathfrak{b}^{\eta} \ll N\mathfrak{f}_{1}^{\eta_{\mathfrak{p}}}(\mathfrak{f}_{1}) \ll N\mathfrak{f}_{1}^{\eta+1/3}\;. \end{split}$$

From this and (18), (19) we get (15) for imprimitive χ .

Again let χ be a primitive character modulo f and let

$$\Phi(s,\chi) = A(\mathfrak{f})^s \Gamma^q \left(\frac{s+1}{2}\right) \Gamma^{r_1-q} \left(\frac{s}{2}\right) \Gamma^{r_2}(s) \zeta(s,\chi).$$

It is proved by Landau (see [3], formulae (52), (55), (41)) that, in the region $G(-\eta \le \sigma \le 1+\eta, |t| \ge 1)$, $|\Phi(s,\chi)| < c_1(\eta,D)$. Hence, by (4), we have in G

$$|\zeta(s,\chi)| < c_2(\eta,D)e^{n|t|},$$

which implies (16) for a primitive χ . From this and (18) we get (16) for any χ .

5. Let in the region $(-\pi/2a\leqslant\sigma\leqslant\pi/2a,t\geqslant0)$ F(s) be a regular function satisfying the inequality

(20)
$$F(\sigma + it) \ll \exp e^{\gamma t}$$

with $\gamma < \alpha$ and let on the boundary $|F(s)| \leq M$. Then by a theorem of Phragmén-Lindelöf (see [8], § 5.65) we have in the region $|F(s)| \leq M$. Replacing s by $sca/\pi + \beta + it_0$, where c, β , t_0 are appropriate real constants $(c > 0, t_0 \ge 0)$ we get the theorem for any region $(\sigma_0 \le \sigma \le \sigma_0 + c, t \ge t_0)$ in which F(s) satisfies (20) with $\gamma < \pi/c$.

LEMMA 2. Let in the region $G(\alpha \leq \sigma \leq \beta, t \geqslant t_0 > 1)$ f(s) be a regular function satisfying the inequality

(21)
$$f(\sigma + it) \ll \exp e^{\gamma t} \quad \text{with} \quad \gamma < \pi (\beta - \alpha)^{-1}$$

and let

$$f(\alpha+it) \ll t^{\alpha}$$
, $f(\beta+it) \ll t^{b}$ $(t>t_{0})$.

Then we have in G

(22)
$$f(\sigma + it) \ll t^{a(\beta - \sigma)/(\beta - a) + b(\sigma - a)/(\beta - a)}$$

For functions f(s) satisfying in G the inequality $f(s) \ll t^c$ the proof is given in [4] (Satz 405) where it is based on a weaker form of Phragmén-Lindelöf theorem ([4], Satz 404). If replaced by the aforesaid stronger form, then the proof holds for functions f(s) satisfying (21).

6. Let in the strip $\sigma_1 \leqslant \sigma \leqslant \sigma_3$, f(s) be a bounded and regular function (with exception at most the point $s = \infty$), not identically = 0. Let further $\sigma_1 < \sigma_2 < \sigma_3$ and let M_r (r = 1, 2, 3) denote the upper bound of |f(s)| on the line $\sigma = \sigma_r$. Then, by a theorem of Doetsch (see, for example, [6], A, Satz 9.1)

$$(23) M_2^{\sigma_3 - \sigma_1} \leqslant M_1^{\sigma_3 - \sigma_2} M_3^{\sigma_2 - \sigma_1}.$$

LEMMA 3. Let in the strip $S(\alpha \leq \sigma \leq \beta)$, F(s) be a regular function satisfying the inequalities

$$F(\sigma + it) \ll \exp e^{\gamma |t|}$$
 with $\gamma < \pi (\beta - \alpha)^{-1}$

and

(24)
$$F(\alpha+it) \ll U(1+|t|)^{\nu}, \quad F(\beta+it) \ll V$$

where v > 0, U > 1, V > 1 are independent of t. Then in S

$$|F(\sigma+it)| < c_1(\alpha,\beta) U^{(\beta-\sigma)/(\beta-\alpha)} V^{(\sigma-\alpha)/(\beta-\alpha)} (1+|t|)^{\nu(\beta-\sigma)/(\beta-\alpha)}$$

Proof. By (22) (and the corresponding result with s replaced by -s) we have in $\mathcal S$

$$|F(\sigma+it)| < c(\alpha,\beta,U,V)(1+|t|)^{\nu(\beta-\sigma)/(\beta-a)}.$$

The function

(27)
$$g(s) = \left(\frac{s - a + 2(\beta - a)}{s - a} \cdot \frac{\Gamma\left(1 - \frac{s - a}{2(\beta - a)}\right)}{\Gamma\left(\frac{s - a}{2(\beta - a)}\right)}\right)^{\beta - a}$$

is regular in S and $\neq 0$ at any finite $s \in S$, whence at no such s is a branchpoint (concerning the case of non-integer $\beta - a$). Any branch of this functions is a single-valued function in S; further on we use the principal
branch of g(s) which is positive for t = 0, $a \leq \sigma \leq \beta$.

Writing

$$|g(s)| = G(\sigma, t) \cdot (1+|t|)^{\beta-\sigma}$$

we have, by (27), (4),

(29)
$$c_1 < G(\sigma, t) < c_2 \quad (a \leqslant \sigma \leqslant \beta)$$

for appropriate c_1, c_2 (which may depend on α, β). Any fixed branch of the function

(30)
$$f(s) = F(s)/g(s)^{\nu/(\beta-a)} U^{(\beta-s)/(\beta-a)} V^{(s-a)/(\beta-a)}$$

is regular in S. Taking the principal values for the powers of U and V it satisfies the inequalities

$$|f(\alpha+it)| \leqslant c_3, \quad |f(\beta+it)| \leqslant c_4,$$

by (24), (28), (29), and is bounded in S, since, by (26), (28), (29),

$$|f(\sigma+it)| \leqslant c_{\mathbf{5}}(\alpha,\beta,U,V)$$
.

Hence, if M_{σ} denotes the upper bound of f(s) on the line $\sigma + it$ ($-\infty < t < \infty$, σ fixed) we have, by (23) and (31), $M_{\sigma} \le c_{\delta}$. From this and (30), (28), (29) we get (25).

7. LEMMA 4. For any positive $\delta \leqslant 1/\log D < \frac{1}{2}$ we have uniformly $in - \delta \leqslant \sigma \leqslant 1 + \delta$

(32)
$$\zeta(s, \chi) \ll \delta^{-n} D^{(1-\sigma)/2} (1+|t|)^{(1+\delta-\sigma)n/2}$$

provided that $|s-1| > \frac{1}{8}$ when $\chi = \chi_0$.

Proof. Suppose first $\chi \neq \chi_0$. Then $\zeta(s,\chi)$ is regular in the strip $-\delta \leqslant \sigma \leqslant 1+\delta$ and (32) follows from Lemma 3 in which we can use $\alpha = -\delta$, $\beta = 1+\delta$, $\nu = n/2 + n\eta$, $n\eta = \delta$, $V = n^n \delta^{-n} \leqslant \delta^{-n}$, $U \leqslant \delta^{-n} D^{1/2}$, by (14), (15).

In the case of $\chi = \chi_0$ we use the function

$$F(s) = \frac{s-1}{s-2}\zeta(s,\chi_0)$$

which is regular in $-\delta \leqslant \sigma \leqslant 1 + \delta$ and satisfies the inequalities

$$F(1+\delta+it) \ll \delta^{-n}$$
, $F(-\delta+it) \ll \delta^{-n} D^{1/2} (1+|t|)^{\delta+n/2}$,

by (14), (15). By the argument used before

$$(33) \quad \frac{s-1}{s-2} \zeta(s,\chi_0) \ll \delta^{-n} D^{(1-\sigma)/2} (1+|t|)^{(1+\delta-\sigma)n/2} \quad (-\delta \leqslant \sigma \leqslant 1+\delta) .$$

This proves (32) for $\chi = \chi_0$, $|s-1| > \frac{1}{8}$.

Using Lemmas 1 and 3 we deduce that

(34)
$$\zeta(s, \chi) \ll D^{o+1/2} (1+|t|)^{nc+n/2} \quad (\chi \neq \chi_0),$$

(35)
$$(s-1)\zeta(s,\chi_0) \ll D^{c+1/2}(1+|t|)^{1+nc+n/2}$$

uniformly in $-c \leq \sigma \leq 1 + c$ ($\frac{1}{8} \leq c < 1$).

On the zeros of $\zeta(s,\chi)$ in some regions

8. In the half-plane $\sigma < 0$ the functions $\zeta(s, \chi)$ have no other zeros than the trivial ones = -2m or = -2m+1 (or both; see [3], Satz LXIII). All other zeros (the "critical" ones) lie in the strip $0 \le \sigma < 1$.

LEMMA 5. If $N_{\chi}(T)$ denotes the number of zeros of $\zeta(s,\chi)$ in the rectangle $(0 \le \sigma \le 1, |t-T| \le 1)$, then

$$N_{\mathbf{z}}(t) < \log D(1+|t|).$$

Multiple zeros are (as always) counted according to their order of multiplicity.

Proof. Let first $\chi \neq \chi_0$. By (10), (8), (14),

$$\left|\frac{1}{\zeta(2+it,\chi)}\right| = \left|\sum_{\mathbf{x}} \frac{\mu(\mathbf{a})\,\chi(\mathbf{a})}{Na^{2+it}}\right| \leqslant \zeta(2,\chi_{\mathbf{0}}) < 1\,,$$

whence

(37)
$$|\zeta(2+it,\chi)| > c_1$$
.

Write $s_0 = 2 + it$. By (34) we deduce the existence of a constant c_2 such that for all s in the circle $|s - s_0| \le 12$

(38)
$$|\zeta(s, \chi)| < \exp \{c_2 \log D(1+|t|)\}.$$

Let $v(x) = v(x, s_0, \chi)$ denote the number of zeros of $\zeta(s, \chi)$ in $|s-s_0| \leq x$. Then, by (37), (38) and Jensen's theorem (see [8], § 3.61),

$$(39) \int_{0}^{12} \frac{v(x)}{x} dx = \frac{1}{2\pi} \int_{0}^{2\pi} \log|\zeta(s_0 + 12e^{i\theta}, \chi)| d\theta - \log|\zeta(s_0, \chi)| < c_3 \log D(1 + |t|).$$

Since

$$\int_{0}^{12} \frac{\nu(x)}{x} dx \geqslant \int_{3}^{12} \frac{\nu(x)}{x} dx \geqslant \nu(3) \log 4,$$

and $N_{\mathbf{z}}(t) \leqslant \nu(3)$, using (39), (38) we deduce (36).

If $\chi = \chi_0$, then we use the function $(s-1)\zeta(s,\chi_0)$ and similar arguments.

9. Our further deductions are based on the following Landau's lemma (see [9], III § 9).

If f(s) is regular and

$$|f(s)/f(s_0)| < e^M \quad (M > 1)$$

in the circle $|s-s_0| \leq r$, then

$$(40) \qquad \qquad \frac{f'}{f}(s) - \sum \frac{1}{s-\varrho} \ll M/r \qquad (|s-s_0| \leqslant r/4)$$

where ϱ runs through the zeros of f(s) in $|s-s_0| \leqslant r/2$.

LEMMA 6. If $e_0 = 1$ for $\chi = \chi_0$ and = 0 for $\chi \neq \chi_0$, then in the strip $S(-1 \le \sigma \le 5)$

$$(41) \qquad \qquad \frac{\zeta'}{\zeta}(s,\chi) - \sum_{|s-\rho| < 1} \frac{1}{s-\varrho} + \frac{e_0}{s-1} \ll \log D(1+|t|) \; .$$

Proof. If $\chi \neq \chi_0$, then we have, by (37), (38) and (40) (with $s_0 = 2 + it$, r = 12), in S

(42)
$$\frac{\zeta'}{\zeta}(s,\chi) - \sum_{\varrho \in C} \frac{1}{s-\varrho} \ll \log D(1+|t|)$$

where C denotes the circle $|s-s_0| \le 6$. By (36) the sum in (42) differs from that in (41) by $\ll \log D(1+|t|)$ and we get the required result.

If $\chi=\chi_0$, then we use the function $(s-1)\zeta(s,\chi_0)$ and similar arguments.

10. LEMMA 7. If $v = v(r; T, \chi)$ denotes the number of zeros of $\zeta(s, \chi)$ in the circle $|s-1-iT| \leq r$ with $r \in [1/\log D(1+|t|), 2]$, then

$$(43) \qquad \qquad \nu(r;t,\chi) \ll r \log D(1+|t|) .$$

Proof. Since for $r > \frac{1}{2}$ (43) is a consequence of (36), we take $r \leq \frac{1}{2}$. Considering that any prime p in the field K is a product of at most n prime ideals p with Np = p, we have, by (11),

$$\left|\frac{\zeta'}{\zeta}(1+r,\chi_0)\right| \leqslant n \sum_{\substack{p,m \\ m > 1}} \frac{\log p}{p^{m(1+r)}} = -n \frac{\zeta'}{\zeta}(1+r) < c_1/r.$$

From this and (41) (with s=1+r+it, $e_0(s-1)^{-1} \ll r^{-1} \ll \log D(1+|t|)$) we deduce the inequalities

$$\begin{split} \frac{c_1}{r} \geqslant \left| \frac{\zeta'}{\zeta} (1+r, \chi_0) \right| \geqslant \left| \frac{\zeta'}{\zeta} (s, \chi) \right| \geqslant \operatorname{re} \sum_{|s-\varrho| < 1} \frac{1}{s-\varrho} - c_2 \log D (1+|t|) \\ \geqslant r \frac{2}{5r} - c_2 \log D (1+|t|) \end{split}$$

implying (43).

On the zeros of $\zeta(s,\chi)$ near the line $\sigma=1$

11. Lemma 8. If a is a sufficiently small absolute constant, 0 < a < 1, then

$$\left|\frac{\zeta'}{\zeta}(\sigma_0,\chi_0)\right| < \frac{\frac{5}{4}}{\sigma_0-1} \quad \text{for} \quad \sigma_0 = 1 + a/\log D.$$

Proof. On the stretch $\sigma > 1$ of the real axis $\zeta'/\zeta(\sigma, \chi_0) < 0$, by (11). By (41)

$$\frac{\zeta'}{\zeta}(\sigma, \chi_0) = \frac{-1}{\sigma - 1} + \operatorname{re}\left\{\sum_{|\varrho - \sigma| < 1} \frac{1}{\sigma - \varrho} + \theta c_1 \log D\right\}$$

 $(|\theta| < 1)$, whence (since re $\sum (\sigma - \varrho)^{-1} \ge 0$ for $\sigma > 1$)

$$\operatorname{re}\left\{\sum_{|arrho-arrho|<1}rac{1}{\sigma-arrho}+ heta c_1{\log D}
ight\}\epsilon\left[-c_1{\log D},rac{1}{\sigma-1}
ight].$$

If a is small enough, then

$$\frac{1}{4} \cdot \frac{\log D}{a} > c_1 \log D ,$$

which implies (44).

12. LEMMA 9. There is an absolute constant $c_1 > 0$ such that no function $\zeta(s, \chi)$ has a zero in the region $(\sigma > 1 - c_1/\log D|t|, |t| \ge 3)$.

Proof. Let $\zeta(s,\chi)$ have a zero $\beta+i\gamma(|\gamma|\geqslant 3)$ and let $\sigma_0=1+a/\log|D\gamma|$ with a satisfying (44). If s_0 denotes any of the numbers $\sigma_0+i\gamma$, $\sigma_0+2i\gamma$, then we have, by (10), (8), (14),

$$|1/\zeta(s_0,\,\chi)|\leqslant \sum_{\substack{\alpha\ (\alpha,\beta)=0}}Na^{-\sigma_0}=\zeta(\sigma_0,\,\chi_0)\ll a^{-n}\log^n D|\gamma|$$
 ,

whence in $|s-s_0| \leqslant \frac{1}{2}$

$$|\zeta(s,\chi)/\zeta(s_0,\chi)| < a^{-n}|D\gamma|^{c_2}$$

$$-\operatorname{re}\zeta'/\zeta(\sigma_0+2i\gamma,\chi^2)<8(c_2\log|D\gamma|+n\log 1/a)$$
,

(45)
$$-\operatorname{re}\zeta'/\zeta(\sigma_0 + i\gamma, \chi) < 8(c_2\log|D\gamma| + n\log 1/a) - (\sigma_0 - \beta)^{-1}$$
.

Writing
$$\chi(\mathfrak{a}) = e^{i\varphi(\mathfrak{a})}$$
, when $(\mathfrak{a}, \mathfrak{f}) = \mathfrak{o}$, we have, by (11),

$$-3\zeta'/\zeta(\sigma_0, \chi_0) - 4\operatorname{re}\zeta'/\zeta(\sigma_0 + i\gamma, \chi) - \operatorname{re}\zeta'/\zeta(\sigma_0 + 2i\gamma, \chi^2)$$

$$=\sum_{\substack{\mathfrak{p},m\\\mathfrak{p}\neq m>1}}\frac{3+4\cos\left\{\varphi(\mathfrak{p}^m)-m\gamma\log N\mathfrak{p}\right\}+\cos\left\{2\varphi(\mathfrak{p}^m)-2m\gamma\log N\mathfrak{p}\right\}}{N\mathfrak{p}^{m\sigma_0}}\log N\mathfrak{p}$$

$$= \sum_{\substack{\mathfrak{p},m\\\mathfrak{p}\nmid f,m\geqslant 1}} \frac{2\left(1+\cos\left\{\varphi(\mathfrak{p}^m)-m\gamma\log N\mathfrak{p}\right\}\right)^2}{N\mathfrak{p}^{m\sigma_0}}\log N\mathfrak{p}\geqslant 0\;.$$

Hence, by (44), (45),

$$\frac{15}{4(\sigma_0 - 1)} + 40(c_2 \log |D\gamma| + n \log 1/a) - \frac{4}{\sigma_0 - \beta} \geqslant 0 ,$$

whence

$$1-\beta > \frac{a}{\log |\mathcal{D}\gamma|} \left\{ \frac{16}{15 + 160c_2a + 160na\log\left(1/a\right)/\log|\mathcal{D}\gamma|} - 1 \right\}.$$

Since $a \log 1/a \to 0$ as $a \to 0$, the expression in brackets is $> a_1 > 0$ when a is small enough, whence $1-\beta > aa_1/\log |D\gamma|$, is the desired result.

13. Lemma 10. There is an absolute constant $c_1 > 0$ such that no function $\zeta(s, \chi)$ with a complex character vanishes in the region $(|t| \leq 5, \sigma > 1 - c_1/\log D)$.

Proof. We can use the arguments of the previous lemma. For $\sigma_0 = 1 + \frac{1}{2} + \frac{1}{2} \log D$, $s_0 = \sigma_0 + i\gamma$, $|\gamma| \le 5$ we have

$$\begin{split} |\zeta(s,\chi)/\zeta(s_0,\chi)| &< a^{-n}D^{c_8} \quad (|s-s_0| \leqslant \frac{1}{2}) \;, \\ &- \mathrm{re} \zeta'/\zeta(\sigma_0 + 2i\gamma,\chi^2) < 8 \, (c_3 \! \log D + n \! \log 1/a) \;, \\ &- \mathrm{re} \zeta'/\zeta(\sigma_0 + i\gamma,\chi) < 8 \, (c_3 \! \log D + n \! \log 1/a) - (\sigma_0 - \beta)^{-1} \;, \\ &- \zeta'/\zeta(\sigma_0,\chi_0) < 5/4 \, (\sigma_0 - 1) \;, \end{split}$$

whence

$$\frac{15}{4 \, (\sigma_{\!\scriptscriptstyle 0} \! - \! 1)} + 40 \, (c_{\!\scriptscriptstyle 3} \! \log D + n \! \log 1/a) - 4 \, (\sigma_{\!\scriptscriptstyle 0} \! - \! \beta)^{-1} \! \geqslant 0 \ ,$$

$$1 - \beta \geqslant \frac{a}{\log D} \left\{ \frac{16}{15 + 160c_{\rm s}a + 160 \, na \log{(1/a)/\log{D}}} - 1 \right\},\,$$

and $1-\beta > c_4/\log D$, if a > 0 is small enough.

14. LEMMA 11. There is an absolute constant $c_0 > 0$ such that no function $\zeta(s, \chi)$ with a real character $\chi \neq \chi_0$ vanishes in the region $(0 < |t| \le 5, \sigma > 1 - c_0 \log D)$.

E. Fogels

Proof. First let $\beta + i\gamma$ be a zero of the function $\zeta(s,\chi)$ such that $c/\log D \le |\gamma| \le 5$. Since $\chi^2 = \chi_0$, by the arguments of §12,

$$(46) \qquad -3\zeta'/\zeta(\sigma_0,\chi_0)-4\operatorname{re}\zeta'/\zeta(\sigma_0+i\gamma,\chi)-\operatorname{re}\zeta'/\zeta(\sigma_0+2i\gamma,\chi_0)\geqslant 0 \ .$$

Let $\sigma_0 = 1 + a/\log D$ be defined by (44). We substitute for the first and second term into (46) from (44), (45), respectively, but we increase n by unity and write $c_1 \log D$ instead of $c_2 \log |D\gamma|$. To provide a suitable substitute for the last term, write

$$G(s) = \zeta(s, \chi_0)/\zeta(s), \quad s_0 = \sigma_0 + 2i\gamma.$$

By (10)

$$|1/G(s_0)| = |\zeta(s_0)| \cdot |1/\zeta(s_0, \chi_0)| \ll a^{-n-1} \log^{n+1} D$$

Hence in $|s-s_0| \leq \frac{1}{2}$

$$|G(s)/G(s_0)| < a^{-n-1}D^{c_1},$$

by (35) and the fact that $\zeta(s)$ does not vanish in the rectangle ($0 \le \sigma \le 1$, $|t| \le 14$) (see [9], II § 12, XV § 1 and the references given there). From this and [4] Theorem 374 (with $r = \frac{1}{2}, f(s) = G(s)$) we deduce

$$-\operatorname{re} G'/G(s_0) < 8(c_1 \log D + (n+1)\log 1/a)$$

whence

$$-\operatorname{re} \zeta'/\zeta(s_0, \chi_0) < 8(c_1 \log D + (n+1)\log 1/a) + c^{-1} \log D$$
.

Now we have (cf. § 12)

$$15/4(\sigma_0 - 1) + (40c_1\log D + (n+1)\log 1/a) - 4/(\sigma_0 - \beta) + c^{-1}\log D \geqslant 0$$

 \mathbf{or}

$$15/4(\sigma_0-1)+40(c_2\log D+(n+1)\log 1/\alpha)-4/(\sigma_0-\beta) \ge 0$$

whence the required result follows for $|\gamma| > c/\log D$.

15. Now suppose that $\varrho_1 = \beta + i\gamma$ is a zero of $\zeta(s, \chi)$ such that $\beta \geqslant 1 - 1/c\log D$, $0 < \gamma < 1/c\log D$. Writing

$$\sigma_0 = 1 + 1/b \log D , \quad s_0 = \sigma_0 + i \gamma ,$$

we have, by (10), (14), $1/\zeta(s_0, \chi) \ll b^n \log^n D$, whence in the circle $|s-s_0| \leq \frac{1}{2}$

$$|\zeta(s,\chi)/\zeta(s_0,\chi)| < e^M, \qquad M = c_3 \log D + n \log b$$

by (34). $e_2 = \beta - i\gamma$ is another zero of $\zeta(s, \chi)$ Both zeros lie in the circle $|s - s_0| \leqslant \frac{1}{4}$.

Now we use Theorem 374 of [4] in the form

(47)
$$-\operatorname{re} f'/f(s_0) < 4M/r - \operatorname{re} \sum_{|\varrho - s_0| < r/2} \frac{1}{s_0 - \varrho}$$

with $r = \frac{1}{2}$, $f(s) = \zeta(s, \chi)$. Since

$$\sum_{\varrho} \operatorname{re} \frac{1}{s_{\varrho} - \varrho} \geqslant \frac{1}{\sigma_{\varrho} - \beta} + \frac{\sigma_{\varrho} - \beta}{(\sigma_{\varrho} - \beta)^2 + 4\gamma^2},$$

we have

$$-\operatorname{re} \zeta'/\zeta(s_0,\chi) < 8\left(c_3\log D + n\log b\right) - \left[\frac{1}{\sigma_0 - \beta} + \frac{\sigma_0 - \beta}{(\sigma_0 - \beta)^2 + 4\gamma^2}\right].$$

Taking b large enough we have, by (44),

$$\operatorname{re} \zeta'/\zeta(s_0, \chi) < |\zeta'/\zeta(\sigma_0, \chi)| < 5/4(\sigma_0 - 1)$$
,

whence

(48)
$$\frac{1}{\sigma_0 - \beta} + \frac{\sigma_0 - \beta}{(\sigma_0 - \beta)^2 + 4\gamma^2} < c_4 \log D + 8n \log b + 5/4 (\sigma_0 - 1)$$

or

$$\begin{split} \frac{\sigma_0 - \beta}{(\sigma_0 - \beta)^2 + 4\gamma^2} &< c_4 {\log D} + 8n \cdot {\log b} + \frac{1}{4(\sigma_0 - 1)} + \frac{1 - \beta}{(\sigma_0 - 1)(\sigma_0 - \beta)} \\ &< c_4 {\log D} + 8n \cdot {\log b} + \frac{b}{4} {\log D} + \frac{b^2}{c} {\log D} \\ &< (b/2 + b^2/c) {\log D} \;. \end{split}$$

Since

$$\sigma_{\mathbf{0}} - \beta = 1 + 1/b \log D - \beta \leqslant (1/b + 1/c)/\log D ,$$

we have

$$1-\beta+1/b\log D < (b/2+b^2/c)\log D \cdot [(1/b+1/c)^2+4/c^2]\log^{-2}D$$
.

This is impossible, if

$$1/b > (b/2 + b^2/c)[(1/b + 1/c)^2 + 4/c^2].$$

There are positive numbers satisfying the latter inequality (since for a fixed b the right-hand side tends to 1/2b as $c \to \infty$), whence the lemma.

16. Liemma 12. Let χ be a real character $\neq \chi_0$. For a sufficiently small absolute constant c > 0 there is at most one real zero $> 1 - c/\log D$ of the function $\zeta(s, \chi)$.

Proof. Let β , β' be two real zeros of $\zeta(s, \chi)$ and $\beta' \geqslant \beta$. By the same argument as used in the proof of (48) we get the inequality

$$\frac{1}{\sigma_0 - \beta} + \frac{1}{\sigma_0 - \beta'} < c_6 \log D + 8n \log b + 5/4(\sigma_0 - 1) ,$$

whence

$$\frac{2}{\sigma_0 - \beta} < c_5 \log D + 8n \log b + \frac{5}{4} b \log D < \frac{3}{2} b \log D ,$$

if b is large enough. Hence

$$\sigma_0 - \beta > 4/3 b \log D$$
,

 $\beta < \sigma_0 - 4/3 \, b \log D = 1 + 1/b \log D - 4/3 \, b \log D = 1 - 1/3 \, b \log D = 1 - c/\log D$, say. This proves the required result.

17. Lemma 13. For a sufficiently small absolute constant $c_1 > 0$ the function $\zeta(s, \chi_0)$ does not vanish in the region $0 < |t| \le 3$, $\sigma > 1 - c_1/\log D$.

Proof. Let $\beta+i\gamma$ $(0<\gamma\leqslant 3)$ be a zero of the function $\zeta(s,\chi_0)$, $\sigma_0=1+a/\log D$ be defined by (44) and let s_0 denote any of the numbers $\sigma_0+i\gamma$, $\sigma_0+2i\gamma$. Writing $G(s)=\zeta(s,\chi_0)/\zeta(s)$ we have in the circle $|s-s_0|\leqslant \frac{1}{2}$

$$|G(s)/G(s_0)| < a^{-n-1}D^{c_2}$$

(cf. § 14). Hence, by Theorem 374 of [4],

$$\begin{split} -\operatorname{re} G'/G(\sigma_0 + 2i\gamma) &< 8 \left(c_2 \log D + (n+1) \log 1/a \right), \\ -\operatorname{re} G'/G(\sigma_0 + i\gamma) &< 8 \left(c_2 \log D + (n+1) \log 1/a \right) - (\sigma_0 - \beta)^{-1}. \end{split}$$

Suppose first $\gamma > c/\log D$. Then $\zeta'/\zeta(\sigma_0 + i\gamma)$ and $\zeta'/\zeta(\sigma_0 + 2i\gamma)$ are in modulus less than $(2/c)\log D$, whence adding $\operatorname{re} \zeta'/\zeta(\sigma_0 + 2i\gamma)$, $\operatorname{re} \zeta'/\zeta(\sigma_0 + i\gamma)$ to the last inequalities we deduce

$$\begin{split} &-\mathrm{re}\,\zeta'/\zeta(\sigma_0+2i\gamma,\,\chi_0) > 8\left(c_3\mathrm{log}\,D + (n+1)\mathrm{log}\,1/a\right)\,,\\ &-\mathrm{re}\,\zeta'/\zeta(\sigma_0+i\gamma,\,\chi_0) < 8\left(c_3\mathrm{log}\,D + (n+1)\mathrm{log}\,1/a\right) - (\sigma_0-\beta)^{-1}\,. \end{split}$$

Repeating the arguments used in § 12 we prove the lemma for $|t| \ge c/\log D$.

18. Now let the function $G(s) = \zeta(s, \chi_0)/\zeta(s)$ have a zero $\varrho_1 = \beta + i\gamma$ such that $0 < \gamma < 1/c \log D$, $\beta \ge 1 - 1/c \log D$ and let $\sigma_0 = 1 + 1/b \log D$, $s_0 = \sigma_0 + i\gamma$. Suppose (if possible)

(50)
$$\operatorname{re} G'/G(s_0) \geqslant 5/4(\sigma_0 - 1)$$
.

By (41)

$$\operatorname{re} \zeta' | \zeta(s_0, \chi_0) = \operatorname{re} \frac{-1}{s_0 - 1} + \operatorname{re} \sum_{|s_0 - s| \le 1} \frac{1}{s_0 - \varrho} + \theta c_4 \log D , \quad |\theta| < 1 ,$$

whence (since $G'/G(s_0) = \zeta'/\zeta(s_0, \chi_0) - \zeta'/\zeta(s_0)$)

$$\operatorname{re} G'/G(s_0) = -\operatorname{re} \zeta'/\zeta(s_0) + \operatorname{re} \frac{-1}{s_0-1} + \operatorname{re} \sum_{|s_0-\varrho|<1} \frac{1}{s_0-\varrho} + \theta c_4 \log D \ ,$$

or

$$\operatorname{re} G'/G(s_0) = \operatorname{re} \sum_{|s_0-\varrho|<1} rac{1}{s_0-\varrho} + \theta c_{\mathfrak{b}} {\log D} \ .$$

Hence, by (50),

(51)
$$\operatorname{re} \sum_{|s_0-\varrho|<1} \frac{1}{s_0-\varrho} > \frac{1.2}{\sigma_0-1} ,$$

if b is large enough. By (41)

$$\frac{\zeta'}{\zeta}(\sigma_0,\chi_0) = \frac{-1}{\sigma_0-1} + \operatorname{re} \sum_{|\mathfrak{g}_0-\mathfrak{g}|<1} \frac{1}{\sigma_0-\varrho} + \theta c_{\mathfrak{g}} \log D \ .$$

Since $\zeta'/\zeta(\sigma_0, \chi_0)$ is negative and is less in modulus than $5/4(\sigma_0-1)$, by (44), whereas re $\sum (\sigma_0-\rho)^{-1} > 0$, we have

$$re \sum_{|s_0-o|<1} \frac{1}{\sigma_0 - \varrho} < \frac{1.1}{\sigma_0 - 1}$$
.

Hence, by (51),

$$\operatorname{re} \sum_{|s_0-\varrho|<1} \left(\frac{1}{s_0-\varrho} - \frac{1}{\sigma_0-\varrho} \right) > \frac{0.1}{\sigma_0-1}$$

and thus

$$|s_0 - \sigma_0| \sum_{|s_0 - \varrho| < 1} \frac{1}{|s_0 - \varrho| |\sigma_0 - \varrho|} > \frac{0.1}{\sigma_0 - 1},$$

whence

$$\frac{1}{c \log D} \sum_{|s_0 - \varrho| \le 1} \frac{1}{|s_0 - \varrho| |\sigma_0 - \varrho|} > \frac{b}{10} \log D,$$

or

$$\sum_{|s_0-\varrho|<1} \frac{1}{|s_0-\varrho|\,|\sigma_0-\varrho|} > \frac{bc}{10} \log^2 D \ .$$

Taking c > b we have

$$\left| \frac{\sigma_0 - \varrho}{s_0 - \varrho} \right| \geqslant \frac{1}{\sqrt{2}} \quad \text{or} \quad \frac{1}{|\sigma_0 - \varrho|} \leqslant \frac{\sqrt{2}}{|s_0 - \varrho|}.$$

This combined with the previous inequality gives

$$\sum_{|s_0-o|\leq 1}\frac{\sqrt{2}}{|s_0-\varrho|^2} > \frac{bc}{10}\log^2 D$$

 \mathbf{or}

(52)
$$\sum_{|s_0-\varrho|<1} |s_0-\varrho|^{-2} > \frac{bc}{10\sqrt{2}} \log^2 D \ .$$

Let v(r) denote the number of zeros of $\zeta(s, \chi_0)$ in a circle having its centre at $s_1 = 1 + i\gamma$ and radius $r \ge 1/\log D$. By (43) $v(r) < r\log D$. Hence for b > 1

$$\begin{split} \sum_{|s_0-\varrho|<1} |s_0-\varrho|^{-2} & \leq \sum_{|s_1-\varrho|\leqslant 1/\log D} |s_0-\varrho|^{-2} + \sum_{1/\log D<|s_1-\varrho|<1} |s_0-\varrho|^{-2} \\ & < \sum_{|s_1-\varrho|\leqslant 1/\log D} |s_0-s_1|^{-2} + \sum_{1/\log D<|s_1-\varrho|<1} |s_1-\varrho|^{-2} \\ & < b^2 \log^2 D + \int_{1/\log D}^{\frac{1}{2}} \frac{v(r)}{r^3} dr < b^2 \log^2 D \,, \end{split}$$

by (6). Being a contradiction to (52) (if c is large enough) this disproves (50). Hence, for appropriate b, c,

(53)
$$\operatorname{re} G'/G(s_0) < 5/4(\sigma_0 - 1)$$
.

19. We are now in a position to finish the proof of Lemma 13. If $\varrho_1 = \beta + i\gamma$ is a zero of G(s), then $\varrho_2 = \beta - i\gamma$ is another one. In the circle $|s - s_0| \leq \frac{1}{2}$

$$|G(s)/G(s_0)| < e^M, \quad M = c_4 \log D + (n+1) \log b$$

(cf. (49)). Hence, by (47) (with $f = G, r = \frac{1}{2}$)

$$-\operatorname{re} G'/G(s_0) < 8 \left(c_4 \log D + (n+1) \log b\right) - \left[\frac{1}{\sigma_0 - \beta} + \frac{\sigma_0 - \beta}{(\sigma_0 - \beta)^2 + 4\gamma^2}\right]$$

$$\left(\text{since} \quad \text{re} \sum_{|s_0-\rho| < r/2} \frac{1}{s_0-\rho} \geqslant \frac{1}{\sigma_0-\beta} + \frac{\sigma_0-\beta}{(\sigma_0-\beta)^2 + 4\gamma^2}\right)$$

whence, by (53),

(54)
$$\frac{1}{\sigma_0 - \beta} + \frac{\sigma_0 - \beta}{(\sigma_0 - \beta)^2 + 4\gamma^2} < c_5 \log D + 8(n+1) \log b + \frac{5}{4(\sigma_0 - 1)},$$

 \mathbf{or}

$$\begin{split} \frac{\sigma_0 - \beta}{(\sigma_0 - \beta)^2 + 4\gamma^2} &< c_6 \log D + 8(n+1) \log b + \frac{1}{4(\sigma_0 - 1)} + \frac{1 - \beta}{(\sigma_0 - 1)(\sigma_0 - \beta)} \\ &< c_6 \log D + 8(n+1) \log b + \frac{1}{4} b \log D + (b^2/c) \log D \\ &< (b/2 + b^2/c) \log D \;, \end{split}$$

if b is large enough. We conclude the proof by arguments used at the end of §15.

20. LEMMA 14. For a sufficiently small absolute constant c > 0 there is at most one real zero $> 1 - c/\log D$ of the function $\zeta(s, \gamma_0)$.

Proof. Let β , β' be two real zeros of $\zeta(s, \chi_0)$ and let $\beta' \geqslant \beta$. By the same argument as used in the proof of (54) we get the inequality

$$\frac{1}{\sigma_0-\beta}+\frac{1}{\sigma_0-\beta'}< c_{\mathfrak{g}} \log D + 8(n+1) \log b + \frac{5}{4(\sigma_0-1)},$$

whence

$$\frac{2}{\sigma_0-\beta} < c_8 {\log D} + 8(n+1) {\log b} + \tfrac{5}{4} b {\log D} < \tfrac{3}{2} b {\log D} \,,$$

if b is large enough. This proves the lemma (cf. § 16).

LEMMA 15. For appropriate $c_1 > 0$ there is at most one function $\zeta(s, \chi)$ of character χ mod f having a real zero in $\sigma \ge 1 - c_1 \log D$.

Proof. Let there be two real and different characters χ_1, χ_2 such that $\zeta(s, \chi_1)$ and $\zeta(s, \chi_2)$ have real zeros $\beta_1 > \frac{1}{2}$ and $\beta_2 > \frac{1}{2}$, respectively. We suppose first that $\chi_1 \neq \chi_0$ and $\chi_2 \neq \chi_0$.

For $\sigma_0 = 1 + 1/b \log D$ we have (cf. §13)

$$\begin{split} &-\zeta'/\zeta(\sigma_0,\,\chi_1) < 8\,(c_3\log D + n\log b) - (\sigma_0 - \beta_1)^{-1}\,,\\ &-\zeta'/\zeta(\sigma_0,\,\chi_2) < 8\,(c_3\log D + n\log b) - (\sigma_0 - \beta_2)^{-1}\,,\\ &-\zeta'/\zeta(\sigma_0,\,\chi_1\chi_2) < 8\,(c_3\log D + n\log b)\,,\\ &-\zeta'/\zeta(\sigma_0,\,\chi_0) < 5/4\,(\sigma_0 - 1)\,. \end{split}$$

Since the sum of the left-hand sides in this set of inequalities is ≥ 0 , by (11), we deduce

$$(\sigma_0 - \beta_1)^{-1} + (\sigma_0 - \beta_2)^{-1} < 24(c_3 \log D + n \log b) + \frac{5}{4}b \log D < \frac{3}{2}b \log D$$

(if b is large enough) and conclude the proof as in § 16.

Now let $\chi_2 = \chi_0$, the other premises remaining unchanged. Then we use the inequalities (cf. § 17)

$$\begin{split} &-G'/G(\sigma_0) < 8 \, (c_2 \! \log D + (n+1) \! \log b) - (\sigma_0 \! - \beta_2)^{-1} \,, \\ &-\zeta'/\zeta(\sigma_0) < 5/4(\sigma_0 \! - \! 1) \,, \\ &-\zeta'/\zeta(\sigma_0, \chi_1) < 8 \, (c_3 \! \log D + n \! \log b) - (\sigma_0 \! - \beta_1)^{-1} \,, \end{split}$$

where $G(s) = \zeta(s, \chi_0)/\zeta(s)$. Since, by (11),

$$-\zeta'/\zeta(\sigma_0, \chi_1)-\zeta'/\zeta(\sigma_0, \chi_0)\geqslant 0$$
,

we have

$$(\sigma_0 - \beta_1)^{-1} + (\sigma_0 - \beta_2)^{-1} < c_4 \log D + (16n + 8) \log b + \frac{5}{4}b \log D$$

and may go on as before.

21. LEMMA 16. Let β_0 be the real zero of the function $\zeta(s,\chi_0)$ such that $\beta_0 > 1 - c/\log D$ for arbitrarily small c > 0. Writing $\delta_0 = 1 - \beta_0$ we have for any positive $\varepsilon < \frac{1}{2}$

$$\delta_0 > c_1(\varepsilon) D^{-\varepsilon}$$
.

Proof. We have, by (33), in the circle $C(|s-1| \leqslant \eta = \epsilon/2)$

$$(s-1)\zeta(s,\chi_0) \ll D^{\eta}$$

(the constant of \ll depending on η), whence in C

$$G(s) = \zeta(s, \chi_0)/\zeta(s) = (s-1)\zeta(s, \chi_0)/(s-1)\zeta(s) < D^{\eta}$$
.

Hence, in $|s-1| \leq \eta/2$

(55)
$$G'(s) = \frac{1}{2\pi i} \int_{|w-s|-\eta|^2} \frac{G(w)}{(w-s)^2} dw < D^{\eta}.$$

By (13) $G(1) = D^{o(1)}$ $(D \to \infty)$, whence $G(1) > c_2(\eta) D^{-\eta}$. Since $G(\beta_0) = 0$, we have

$$c_{\mathbf{0}}(\eta)D^{-\eta} < G(1) - G(\beta_{\mathbf{0}}) = \delta_{\mathbf{0}}G'(\sigma_{\mathbf{1}}), \quad \beta_{\mathbf{0}} < \sigma_{\mathbf{1}} < 1.$$

Hence, by (55),

$$\delta_0 > c_2(\eta) D^{-\eta}/G'(\sigma_1) > c_1(\varepsilon) D^{-\varepsilon}$$
.

22. LEMMA 17. Let β be the real zero of the function $\zeta(s,\chi)$ with a real character $\chi \neq \chi_0$ such that $\beta > 1 - c/\log D$ for arbitrarily small c > 0 and let $\delta = 1 - \beta$. Then for all large D

$$\delta > D^{-2n}.$$

Proof. Writing

$$g(\mathfrak{c}) = \sum_{\mathfrak{b}/\mathfrak{c}} \chi(\mathfrak{b})$$

we have for any a, b, prime to each other,

$$g(\mathfrak{a})g(\mathfrak{b}) = \sum_{\mathbf{b} \mid \mathbf{a}} \chi(\mathbf{b}) \sum_{\mathbf{b} \mid \mathbf{b}} \chi(\mathbf{b}_1) = \sum_{\mathbf{b} \mid \mathbf{a} \mid \mathbf{b}} \chi(\mathbf{b}_1) = \sum_{\mathbf{b} \mid \mathbf{a} \mid \mathbf{b}} \chi(\mathbf{b}_1) = \sum_{\mathbf{b} \mid \mathbf{a} \mid \mathbf{b}} \chi(\mathbf{b}_2) = g(\mathbf{a} \mid \mathbf{b}).$$

Since, by (57),

$$g(\mathfrak{p}^k) = \begin{cases} 1+1+...+1 > 1 & \text{if} & \chi(\mathfrak{p}) = 1 \ , \\ 1-1+-... = 1 & \text{if} & \chi(\mathfrak{p}) = -1 \ , \ k \text{ even} \ , \\ 1-1+-... = 0 & \text{if} & \chi(\mathfrak{p}) = -1 \ , \ k \text{ odd} \ . \end{cases}$$

using the multiplicative property of g(a), we deduce that any g(a) is a non-negative integer and $g(a) \ge 1$, if a is a square. By (8)

$$\zeta(s,\chi)\zeta(s,\chi_0) = \sum_{\epsilon} g(\epsilon) N \epsilon^{-s} ~~(\sigma > 1) \,.$$

Hence, by (5), for any v > 0

$$\sum_{\mathbf{c}} \frac{g(\mathbf{c})}{N\mathbf{c}} e^{-\nu N \mathbf{c}} = \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \nu^{1-s} \Gamma(s-1) \zeta(s, \chi) \zeta(s, \chi_0) ds.$$

In the region $\sigma > 0$ the integrand has no other singularities than a double pole at s = 1 with the residue

$$E + (c_0 - \log v) \mu$$

where

$$\begin{split} \mu &= \zeta(1\,,\,\chi) \underset{s=1}{\operatorname{Res}} \zeta(s\,,\,\chi_0)\,, \qquad E &= \lim_{s\to 1} \left\{\zeta(s\,,\,\chi) \zeta(s\,,\,\chi_0) - \mu(s-1)^{-1}\right\}\,, \\ &c_0 &= \lim_{s\to 0} \left\{\Gamma(z) - 1/z\right\} \ll 1 \ . \end{split}$$

Taking $v = D^{-a}$ and moving the contour of integration to the line $\sigma = 1/\log D$ we get, by (32), (4),

$$\sum_{\mathbf{c}} \frac{g(\mathbf{c})}{Nc} e^{-\mathbf{r}N\mathbf{c}} = E + (c_0 + a \log D) \mu + O(D^{1-a} \log^{2n+1} D).$$

Replace a by a+1. By subtraction

$$\sum_{\mathbf{c}} \frac{g\left(\mathbf{c}\right)}{N\mathbf{c}} (e^{-D^{-a-1}N\mathbf{c}} - e^{-D^{-a}N\mathbf{c}}) = \mu \log D + O\left(D^{1-a} \log^{2n+1}D\right) \; .$$

We have

$$\begin{split} \sum_{N \epsilon \leqslant D^a} & \frac{g(\mathbf{c})}{N \mathbf{c}} e^{-D^{-a-1}N^{\epsilon}} (1 - e^{-(D^{-a} - D^{-a-1})N^{\epsilon}}) > \tfrac{1}{2} \sum_{N \epsilon \leqslant D^a} & \frac{g(\mathbf{c})}{N \mathbf{c}} (1 - e^{-\tfrac{1}{2}D^{-a}N^{\epsilon}}) \\ & > \tfrac{1}{8} D^{-a} \sum_{N \epsilon \leqslant D^a} g(\mathbf{c}) \; , \end{split}$$

whence

$$\frac{1}{8}D^{-a}\sum_{N\mathbf{c}\leqslant D^a}g(\mathbf{c})<\mu\log D+c_2D^{1-a}\log^{2n+1}D$$
 .

Since $g(\mathfrak{c})\geqslant 1$ for every square \mathfrak{c} , and, by (2), for $a=2n+1,\,D>D_0$ there are at least $D^{a/2n}/\log D$ squares $\mathfrak{c}=1^2,2^2,3^2,\ldots$ with $N\mathfrak{c}\leqslant D^a,$ $(N\mathfrak{c},D)=1,$ we have

$$\frac{1}{8}D^{-a}\sum_{N < \epsilon D^a}g\left(\mathfrak{c}
ight)\geqslant \frac{1}{8}D^{-a+1+1/2n}/{\log D}>2c_2D^{1-a}{\log ^{2n+1}D}$$

(provided that D_0 is large enough), whence

$$\mu \log D > c_3 D^{-2n+1/2n} / \log D$$
.

Since $\mu = \zeta(1, \chi) \operatorname{Res} \zeta(s, \chi_0)$, we have, by (13),

$$\zeta(1,\chi) > D^{-2n+1/4n}$$

or

$$\delta \cdot \zeta'(\sigma_1, \chi) > D^{-2n+1/4n}, \quad \beta < \sigma_1 < 1$$

(cf. the arguments at the end of § 21). Using (32) and the integral formula for $\zeta'(s,\chi)$ (cf. (55)) we deduce that $\zeta'(\sigma_1,\chi) \ll D^{1/sn}$. Combining this with the previous inequality we get (56).

By a more careful account of the number of squares c whose norm does not exceed D^a it can be proved that $\delta > c_4 D^{-\kappa}$ for any $\kappa > \frac{1}{4}(n+3)$ and $c_4 = c_4(\kappa)$. But for our prospective arithmetical applications we can do as well with (56).

The theorem of § 1 is an immediate consequence of Lemmas 9-17.

References

[1] R. Brauer, On the zeta-functions of algebraic number fields, Amer. Journ. Math. LXIX (1947), pp. 243-250.

[2] E. Hecke, Über die L-Funktionen und den Dirichletschen Primzahlsatz für einen beliebigen Zahlkörper, Göttinger Nachrichten, Math. ph. Klasse (1917), pp. 299-318.

[3] E. Landau, Über Ideale und Primideale in Idealklassen, Math. Zeitschr. 2 (1918), pp. 52-154.

[4] - Vorlesungen über Zahlentheorie II, III, Leipzig. 1927.

[5] A. Page, On the number of primes in an arithmetic progression, Proc. London Math. Soc. 39 (1935), pp. 116-141.

[6] K. Prachar, Primzahlverteilung, Berlin 1957.

[7] E. C. Titchmarsh, A divisor problem, Rendiconti di Palermo LIV (1930), pp. 414-429.

[8] — The theory of functions, Oxford 1939.

[9] — The theory of Riemann zeta-function, Oxford 1951.

Reçu par la Rédaction le 23. 1. 1961

ACTA ARITHMETICA VII (1962)

On sign-changes of the difference $\pi(x)$ —lix

by

S. Knapowski (Poznań)

1. Let $\nu(T)$ denote the number of sign-changes of the difference $\pi(x)-\operatorname{li} x$ for $2\leqslant x\leqslant T$. Littlewood ([7]) proved in 1914 that $\nu(T)$ tends to infinity together with T. However Littlewood's method, as it stands in [7], does not provide numerical results and in particular does not enable one, even on the Riemann hypothesis, to find an explicit upper bound for the position of the first sign-change of $\pi(x)-\operatorname{li} x$. Such numerical estimation has been performed only a few years ago by Skewes [8], the result being

(1.1)
$$\nu(\exp\exp\exp\exp(7.705)) \geqslant 1.$$

A conditional estimate for the order of growth of $\nu(T)$ has been obtained by Ingham [4]. His theorem reads as follows:

If there exists a ζ -zero $\varrho_0 = \sigma_0 + it_0$ such that $\zeta(s) \neq 0$ in the half-plane $\sigma > \sigma_0$, then

$$\lim_{T \to \infty} \frac{v(T)}{\log T} > 0.$$

I proved recently [5] the following theorem which leads, when combined with that of Ingham, to an *unconditional* lower estimate for r(T):

Let $\varrho_0 = \beta_0 + i\gamma_0$, $\beta_0 \geqslant \frac{1}{2}$, $\gamma_0 > 0$ be an arbitrary ζ -zero. Then, for $T > \max\{c_1, \exp\exp(\log^2\gamma_0)\}$, c_1 a numerical constant, we have the inequalities

$$(1.3) \begin{cases} \max_{2 \leqslant t \leqslant T} \{H(t) - \operatorname{li} t\} > T^{\beta_0} \exp\left(-15 \frac{\log T}{\sqrt{\log\log T}}\right), \\ \min_{2 \leqslant t \leqslant T} \{H(t) - \operatorname{li} t\} < -T^{\beta_0} \exp\left(-15 \frac{\log T}{\sqrt{\log\log T}}\right), \end{cases}$$

where

$$\Pi(x) = \sum_{m=1}^{\infty} \frac{1}{m} \pi(x^{1/m}).$$