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An estimate for Qp(x) can now be eagily deduced.
THEHEOREM 4.2. If b>a>1, (a,b) =1, then for > 2,

(4.12) S*y(x) = A*pMa 4 B*34o 4 O (sMelog @)
where A* = A;(b)U(b), B* = B (a) U(a), and

2
4.13 U(s) == (1— ——) 1.
(4.13) (5) ],,7 o) o>

Proof. By Lemma 4.6, it follows that (ef. (4.6))

(4.14) iala) = ) ik = ) wH(n)Bap (%),

n<e n<alik

and hence by Theorem 4.1 and the boundedness of u*(n) (¢f. Romark 4.1),

n<gl/k n<al/®
+0(m1/clogw —1—/5)4- O (1),
ns(z/ml/’ﬂn
By an argument similar to that of Lemma 4.3, it is seen that
i *
415 wm) _ _2
(4.15) 2w C(S)I;Il 25) s>1.

The proof now proceeds like that of Theorem 4.1.
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Zeta functions of quadratic forms
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K. G. RAMANATHAN (Bombay)
Dedicated to the memory of Dr. R. Vaidyanathaswamy

§ 1. Introduction. The Riemann zeta function has been gener-
alized in two directions; one generalization concerns the zeta functions
of algebraic number fields and algebras and the other concerns the zeta
functions of Lerch-Epstein associated with definite quadratic forms and.
of Siegel associated with indefinite quadratic forms. Our object in -this
paper is to study the zeta functioms associated with quadratic forms
over involutorial algebras. We deal here with commutative algebras
only reserving the non-commutative case for the second part.

Let K be an algebraic number field and ¢ an automorphism of K
whose square is the identity. Let & be the fixed field of o. Then (K: k) =1
or 2 according as o is or is not the identity automorphism. For any matrix 4
of m rows and columns with elements in K let A° denote the matrix,
(af;) where A = (a;). We say that A is symmetric (hermitian) if o is
{or not) the identity and 4’ = A°. If a is a m-rowed vector with elements
in K we call o’4da® the quadratic. (hermitian) form associated with A.
Tet first o = 1 the identity automorphism. Let S be symmetric, m-rowed
and non-singular over K. Let K have r; real and r, complex infinite prime
spots and let 8 be definite at r,—1 of the real infinite prime spots of K,
0<1<r. For every g # 0 in K which can be represented by S we
a8s0ciate o vector &= (&, ..., &), & = L1 where & = g®/|g#| = sgng®.
We call ¢ the signature of g. With each ¢ we associate the zeta funection

M(8,a,9)
Cs(s7 a,s) = Na* - 5
Z (gl

where a # 0 is an ideal of K, M (S, a, g) is the measure of representation
of ¢ by 8 (see §4) and the summation runs over all ¢ with signature ¢
which are representable by S such that for no two ¢y, g, in the summation
g, = &%g, holds, ¢ being a unit in K. There are clearly 2 guch Dirichlet
geries. Tt is shown (§ 3) that they converge for o> m/2 and define in
this half plane regular analytic functions of s. By generalizing suitably
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a method due to Siegel, it is shown that these Dirichlet series can be

continued analytically into the whole plane where they are meromorphic

with atmost two simple poles at ¢ = m/2 and s = 1. It turns out that

the residue of this zeta function at s = m/2 is independent of ¢ and a. They
further-more satisfy functional equations of the type

— ’ -1 ~ M
78, a,8) = N|8| 1/22 Cen($ “n)‘?’ﬂ(‘s 1, 5“8) ’
7

(8, @) being certain trigonometrical polynomials of s. In special cases
the functional equation asswmes a simpler form. For instance if |§] > 0
at all real infinite prime spots of K where § is indefinite, then

o8, a,8) = N“S”-—llz(__1)a,1+...+u,l/2%<s—1, 3, g’;__"s)

for a certain e.

Suppose now ¢ # identity so that § is a non-gingular hermitian
matrix. Let § be the representation space of the units of 8 and dv the
invariant volume element in §. Let F be a fundamental region for the
units of §in $. We prove first that Ff dw converges. This iy done by suitably

parametrizing the $-space. Let K, for simplicity, be the imaginary
quadratic field. We can then define zeta functions as above and obtain
their functional equations. Instead we follow a method of Hecke and
introduce zeta functions with congruence conditions. This has the effect
of giving zeta functions some of which are entire functions. The analytic
nature and funetional equations of these zeta functions are obtained by
using the theta series. These zeta functions have at most one simple pole.

The form of the functional equations in the case of hermitian forms
and in the case of certain quadratic forms shows that one can associate
Hilbert modular forms with these. We shall deal with this topic separately
elsewhere.

§ 2. Notations and terminology. Capital Roman letters denote
maitrices. ¢ always stands for a column vector. N denotes norm and o
denotes trace. If §, P are matrices we put S[P] for P'SP and §{P} for
P’SP, P’ and P denoting the transpose and complex conjugate respectively
of P. For a matrix P, |P| denotes its determinant and |P| the ahsolute
value of |P|. Whenever an equation or an inequality is written without
superseripts it is understood that these equations and inequalities hold
for all conjugates—whenever they have a meaning. For a matrix 4 = (az),
dA denotes the Fuclidean volume element |]day, similar meanings

where 4 is real symmetric or complex hermitian. The constants [

depend only on m, K and § in general. The notations and terminology
are those in Siegel [7], [8].
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§ 3. Positive systems. Let K be an algebraic number field of
degree m = 7+ 2r, over the field of rationals and let 7, and r, denote
the number of real and complex infinite prime spots respectively of K.
Let P denote the fpace of r,-r, positive variables ™, .., "™ We
denote by t a generic element of P. The unit group of K is represented
in P ag a group of transformations t—ete, i.e.

19509 =1, 4,
& being a unit of K. This representation is faithful if we identify ¢ and we,
o being a root of unity in K. There exists in P a fundamental region &
for the group of units. Denote by @, the fundamental region on the norm
surface Nt = 1@ .. 1@ ("2 — 1 Tet [df] denote the volume
element
H» . gt

W L8] = "o oo

and [df,] the corresponding volume element on the norm surface. Then
2) [lat] =2""R
Go

where R is the regulator of K.
Let m > 0 be an integer. A positive system T' is a set of n matrices

T(l)
T=
( T‘”))

each of m rows such that 7%, .., T" are real positive symmetric

3) -

st are positive complex hermitian and TR = TR,
The positive systems constitute a space B of 3r,m (m+ 1) +r,m? real dimen-
sions. If m =1, P coincides with P. Denote by I'(K) the group of uni-
modular matrices over K. The mapping T —T{U} of I'(K) in P defined by

() 77(1)
T{U} = (T Lo,

) { Ucm})
(UD, ..., U™ being conjugates of U in K) is discontinuous in P if we
identify U and oU. Humbert ([3]) constructed for I'(K) in P a funda-

mental region R. Note that if m = 1, B coincides with G. Let ¢ > 0. Con-
sider in P the point set R. consisting of systems T = (tg) with

0<tP<a®?, k<,
(4) absti) <ot , k<1,
@@ <elT®], 1=1,..,m.
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The fundamental region R of Humbert has the property that there exists
a constant ¢, > 0 and a finite set 4, ..., 4, of m rowed integral matrices
all determined uniquely by K and the integer m such that for any H ¢ R
there exists at least one A; such that H{4;} satisfies (4) with ¢, for e.

Tet g, ..., ™ be m rowed column vectors of which the first
are real and ™% and ™™ are complex conjugates, k= 1,...,1,.
Let a be a non-zero ideal in K. One has the formula

1 ;
ﬁ(T Q) = ———————— eI~ a})+2mio(e’B)
’ IZIPA(vay/ Tal™ 2
where
(T, q) = Z emalTiatb) ;

a€qa

§ is the complementary ideal to a and T e B, d is discriminant of %.
In particular, if # =0 and t¢P,

(8) HT, a,1) = Ze—nd(T{aﬂ) ‘

a€a

= L . Zg—m(l‘“l(a}t“l) .
NIz Nay gl
Using well-known inequalities for the ordinary theta function in
one variable with m = 1, we get

m

T, 0, 1) < [ [ Nieg+ealhat) ™) ,

k=1

¢y 63 being constants depending on m, k,a and N|T|. In particular, if
TeR,,te@,

(6) KT,y 0, 1) < oL+ 5™ [[ N1 +157)

k=1

¢, depending only on m and K and N|T|.

§4. Indefinite quadratic forms. Let S be a symmetrio
m-rowed non-singular matrix with elements in K. Let 8%, .., 8 be
its conjugates. Denote by S the system

RS
S(n)

Let $ denote the totality of positive systems 7' which satisty 78T = §
meaning that the equations

(™ TO87T0 — @ - §=1,..,m,
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are satisfied. It is known that § is a symmetric Riemannian space of
71

—1) .. . . .
kZ,‘l Z’ka-l—?"zln—(w;——) dimensions, px, ¢x being the gystem of signatures

of 8, 0 < pr < m. We shall denote by dv the invariant volume element
in 9. '
Let § have the following form:

00 P9
(8) 89 =0 F?9 Q9| (a=1,..,1),

® ok G

where P ig a square matrix of g, rows, 0 < g, < m. We shall give
a parametrization of §. Let T ¢ H and putb

HY 0 0 \(F @ Y
9) =0 HP 0 ) 0 E @Y
o o H®'l o E

where H{" and H{” are square matrices of g rows. Using (7) with @ =0,
G® =0 (see [8]) one obtains

F(“)"[ Hgl)] — _F_v—('ﬁ
HOPO HP = P9
an) __ F(a)‘ngﬂ)'P(ﬂ)
@ _ 4@ __ @)~ (@) (@)
0P = (A= F Q") P

A® — _ A For a=1,..,7+7r, we choose H®, Q®, A® and the
parameters required to parametrize the space of HY® satistying the first
of the above equations (10). They satisfy the conditions H® > 0 (positive
symmetric if a < r, otherwise positive hermitian), * an arbitrary matrix
of g, rows and m—2g, colwmns (real if & <<, and complex otherwise)
and A® gkew gymmetric of g, rows. It is easy to see that in terms of

these parameters the volume element is given by

{10)

ry r1+7 n
(11) v = o n | H,‘L"’](m‘z""“”“‘ n’ ‘ Hgk)rﬂ—ﬂ(lk“l I’I | H(gk)l—m‘alﬂdW
k=1 F=ry+1 k=1

where
AW = dH® ... 449 dv, ;

dv, being the volume element in the H, space; ¢; is a constant depending
on m and g,.

Let S be now the matrix of an integral quadratic form o'Sa which
is non-degenerate. Let K™, .., K™ be the conjugates of K so ordered
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that K@, ..., K are real and the rest pairs of complex conjugate fields.
Let S be such that at 1 of the infinite prime spots, say in the fields
E®,..,E® 0 <1<, it is indefinite and at the other r,—1 infinite
real spots it is definite. If a’Sa is a zero form then clearly v, = I. Let us
further-more assume that «’Sa is neither a binary, ternary nor a quaternionic

zero form.
Let T be in $ and choose real numbers a®, ..., o™ such that
—l<a®<l, k=1,.,0,
12
a2) a® =0, k>1.

Put now H = T—al. From the definition of 7' if follows that H > 0 and
that

1
|7~ as| = ] = N8| [] (1= a")H1+ ")

(13)
(T—a8) ' =H ' = (1—a”) (T +a87");
the last equation to be understood in the semse that, for each &,
(T(k)___ a — (1_ a(k)"-)~1('1v(k]'1+a(k)s(k)‘l) .
..., €™ be positive real numbers to be chosen presently. We put
B8, Tya, 0,0) = D, 6=l
a€a

and call it the theta series associated with 8. We now choose ¢®, ..., ¢
so that

14 P = (VYSI)VNaY [E) (L~ aP) (L 4 )T

If we put ¢® =c¢*)(§, a, a) then we have

(k) S(k) ) -1

Let ¢®,

(15) B = Ab(S-1, §, — a) = oW (1— a®?)-L

With this choice of ¢, using the transformation formula (5) we got
1 O s

16 = 2 — (G {alt)

(16) 98, T'ya,0,?) (_N'L)m/z gl

where H = 77+ 4872

Let I'(8) denote the unit group of §, that is the group of unimodular
matrices U with U'SU = 8. It is known ([4]) that ['(8) has in § a faithful
and discontinuous representation if only we identify U and — U. Let F
denote a fundamental region for I'(8) in $. We shall prove.

LemmA 1. Under the conditions zmposeol on 8, for fiwed t the integral

© (08, T, a, ey t)dv
¥

converges; the convergence is even wuniform on compact sets of I.
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Proof. Because of the invariance properties of dv and the properties
of F given in § 3, it is enough to prove the lemmsa in case F' is replaced
by J = $ N R, for some ¢, > ¢,. Since § and T are related by T8-T =8,
we can write

8§ =0D0, T=07T

for a diagonal matrix D with +1 in the diagonal. It therefore follows that
an) |S[all = |a/¢"DCa| < T'[a]
s0 that

(T—a8)[e] = T[e]— |a]|S[a]| = (1—

It is therefore enough to consider the integral

f 2 e~ Ty

J a€a

a]) Ta] .

for ¢,> 0 depending on @, ¢:, 6,. Using (6) we see that we are reduced
to proving the lemma for the integral

(18) v [ []a+r"do
" J k=1

where T = (hy). H

We now follow the method in [4]. Using inequalities (38), (39) in [4]
it is enough to consider the above integral for each decomposmon (8)
of 8. Tn this case we see that A, ..., h® are bounded, hiei1, -y A ga
are bounded both below and above, and B i1y ey B are bounded
from below by constants depending only on m, K and S. Using (4) we

see that it is enough to prove the convergence of,

ri+re  ga dh(l dh;1;1+1;2)
(19) [T ]]oer= ==
J a=1 k=1 Tt
where
0) l'lak={ m—2k—1/2, 1<a<n,
m—2k—1, a>1.

T we introduce new variables s with

B =8 .. 3:(1? ’ ]

h‘(;z) s’(]tz)
we have then to prove convergence of integrals of type

dsy .. ds
. lgg #O1 + “Oga
1) fs‘ S g T 80,
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where 0 < 8; < ¢ for a constant ¢, and

k
— —f— <7
L 2(m E—2), a<r,

,k(m—k—-—,‘z) , a>"1y.

Tn both cases Iy > 3(m—g,—2). If the gy's are Zero there is mothing
to prove since it follows that J itself is compact. If g, # 0 then I > 0
under the conditions on § and this ensures convergence of the integral
in (21).

The uniform convergence on compact sets of F follows from the
properties of the Humbert domain (4).

We deduce as a consequence of Lemma 1 .

COROLLARY.
(22) f #8, T,a,c,t)dv = Z f e-‘m’(ﬂﬂ{aﬂ)dv

aca |
‘We now prove
LeMMA 2. If 8 is not the mairiz of a binary zero form lj;dv 8 findte.

Proof. We proceed in exactly the same way as before and obtain
the integrals (21) where we have

Em—k-1), a<n,

b=

E(m—k—1), a>nr.

Henee-I; > }(m— ga+1). Under the conditions on 8, I > 0 which gives
convergence of (21).

In case S is a binary zero form, the integral is actually divergent ([4]).

It is to be remarked that lemma 2 is actually not necessary for our
work. In fact it will follow as a consequence of the integral representation
for the zeta function but only under the conditions imposed on 8 in
Lemma 1.

Let now

(8, T, a,0,t) = 2 oroleBic)
Sla)#0

and let @ have the meaning of § 3. We have:
LemmMA 3. If s is a complex variable with Res > }m the integral

Gf(Nt)"Ffz‘)o(S, T,a,e,t)dv[di]

represents a regular analytic function of s.
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-Proof. Asin the proof of the previous lemma it is enéugh,to consider
the inner integral extended over J. Let us split ¢ up into &, and @, where G,
is that part of ¢ with N¢{>1 and @, that part with Nt <1 Then

[f=J[+]].

Gh Ge J
Consider now [. Let b = Res.
Ga

[vip [odotagy < [(ep [ D) e-rewtmiangolat]
Gy J G

J  Saj#0

and so it is majorised by

o [ (1) (1+Nt'”"2) f ” (1-+ Nhi ™) dvldt] .
Ga k=1

The inner integral is bounded and independent of ¢. The outer integral
is easily seen to be convergent for b—m/2 > 0 by going over to the norm
surface.

We shall now show that the second integral defines actually an
entire function. Since in @, Nt>> 1, there is at least one t®, say ¢,
which is > 1. Now using the arithmetic and geometric inequality we have

o(T{a}t)— 3 TP[a™] > 6 | N (T {a}) ¢V — )1® ... ™).
From (17) therefore we get, since |S[a™]| > 0,
(23) o(T {a}t)— 3 TVa™] > oy Ne N T{a})"" .
Let now
Y1
a(l) ={: where Y = w(l)m(k) 4ok w(l) (k)

Ym/

Wy, ...y On being a basis of the ideal a and wﬁ"), o rational integers.

Because of the properties of the Humbert domam

T‘”[a‘”} > 6 2 Z e “’w.?’mg" ()

k=1 p,g=1
If ¢ is a constant depending on ..., wn and ¢, then, from above,

n

m
(24) ) > 05 3 D Hal”

k=1 p=1
using the fact

o(T{a}t) = 3 TV(a®]+(o(T{a}t)— } TV[])
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and (23), (24) we get

—nega(T{a}t)
€ =

Slal#0 m;,k), integral

(1) (1)

—erp(NVHn —eyun X hy @y o(T{a))
o i

TUsing the fact that, by (4), h@ are all of the same order of magnitude
for a given k and using well-known inequalities in theta function theory
we get "
oI e—cla(Nl)”” ” (14 Nh;;w) .
SfaT#0 k=1
Going over to the norm surface and using Lemma 1 we see that the in-

tegral over G, converges for all b.
The lemma is thus completely proved.

§ 5. Measure of representation. Let, as before, 8 be non-
gingular in K with system of signatures (Pyy i) s (D1 @) and definite
at r,—1 real infinite prime spots. Let Wyy oy Wa be n real symmetric
matrices so that the » matrices W%, ..., W™ defined by

W(k) = CUYG)Wl‘{' vt wgc)W'n ’

are non-singular, W, ..., W™ have the same signature as sY, .., 80,
Here y, ..., on is 2 bagis of integers of K. Consider the space X of all
real m-rowed matrices Xi, ..., X» such that

X% = o X, + ...+ 0 Xy,
satisfy the equations
(25) TR gm x|
Tt U is o unit of S then UPX® = o® ¥, + ..+ 0P Y, and (Xi,.., Xa)
(¥4, ..., Yu) gives a transformation of the X space into itself. Let Fy

" e a fundamental region for this group in the X space. We denote, after
Siegel,

kb=1,..,m

k=1,..,n

{@X,) ... (X}
2 AWy @)

and call it the measure of the unit group I'(S). Let Fy be the fundamental
region in the space XV, .., X® for the group X*® - U®X®. We then
‘have

w(8) = NS®|EN | W

]\ —mim—1)4 _ ax
wes) = (B s [ G
Fo
Using now the fundamental region ¥ in the $ space of § we geti ([7])
1
Af\=mim=Die e o
@) 2u9) = (S o T aneaddsr " [ao.
fom1 F

icm
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To obtain this we have only to write the product integral and apply
the method in [7] for each component.
In case S is totally definite then 7,= 0 and 7, = n. The $H-space
is just one point. We then get
| g|mm—1s ~m+vz_1
u(8) =al NS s

k

~ U2
B(S) being the order of the unit group of 8. Here g = [l —
=1 I'(42)

In a similar way we define the measure of representation. Let a be
a non-zero ideal and S[a] = g a representation of g by 8,z ea. If X = (a¥)
satisfies
ax — (9 €\ _
X'8X = (q R) -W,
we define, as before

a(8,a, @) = NHSH“”*NHW|11-’2(L%)'(’"‘”‘m“”“

_fa¥}
5 GgH{dR}’

F, being a fundamental region in the ¥ space for the group I'(8, a) of
units U with Ue = a. Let us put

M8, a, g) = NSV g™ D' u(8, a, a)

in case ¢ # 0 and
M(S,q,0) = N|SI™ Y u(8, a, 0)

a#0
when ¢ = 0; the summation in both ecases running through all non-’
associated solutions o of the equation o'Se =g, aea. We call M (S, a, ¢)
the measure of representation of g by S. We obtain then, by [71,

(s, 0,9 [](

WPy — sgn gl Yeiz—1 g=el®loM|(2u—sgn 0("’)du,) X
k=1 u>0,sgngl®)

r1+72 0o g t(’a)] m]
2 ) -x o
X H (f(u“~1)m 812 g —2nt®lo '”du)-e kT
k=ri+1 1

=Jlf
F Slaj=g#0

e—n:a(T[a}t)d(u

when g % 0 and
(2@‘"""’“"(4’3- 1))"(r(m—2))"(Nt)‘(’"’2‘“M(s, a, 0)

=d,, [ D erengy

F Sla]=0
a#0

Acta Arithmetica VII 4
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when g = 0. Here

r1+ra—1
Ji= Q’Wlb—lz

1
I'im—1) r2 I Ifﬂ —(m—1)(m—2)/4
(Zm—lnm/2—1p(m7§')) Ll] Opr—10g—1 (47’2 .

Tn case S is totally definite M (S, a,0) =0 and

1)(m—~2)/4 ﬂ.@iﬂ-
B(S) ’
A(8, g) being the number of representations a’Sa = g. (This number is
finite.) In the proofs of the formulae above we have suppressed some
computations. These are easy to carry out by [7].
Tt is to be noted that M (S, a, 0) # 0 only in case S[a]is a zero form.
It is then necessary that I =r7,.

M(8, a, ) = ehp-ald] ™"

§ 6. Hypergeometric functions. Consider the hypergeometric

funetion
1

f(ayb,0,0) = [yH(1—yP(L+ayrdy

0

where >0, ¢ and b are complex numbers having real parts > —1.
f(a, b, ¢, ) is a solution of the hypergeometric equation

[m(m+1>d‘fv—:+{(a—c+2)w+(a+b+2)}%—(a+1)(o+1)]w —0.

It has two linearly independent solutions
fol@, b, ¢,2) = f(a, b,c, @),

1
f-ol@, b, ¢, @) =w7'+'1f(a7 c,b,2) .

In the sequel a= s—?, b =%—1 y €= g——l. We shall write
m
e fl(sym)=f)(5':177q’m)=f(8—§:%“17g'“1’m)7
1 m
fals, @) =f_als, p, ¢, @) =Wﬂf(s"”2‘7 g“*l:%"“l; ‘”'1)

They satisfy the functional equations (see [6])

oty =9, 0% = o, D15, 0) +als, 2115, 0)

(28)
””’z'lf—l(g = ”) = a(s, Q18 @)+ ar(s, ) als, 0)

icm
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where

sinrc(s Q)
2

sinwa/2
sin 78

29 .
(29) sin s

(s, a) =

y (s, a)=

Here we have used the properties of f(a,bd, ¢, z) as a function of the
complex variable ¢ and as a function of the positive variable z.

Let G be an abelian group of order 2% I >0, every element of which
except the identity is of order 2. We denote the elements of G = G; by e.
We may take &= (g, ..., &), & = +1 and define multiplication com-
ponentwigse. Denote by & = (1,1, ..., 1) the unit element of G. We will
write the elements of @ in a particular order. This is ‘done by induection.
Congider the subgroup of G; with & = 1. This is isomorphi¢c to Gi—,. By
induction hypothesis the elements of this subgroup, call it Gi_,, are
written in a fixed order. Write then the elements of &; by taking first
(G4—1,1) and then (G{_;, —1). In any sum } extended over all elements
of @ we follow this ordering.

Consider now 1 sets of 21 positive integers (py, 1), ..., (P1, @) With
0 < pp < m, Px+qx = m for every k. For each ¢ of G; we take a vector
@, = (G5 .-, 4) sSUCh that

qr if e =1 3
30 Gey =1 . .
(30) S
&= (g, -,é&).In this way we obtain 2! vectors a,. If e, 7 are two elements

of @, define

1
(31) arfsy 0) = [ [ an(s, a)
k=1

with a,(s, a,) given by (29). We denote by a, = «; the matrix
(32) @y = (a”(s, a’E)) ’
7 being the row index and & the column index. We prove.

LeMMA 4. If gy 98 even for some k, then there is a, submatriz of ay of 211
rows and columns with all elements equal to zero. If gy, ..., g are all even

then o, has the form
o=V *
¢ 0 =*

with zero below the diagonal and y = (—1)2F T2
Proof. Let us, without loss of generality, assume that ¢, is even.
From (29) a_4(s, ¢;) =0 and therefore a,(s,a,) =0 if &= (1,8, .., &)
and %=(—1,...). This gives a zero matrix of order 2!-. In order to prove

the second part notice that
o= ((al—l)al(87 @) (w-1)ay(s, Pz)) )

(ar-1)aa(8, @) (@m—1) (s, p)

4%
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By induetion, since gy, ..., fi-1 are even, i has the property indicated
in the lemma. But g; being even, a_,(s,q:) = 0. Now from (31)

1
¢ Fapr
a5, ) = | ] euls, @) = (= 1)@ T

k=1

This proves the lemmsa completely.
Let now @, .., % be | positive real parameters.
functions

Consider the 2

1
n;fak(37 Dy ks wk) .

k=1

(33) fS(sypa‘Lw):

These 2! functions are linearly independent and satisfy the functional
equations

fs(%—w,q,”‘l)” o “2“‘” o835 0 @

k=1

(34)

where 7 runs through all elements of &. We introduce 2t differential

operators
o \er a2\
A,z(éa) (’za'm?)

where ¢; = 3(1—&). The ordering of the &'s determines the ordering

of the 4,. Let us put w; = wy(8; @y, ..., #;) the matrix
(36)

wp = (As,fq(g; p) Q’ w))

where & denotes the row and # the column. Let W; denote the determinant
of w;. We prove,

LEMMA 5

(35)

)21 1

[WZI (g2
where

f1(3; 2).

Proof. As in the second part of Lemma 4 we have, because of the
gpecial ordering of &,

() fuls, @) {0r-1)fal8, @)
(83 By vy By) = 2

(01-1) (8, @0) (@1-3) 5 o8, 2

2
gr = fuls 71’k,9k;mk) fl(sypkyqlcymk f~1(37'pk)9lc:mk)

Agssume as induction hypothesis the truth of the lemma for I—1 instead
of 1. The result for I follows from the above form of w;. We use the truth
of Lemma 5 for 1= 1. This is already in Siegel [6].
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Using the value of gy, ..., 5 we get
T(s— 9 1 11
B1)  Wilss @y ey ) = fy65 01y ) (CEFREE | [ (B ()

k=1

where
1

7 @y @) = [ [0+ 0™

(37) shows that W;, as a function of s, has a pole at &= m2—1
of order 1-2!-1, The hypergeometric function is regular at s = m/2 and

one has
Si{3 0 o) = [ (IR s,

[ {l};)

where

1
@) = [ [en®® @+ o™,

k=1

8(2) = 0(ay, -.es

Applying the operators A, to both sides, we get
: T(py/2) I (/2 ) :

[ (e it - 1)

k=1 1

(38)

Tt is to be noted that on the right of (38) all elements are equal to 1.

§ 7. Zeta functions. Let 8 be the matrix of an indefinite quadratic
form with elements in K satisfying conditions in § 4. Let a # 0 be an
ideal of K. If a is a vector with elements in a let o'Sa = g % 0. Since S®
for 1 < k& < 7, is definite, g® for these values of % will have the same sign
irrespective of a. On the other hand if 1 <% <1, ¢® can have any sign.
This may be proved by simple arguments of continuity. We can therefore
associate with g an element &= (&, .., &) of G so that e = sgng®
= g®f|g®|, 1 <k < 1. We call ¢ the signature of g.

Let H = T a8, where T, a are defined as before. Let ¢ be given
by (14). Using the duplication formula. of the gamma function we obtain
by Mellin transformation
M(8,0,9)

' g 8/m 28) 718 rit+ry _m "‘_m_,w
@ o MUsOaat () (r(s 2+1)) X
1

x n (1 ‘I’wk)l—mlzfa(s’ D, q,®) = hlif (Nt)° f

k=1

2 ¢~ T ED G L 3]

F Slal=g
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i i i (1) (r1-re) _ 1o
where ¢ is the signature of g, P is the space of 1, ..., ¢ P U= T o >0,
k=1,..,1 and
‘ : 1
d —(m—1)(m—~2)/4 ‘2 7‘1
hl = (l;LTal) ( mi2—1 ) +TZ l] 1 Op;—10g;-1 -
=1
ﬂet us now define the 2! zeta functions
N\ M
(40) tlS, ay5) = Nan 3 HS, 0.0
> (g

where the summation is through a complete system of g of signature &
which are non-associated in the sense g; # ¢, with ¢, = ¢,6%, & a unit in K.
Because of Lemma 3 these series converge absolutely for Res > m/2 and
define in this half plane analytic functions.

Put now

@) 8,00 = aEE{rl= 1) TS, 0 0.

‘We then have

b [I QL - ) an, 2,4, 9)pdS, 0, 8)

=1
——hl f Ny [ ) e E P ar) .

I Slal#0

From now on we follow the celebrated method of Riemann-Hecke-
Siegel and obtain

(82)  whi N8 H (L ) Zfs('s,p,q,wm(ﬂ,aw)

= f(Nt) Z 6—na(cH(a}t)d,v_‘_(Nt)mlz s f

B8 Sid#o TS~ 8-1[a)#0

—~ f (e)° f (14 ) @0 o) ag)

a0
8la]=0

+ f ¥y [ (tha Y TG g

F(S1)

e_,,(c'&(u)!)d/u)[dt]

a¥#0
S1a)=0

Where F(8) is the fundamental region for the units of § and F(8-%) for

that of 87, % = 0 or 1 according as S[e] is not or is a zero form. w is
here the number of roots of umity in K.
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The last four integrals may be evaluated thus. Let us put

(43) = [(d], n= [, fav
Gy F(SY

F(S)
and
m—2 1

»(8, a, @) = (Nay/[@)" N8| * H e )(1+wk) 2

Then we have, for the last four mtegrals,
i Y —ntmiz=1 [ [T 1\\* __ oy|r2griim/2—1)
(44) 'yu(s_m/z 8)+u(2n) (r(2 1)) (P(m—2))"2 x
% (’P(S—lr o,z ) M(87, d,0) _"P(‘S; o, 2)M(8,a,0)
s—1 s—mf2+1 :
The proof of Lemma 3 shows that the first two integrals on

the right of (42) are entire functions. (44) therefore shows that
Zfe(s, P,q, 2)@dS, a,s) is a meromorphic function with simple poles

at s = 0,1, m2—1 and m/2. The points s =1,s=m/2—1 occur only
when S[a] is a zero form.

Applying the operator 4, to both sides of (42) does not change the
meromorphic character of either side; what is move the right side has
at most simple poles at these four points. Put

D A(fds, 9y 4, 2} 08, 0, 8) = As)

then A,(s) is a meromorphic function of s with at most simple poles at
s =0,1,m2—1, m/2. Therefore we get, using the matrix e

(45) tpe(S a,8) =w; __,,(s .

Now A.f{s,p, g, 0)/(I(s— m/2—{—1) is for every &, an entire function
of 5. Because of the form of the determinant W; of w; given in (37), it
follows that @S, a, s) can be continued analytically into the whole plane
and have at most simple poles at s = 1,m/2—1, m/2 and possibly poles
at the poles of I'(s). At all other places they are regular.

Equations (42) and (44) show that the right s1de of (42) is invariant
under the transformations 8 —m/2— 8, ag—>-— an( Zo—>ai), a—>F and §—~>87%
This means that

s H 21+ @)™ Y fi(s, D, 4, 2)pd S, a, 8)

ig invariant under these transformations. Using (34) and the linear inde-
pendence of f.(s,p, ¢, ©) we get functional equations

(46) S, a,0) = VIS (57,8, ) ol a0)

ner;

. denoting the column with g, as element, and denotes transposed matrix.
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In particular, if I =0 we have only one function and it satisties

P(8, 0,9 = NIS| (87, 8, 5 =)

we have thus proved the

TEEOREM 1. The 2! functions ¢S, a, s) con be continued analytioally
into jumctions meromorphic in the whole plane with at most simple poles
at s = 1,m/2—1, m2 and possibly poles ai the poles of I'(8). These functions
satisfy functional equations given by (46).

Suppose that # is an element of G; and all ay, in a, are cven integers.
By Lemma 4 therefore a,(s, a,) = 0 unless » = & in which case A8y )
= (— 1)t/ W have thus

CoRoLLARY. Let 8 be such that for some ne Gy all ay in a, are even
integers. Then @,(8, a,s) satisfies the functional equation

2

(Note that the hypothesis of this Corollary is empty if 1= 0.)

From the definition of @8, a, s) and the remarks above it follows
that £,(8,a,s) can be continued analytically into the whole plane into
a function which is meromorphic with at most simple poles at the points
s =1, m2—1 and m/2 and possibly poles at the poles of I'(s).

We shall study the analytic behaviour of (S, a,s) more closely.

Consider first the point ¢ = m/2 at which (S, a,s) has if at all
a simple pole. Let &, be the residue at this pole for ¢(8,a, s). Put

(47) @48, 4, 8) = (— 1)tz 8|V, (s*‘, @, ’l"”~s) )

h
o = N8Iy -
Then from (42) we have

| Zfa<%”,p,q,w)6s= ey(@)

with y(x) defined in (37). Applying the operator 4, to both sides we have

Zdﬂ(],(/%b,p, q’w))6a= edyy(®, mneh.

This means that

8o = oot 4y (0);
using (38) we deduce
o((m/2))!

(48) | by ="

1 T(p4/2) I(g2/2)

k=1

icm
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which is independent of ¢ and a. This shows that (8, a, s) has a simple
pole at s = m/2. Its residue is, restoring the values of yy, y1, and I, equal to

1

2 R i o o1 T(pr/2) T (qx/2)
49 == = oltny l l Y Ll Ll A
(49) T 2 81l u(87) ( Tni2) )

k=1

Consider the point § = 0. The functional equation gives
. 1 o T
60 oS a8 = NISI Y p57 8, G =) ande a)

Suppose now that (8, a, s) has a singularity at s = 0. From the form (41)
of ¢,(8, a, 8), it then follows that g,(S, a, s) has at ¢ =0 a pole of order
>1-+7-+7,. On the right side in (50), (871, , m/2—s) bas a simple
pole at s = 0 and a,(s, a,) has a pole of order < 1. Therefore ifr4r,>1
then s = 0 has to be a point of regularity for £,(S, a, s). So let ry+7, =1
Then 7, = 0 and 7, = I. In equation (50) the left side has a pole at s = 0
of order >1+1 whereas if a, is even for some 4, (s, a,) has a pole
of order < 1—1 so that the right side has a pole of order <1 which is
a contradiction. So in this case also £,(S, a, §) is regular at s = 0. Finally
therefore let 7, = 0,7, = | and all a,, in a, odd. Then

_ cos s)°
ayls, a) = (1)t D)o (D8
where ¢ is the number of times e7; is positive. But @87, &, m{2—s)
(cos 7ts)°
(sin 7cs)?
has at s = 0 a pole of order I and 3 (—1)° = 0, it means the right side

in (50) has a pole of order < I while thia left side has a pole of order > I+1.
This contradiction shows that (S, a, s) is regular at ¢ = 0.

At the other poles of I'(s) a similar argument applies; in fact, it is
even simpler since at these points ¢,(S™", &, m/2—s) is regular.

The points § = m/2—1 and s =1 need be considered only if S{d]
is a zero form. In this case I =1r,.

Let S[a] be a zero form. Consider the point s = m/2—1 at which
@8, a,s) has at most a simple pole. Suppose 7 = 0. Since 7, > 0, (41)
shows that (8, a, s) is regular at this point. Let therefore r, > 0. We
have from (42)

has at s = 0 a simple pole with residue independent of e. Since

1 m—2aq (m_l)

l‘z”-”km 2

My k=1
(51) ZMW’-‘b@%(s’“’s)h_m/ﬂf e
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is regular at s = m/2—1. Here u, is given by

G2 = Em D

x (F 5 —1))“(F<m~2))“2““"’“’Nusn“"‘”’”"(NaV’WU'"‘EM'(& a,0).
From the definition of the hypergeometric function it is seen that
o8 Dy G, 8x) has at ¢ = m/2—1 a simple pole with residue 1 whereas
its derivative, with regard to @, is regular at this point. If therefore
m #4 so that m/2—1 s 1, we see from (51) that '8, a, $) hag at

8

s =mf2—1 a zero of order I—1. More specifically

1
(53) Lt . Z%(‘}S’, a,$) (s——%—}«l) . -t .

s—mf2—

_ Consider the matrix ;. Pub w; ' = (B.y), & denoting row index and y
the column index. From the expression for Wi, it follows that Wi™ has
at s = m/2—1 a zero of order 1-2!-1. By the above remarks we see that
all B., are regular at s = m/2—1. Applying the operators 4, to both sides
of (51) it is seen that

m—2gy (gr_n_l)
g(S; a,8) o4, (s-m/z+1“ s—1 )
is a column veetor consisting of functions regular at s = m/2—1. Let
&' = —¢, denote the last element of G in the prescribed ordering of the
-elements of G;. From the above remarks it follows that if # % — g, then Ben
has a zero at s =m/2—1 whereas if # =& = —g,.

1
B = v | | a1 - gy~
k=1

Ves being a function of s which does not vanish at s = m/2~1 and ab
‘this point is independent of 2. Since y, is a constant Aypy = 0 if 5 5 g,
‘We therefore see that for every ¢ e @,

=20y (m_l) DE,m
m 1)~

7

o) e’ m~'2q m LN L) ~

G4 a0+ 25 [ [RSH(G 1) W s
=1

is regular at s = m/2—1. From this it follows that ?{8, a, 8) is regular
at ¢ =mj2—1 if m 4. Hence {,(8,a, s) is regular at this point.
Suppose' m =4 so that m/2—1 = 1. It ig enough to consider the
Case Ty = 0. since, if r, > 0, the form of ¢,(9, a, 8) given in (41) shows that
{8, a,8) is regular at s = 1. If , > 0 and some d» is an even. integer

icm

Zeta functions of quadratic forms 59

then (54) shows that ¢S, a,s) and so {(S,a, s) are regular at s = 1.
So let 7, =0 and all g5 be odd. Then

m—2qx, (m
L (5_
and therefore Z,(S, a, s) has a simple pole at s = 1. .

We now finally consider the point s =1 at which ¢J(§, a,s) has
at most a simple pole. We may take m s 4 since it has been studied
above. Suppose 7, > 0. The presence of the factor (1"(3~—'m,/‘.2—1—1))’2 in
@S, a, s) shows that if m is even, (S,a,s) is regular at s =1 since
then I'(s—m/2 +1) has a pole at s = 1. (Note that m s 2 since then S[a]
is binary zero form which is excluded.) So let us assume that if r, > 0, m is
odd. We again use the functional equation (50). If a,, is even for some &
then a,(s, a,) = 0 or has a pole of order < 1—1. But ¢, (87, &, m/2—s)
has at s = 1, a zero of order I—1. Hence in this case (8, a, 8) is regular
at ¢ = 1. Suppose now that all a,, are odd and m is odd if #,> 0. Then
a;4(8, a;) behaves at ¢ =1 like

_Bem
1) 2—{—2 1=0

(— 1)@ anp D 1
(sinms)t "

But Yo (87", @, m/2—s) bas by (83) a zero of order I—1. Therefore

@8, ci, s) and so (S, a,s) has a simple pole at s = 1.

We have thus the

THEOREM 2. The analytic continuation of (S, a,s) is a meromorphic
function which is regular everywhere except at s = m/2 where it has a simple
pole and possibly a simple pole at s =1. The point s =1 is a point of
regularity if S[a] is not a zero form. In the contrary case {8, a,s) has
a simple pole at 8 = 1 if and only if oll ay, in a, are odd when r, = 0 and
in addition m is odd if r,> 0.

§ 8. Remarks. Let 150 be an element of K. Consider the
ideals a and b = Aa. If aea and o'Sa =g 7= 0 then (la) S(ia) = 29 # 0
and la e b. It follows that M (8, a, g) = M (S, b, A%). Since Nb = (N1)>-Na
it shows that (S, a,s) depends on a only through its ideal class in K.
If R is this ideal class we can put

M(S, alg),
= (Nlg)* ’

a being any ideal in the class R. The functional equation now takes the
form

L8, R, 8) = Na*

08, R, 5) = NS (57, %, ) ol a0)s

5 being the complementary ideal class.
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Tn ease m =1 and § =1 we have ! = 0 and there is only one zeta
function for each class R and we have

1
g(s,m):NQ% TGS !
”Z(NI!JD

g runs through elements in a mon associated by units. We then obtain
the Hecke functional equation of the Dedekind zeta function. (s, R)
has ¢ =% a8 the only pole.

Let S be the matrix of a binary form which is not & zero form and
which is totally indefinite. We then have

(55)

1y (cogms)®

56
59 (sinms)™

Oen(8 5 @) = (

where ¢ is the number of positive signs in s,. If therefore

98, a, )= ]dlsn—m(r(g))ng!(s, a,8)
then .
(sinms) g8, a, ) = |87 D (—1)%(cosms) g, (87, &, 1—9) .

n

I we take 7, =0 and 7, = 2 so that K is a real quadratic field we
can define the zeta functions

(Fo)™Z(8, a,5) = %’;T‘]-‘;ﬂ , Fg>o0,
(57) !
—a M(8,a,q)
(Na) Zy(8,a,8) = ) —2 12 Ng<0.
- (Mgl
They satisfy the functional equations
(88)  gi(8, a, 8) = N|| 87— 2cosecns cot msppo(S72, &, 1—5)

+ (cot?ms + cosectns) pu( 871, &, 1~8)}, Kk =1,2

“

where p; iy taken as @; and
o8, 0, 8) = a7 *(D(5))*Z4(8, a, 8) .

these functions are regular everywhere except at s = 1 where they have
simple poles. ‘

-

§ 9. Hermitian forms. Let K be an algebraic number field of
degree n = r,+2r, over the rational number field and L = K(/d), d ¢ K
a quadratic.extension of K. Let d < 0 at I of the real infinite px':im;s spots
of K. We denote by @ the complex conjugate of @ and by a° thé irﬁa (¢}
of a by the automorphism L—IL° of L over K. e
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A matix 8 of m rows with elements in L is said to be hermitian if
S’ = 8° where S8 = (si) and 8° = (sf). Let § be non-singular. We shall
agsociate with S a positive system 7 in the following way. .

Let % <1 Then L®K® is the complex number field, K* being
the ecompletion of K into the real number field obtained from the valuation
of K determined by K®. Let

—— (B, 0
R @
=T _5) 0"

0™ being a complex matrix. Put
® _ g® o

(59)

Then

(60) T(k)S(k)'lT(k) ='s(k)’

T® <, 0 is hermitian. The totality of 7™ satisfying (60) constitute a space

1

of 2 ) pugr dimensions. The I pairs of integers pr, gx form the system
=1

of signatures of S. o
Let now I < % < r,. In this case L @K™ is a direct sum of two real

fields. Put now
S(k) — (G(k)')d G(k) = (‘S(k)')"
where ™ is an arbitrary real matrix. Write
e C(k)'o(k) , T(k)“ —_ (G(k)’)d(o(k))ﬂ .
Then we have that 7™ and T%® are real symmetric positive matrices-
and satisfy
(61) T(k)sl(k)"l(T(k))U — S(k)' 3

: 1
The real positive solutions T of (61) constitute a space of (r—1) _@nﬂn;;_)

dimensions. In a similar way, by considering L ®IE® for k& > r, we obtain
the space of positive hermitian solutions 7% satisfying

(62) g Ry e
They constitute a space of r,m? dimensions. We now associate with §

the positive system
T(l)
T=
T(ﬂﬂ)

where T®, ..., T® are positive hermitian, Y = 7 andﬂ 0 forth,
peHD - P#neD gre real positive symmetric, (TR — (7®HH) 5 and
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similarly the last 2n—2# are positive hermitianl. This system is related
to 8 by _
(63) T8I =8 .
! m(m+1) 2 i

The T"s constitute a space of 2};1 Prdr+ (1 —1) —-~2——-—+ rym? dimensions.
This is the $ space of S. '

Let us take £, ..., 1, 2n positive real parameters associated with L
in the sense of § 3. Let S be a hermitian m-rowed non-singular matrix
in I and T an element in the $ space of 8. Let ¢ ¢ P in the sense of §3.
Tet a be an ideal in I. We consider the theta function

(64) WS, Tya,t) = D, e,
aEqQ
We obtain then as in (6) the inequality
m
(65) 88, T,0,t) <eL+N7) [[N@+17) .
k=1

Where ¢y, is a constant depending on m, § and L if T’ is an alement of
the Humbert’s space given in (4), £ e &. o and N in (64) and (65) denote
trace and, norm from L to the rational number field.

A unimodular matrix U over L which satisties U'SU° = § iy said
to be a wnit of 8. The units of § form a group I'(8) which has in. § a repre-
sentation T— U'TT which is discontinuous and faithful if we identify U
and wU where  is & roof of unity in L. Let F' be a fundamental region
for I'(8) in $. Let dv denote the invariant volume element in the $ space.
‘We shall prove

LEMMA 6. [9(8, T, a,t)dv converges and for fimed
ra

f H8, Tya,t)dv = 2 f g |
F

aca F
provided that S is not the matriz of a binary zero form.
Proof. As in the proof of Lemma 1 we take § in the form

0 0 P(k)
@ =<0 709 Q(m);
* % G

P™ being a square matrix of g rows, 0 < g, = m/2, Corresponding to
this we obtain a parametrization of the §-space. Asin the case of quadratic

forms put
H 0 0 B L, L,
8= 08¢, T=(0 H, 0)0 B Ly,
0 0 Hy/ 0 0 &

e ©
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H, and H, being square matrices of orders gp. Put T* = T{C} and

E Q. @,
Cl=L=|0 E Q).
0 0 E
(For definitions of ¢ see [8].) Using (63) we obtain the equations
HFH = F,
HiP'H;=P,
Q=—F7¢(P,
Q= (4—3Qy _1QL17’)P ’
where A’ = — A°. We now parametrize the § space in the following way.
If k <1 choose H,,Q,, A and the parameters in H, as the required para-
meters. Here H, ig positive gp-rowed hermitian (complex), @, a complex
matrix of g; rows and m— 2g; columns, A4 is a complex matrix of g rows.
It 21 <k <1+r, we choose Hy, Hi, @y, Qs, A and the parameters in H,
as the required parameters. Here H,, H7,Q,, A are as before except
that they are real, @; has m—2gx rows and g columns and is arbitrary
real. If 2, < % < 2r,-+r, again H,, Hi, @1, Qs, 4 and H, are the para-
meters the only change being all are complex matrices. After a little

computation one obtains the volume element dv in terms of these para-
meters

(66)

1 1+ry
(67) v = ey n ] Hgk)lm—zgk H 1 HP Im—m—uzl Hgk)"‘m—zgk—llz x
k=1 k=2l+1
2ry+re
o [ | BP0 B 20k () dv, - 0idQuAQu0A doo
k=2r1+1
where f(H,) is a product of certain powers of the determinants of
HY, dv,, dv? are the Buclidean volume element in the product of the
spaces H® and in H™’ respectively, dQ,,dQ, the corresponding volume
elements in the products of @ and @ respectively, d4 in the product
of A® and dw the volume element in the H, space satisfying the first
of the equation (66).
It is enough to prove the theorem under the assumption that § is
reduced, in the sense of Hermite-Siegel and we have J = § N R, instead
of F. By following the method in [4] one proves that for all k

(68) 1% m%, (B9 () < e

for a constant ¢, depending only on m, L and S. Here 1 < a < g, g5 << b
< m—gy, m—gr+1<e¢<m. Furthermore we can use in the integral
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tﬁe expression on the right of (63). As in Lemma 1 we are reduced to
proving the convergence of integrals of type

ﬁ o 85 .. 8,
(69) f Sa 8§y 0 8y

a=1
where 0 < 84 < 637-¢;; depends on ¢, and

a(m—at+l), &k Llor k>2r,
fa = { ta(m—a+1), otherwise.

Tor convergence it is necessary that fia > 0 But ‘.ua..?} %(xm;-a;pl‘)
> Hm—gu+1), a <ge. Since gy <m/2, it follows that '1f‘ m>2 t mu;
is convergence. If m = 2 we have assumed that. S is .not the m‘m‘xlx 0
2 zero form so that gi = 0 for all k. Hence F itself iz compact. ‘

Tn order to prove the second part of the lemma note ‘that on compqct
subsets of F we can obtain uniform estimates depending only on the
subsets because of the properties of Re,.

‘We can as before prove

LemmA 7. If m =1, Jaw is finite.
F

Proof. We proceed exactly as in the above lemma and obta.in in-
tegrals of type (69) with ua having the values a(m—a) or %a(m—:a)
according as k does mnot or does satisfy 20-+1 <% < 2r,. As belore
ta = t(m—a) = 3 (m—gi) = m/4. Thus m >1 ensures e >0 and also
the convergence of the integral.

Let us put

08, Tya,t) = D) -l

aea
a/Sal#0

Let @ be a fundamental domain in P for the group of units of L.
LevyA 8. If ¢ is a compler number with Res > m then

[ty [ 848, T, a,t)dv[at]
G r

converges. .

The proof is similar to that of Lemma 3.

We shall prove another lemma which besides being of use in the
sequel is of importance for the analytic theory of hermitian forms.

Tet S be a complex hermitian matrix of m rows with signature
p,m—p,p > 0. Let F be a complex matrix of m rows and b columns so
that §{F} = T hag signature p, b—p. Olearly of course b > p. Let W be
a non-singular hermitian matrix of b+o<m rows with signature

e ©
lm Zeta functions of quadratic forms G5

m (
p,b+¢—p and such that W = (Q’ 1123) Let D be the space of complex
matrices X with
S(FX]=W.

_ {dx}
{dQHdR}

On D denote, after Siegel, the volume element by We then have

LEMMA 9.

._ {dX} P —¢ymrb—m m—b—c #m—b_
| aream; = Wt e

where if b= p we take |T| =1 and

~= 7w

We omit the proof as it is exactly the same, with minor changes,
ag Siegel’s proof of Hilfsatz 3 in [7]. In particular, taking § = — F the
unit matrix of order m, b = m and ¢ = 0 we get the volume of the unitary
8PACe A8 ly,.

A similar formula to one given in Lemma 9 can be proved if we take
real quaternion elements. The formula then is

’ {dX} o - b—m—1/2 m~b—e+1/2 _"ﬁi
| agam = WL et

e[

§ 10. Zeta functions of hermitian forms. We consider the
simple case of hermitian forms over imaginary quadratic fields.

Let K be an imaginary quadratic field with diseriminant d. Let
|d| = D. Let 8 be a non-singular hermitian matrix of m rows and of
signature p, ¢(= m—p) which is not the matrix of a binary zero form.
Let $ be the space of positive hermitian matrices 7' satisfying

(T8-12 =B .

This is a symmetric space with metric ds? = o(T*dT172dT). Let dv be
the corresponding volume element.

Let £2(8) be the orthogonal group of § namely the group of complex
matrices O satisfying 0’SC = 8. The wnit group I'(S) of § is a discrete
subgroup of 2(S8). Let 1, w be a basis of integers of K. For any complex
matrix .Y put

where

X=X 40X,
Acta Arlthmetien VII 5
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where X; and X, are real. Tf W is hermitian put W= W, l‘”u’) W, with
real W, and W, For fixed Wy, Wy, consider the space Q2(X;, X,) of
solutions of the matrix equation
X8 = W;

we denote, after Siegel, fgg‘;gﬁ%h the volume element in (X, X%). If
U e I'(8) then (X, X;) (¥, ,1 Y, wil’m'e UX = Y, - oY, defines o mapping
of Q(X,, X,) into itself. Let Fy be a fundamental region in this space
for this group. We put

(8) = J {AX 3 {aXy)
wB = ) W,y @)
0
and call it the measure of the wwit group I'(8). Since X > UX ig not the
identity mapping we get
- D —m(m+1)/4 '
(70) ) = 197 (%) ot | 0
7

w Deing the number of roots of unity in K and I is o fundamental region
for I'(8) in the § space. In case & is definite, thig gives

wm
SO I G L
w(8) *!!mﬁfﬂmm s
E(8) being the number of units of &.
In a similar way we can define the measure of representation of ¢

by 8. We put _
S _ D\—mim~1)i4 {dY} 3
w8 0= (7) | ram

v

B
94
where S[qY] = (q B

for the units U of § with Ua =«a. Put

and F, is a fundamental region in this ¥ space

M8, a,g)= 8" g™ Y w8, 0,0, g#0,

o

M8, a,0) = 18" X u(8, a, 0)

o

(71)

we then get

M(8,a,q) f w? 7w — sgn )T gD g
%>0, 5gn g -
D\ —mim—1)/4 N oy V'al
= ——
-(7) Upmspiges | D) e,
I Sldegro

; —mn—1)/4 . et )
M(S, a, 0)(27‘”—'(“1—1)11(7)1*]) = (9) - Hp—1Hg— I Z é T‘UMIM’ )

4 B Sla]=0
a#Q

- ©
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In case S is definite we oblain from Lemma 9

D\—mim—1)/4 .A(Sy g)
2 U1 _E(S) H

M(8,a,q) =(

A(8, g) being the number of integral representations «’Sa = g.

¥t is possible to define zeta functions of hermitian forms in the way
we have defined for quadratic forms. We shall, however, use a slightly
different procedure due to Hecke.

Let a be an integral ideal of norm Na = b. Let f > 0 be a rational
integer and @ a real number with —1 < a < 1. Let T bein § and H= T
—a8. Then H > 0. Let ¢ run through a complete system of m-rowed
integral vectors which are incongruent modafy/'d and with ¢ = 0 (moda).
We then consider the theta series

#8, T, afyd,t, e, o) = Z e~ HiabID,
asze(mod of [d])
¢ > 0 being a constant satisfying

(12) dM(1—a)(1+a)| 8|2 (D" = 1.
If ¢ =¢(8,a,a) and T = ¢(§,d, —a) then
T = 4oV (1—a?) 2 (f D2y 2
We now have the theta transformation formula
(78) 08, T,0f1d,2,¢, o

= t_m Z ngic(w'glbjn)ﬂ(s—l, Tul) a’j]'laa t“: ’E‘, w) ]
o (mod w’7Vd)
w=0(mod a’)
where ¢ denotes trace from K to the rational number field and o' is the
conjugate ideal to a in K. )

Let I'(S, a, o) denote the subgroup of I'(8) consisting of units U
with Up = o (modafy/d). It is a subgroup of finite index (S, a, o) in
I'(8). Define u(S,a, o) and M(S, af)'d, g, g) as before bit taking this
subgroup I'(8,a, o) instead of I'(S) and a fundamental region Fozli"gﬁ ,0,0)
of this group. We introduce the zeta functions

£(8,0fVa, o, §) = NO‘BZJWM'

>0

Thix series converges for Res > m and defines there an analytic funetion
of s. Tf we put

(14 §08,0/1, 0, 8) = 0(8,0,0)7 (f%—L)"’ms)c(& ofVd, 0,8

5*
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We obtain the integral representation, valid for Res > m

1S L+ o)™ (E(8, afVE, o, 8)1i(8, 2P, 20, @)
+£(_S? ﬂf]/ay 9, s)f—l(sy 2p, 24, m))

o0

( _D)—m(m——vl)# p 1 f p=1 J N\ eH@HUD gy 0y
o= | = Pp—1Mg—-1 7 7TGF Y P '
4 ?J(S, a, Q)a I i8) Slawo

Trom this by standard methods we obtain
|8 mam (1 +m) (S, of 1 d, 0, 58, 2P, 245 @)
‘{“5('“37 af]/'Zi, Q; s)f—l(sy 2p, 2q, 5”'))
)
14
Fo(S) Sla}#0

e‘"m(“}'d'z;} dt

~moH{a}l Ay

' D\ —mm—1)i4
- (4)

by ( 1
-t | (7
tm—s— 1

Z Giwia(mg)/bﬂ) J \7
+ »(871, 0’ , w) e
w

#,(8-3) 8-3{a)#0

1
(D)"”"m")/4 . )"13—-m-1 \ pimio(welbf D) “ \T (‘“ﬂET .1(,‘),4"
T Hp-1bg-1 | ¥ 28 W @) LR AR ]
4 : - v(87%, o, w)F‘w(S“")

B Ya}e1)
w#0

1
8—1
T Hp—1hg—1 | b | (\] +
4 J Fg.(JS) v(S,a, o) “’(@30

dedt—-(D)“m(m_l)“ \‘ a'"""’/"(““)d'u al .

This gives, at once, the analytic continuation of the zeta functions.
An analysis similar to that in the case of guadratic forms shows that
the functions so continued are meromorphic in the whele plane, Because

1

Fo8Y
is independent of w and

E @D it g s 0 (modaf)d)

w=0(moda’)
w(mod o’7Ya)

and = 2D in the contrary case, we obtain the
THROREM 3. The junctions £(8, afy/d, e, 8) can be continued analytioally
into the whole plane into meromorphic funotions satésfying the funotional
equation
(8, afVd, 0,8) = |8 2 grrmiolwoWIDVE(S1 ) o'f YA, w, M- 8) .
All except C(S, afyd, 0, 3) are entive functions. T'his function has ab 8 ==m

the residue
D ST (8 ', 0)

icm

Zela functions of quadratic forms 69

References

[1] E. Hecke, [tber die Zeta Funktionen belichiger algebraischer Zahlkérper, Gott.
Nachrichten, 1817, pp. 77-89.

[2] — Zur Theorie den elliptischen Modulfunkiionen, Math. Annalen 97 (1926),
py. 210-242, )

[3] P. Humbert, Théorie de la réduction des formes quadratiques définies positives
dans un corps algébrique K fini, Comm. Math. Helv. 12 (1940), pp. 263-306.

[4] K. G. Ramanathan, Units of quadratic forms, Annals of Math. 56 (1952),
pp. 1-10.

[5] C. L. Siegel, Uber die analytische Theovie der quadratischer Tormen III,
Annals of Math. 38 (1937), pp. 212-201.

(6] — Uber die Zeta Funktionen indefiniter quadratischer Formen II, Math. Zeit.
44 (1938), pp. 398-426.

(7] —— Indefinite quadratische Formen wnd Funkiionen-Theorie, Math. Annalen, I,
124 (1951), pp. 17-64; ibid. IT, pp. 364-387.

[8] — Quadratic forms, Lecture notes Tata Institute of Fundamenta Research,
Bombay 1957.

TATA INSTITUTE OF FUNDAMENTAL RESEARCH
BOMBAY

Regu par la Rédaction le 31. 13. 1960


GUEST




