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On caps of kind s in a Galois r-dimensional space
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Summary. §1. Introduction. § 2. The problem of embedding a X;, in a cap of
lower kind. § 3. On complete K‘:q which cannot be embedded in a cap of kind two.
§ 4. The embedding of a complete Kf__q in a cap of kind two. § 5. Construction of K:.u a8
intersection of caps of kind two. § 6. Further results about the embedding of a K:'q in
a cap of lower kind.

§ 1. Introduction. In a Galois space 8,4, ie. in a projective
r-dimensional space over a Galois field of order ¢ = p* (where p, h are
positive integers and p is a prime, the characteristic of the field) (%),
a K-cap or cap of order K is a set of K distinet points, no three of which
are collinear. We say that a K-cap is of kind s, and then we denote it
by Kig, if any s-+1 distinets of its points are linearly independent, but
there are subsets of s+2 linearly dependent points; then, obviously,
2 < s < r. Any such Kj, is said to be incomplete or complete, according
ag it is or not a subset of a (K -+1);,. Evidently, the space joining the
points of a complete K, is Sy, itself, whence K > r+1.

The study of these caps is interesting from the algebraic-geometric
point of view; moreover, some questions on their subject are deeply
connected with information theory and statistics, as one can for example
see from [1], [2]. )

The purpose of the present paper is to bring back the study of Kjg
to that of complete caps of kind two (2). We begin by showing that, with
the only exception of some particular values for the pairs r,q, every Ki,
8 contained in a complete cap of kind two. Further we proof that, if s > 4,
any Ky, is the complete intersection of a certain nwmber of complete caps
of kind two. It follows that, from the knowledge of all complete caps
of kind two of a Galois space, we can deduce immediately that of all
Kig, it s > 4.

Finally, we deal with the more general problem of embedding a K7,
in a cap of a fixed kind, #(< 8), whence we draw significant limitations

'8

for the order K of a complete K, .

() For further details cf., for example, [3], § 17.
(2) These caps have been already deeply investigated by B. Segre, especially
in [4], [5], [6].
2%
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§ 2. The problem of embedding a K;, in a cap of lower
kind. A K, can mnever be contained in a cap of higher kind, since, by
definition, K}, containg s+ 2 dependent points. Therefore we may ask
whether a Ko (s > 3) may or may not be contained in a cap of lower
kind, namely whether we can aggregate other points to those of K,
so a8 to obtain a cap of kind f<s.

A first answer to the question is given by the following result:

Bvery Kby, with s > 4, is contained in o cap of kind t < s—2. It follows
that every K, , is contained in a complete cap of kind two or three.

For, let P be a point of an (s— 1)-secant Sy—e of K74, not belonging
to any of the (s;1> secants (%) of the cap Se—p N K, Such a point P

certainly exists, since s > 4. No line » through P can be a secant of K,
gince, otherwise, the space Ss;— = rU S;—s would contain s--1 points
of K;,, which is excluded. Then, if we aggregate to the points of K7,
the point P, we obtain a (K +1)-cap. As this cap contains s dependent
points (P and those of S, Kj,) the cap is of kind ¢t < s—2.

Further we have that: .

Ewery incomplete K, is contained in o complete cap of kind two.

For, let us suppose s > 3 (if s = 2 the property is evident) and let H,
be a complete cap containing K;,. Further, let P be a point of Hj,,
but not of K;,, M, and M, any two points of Ki,. Let us tix on the two
distinet lines PM, and PM, two points N; and N, (Ny, N,¢ Hi,).
Through N; (¢ =1, 2) there is only the line PN, meeting H;, at two
distinet points (because H;, does not contain any four points lying
on a plane, since s > 3) and therefore through N; there is no secant of
. K74 Besides, the line N, ¥, is external to K°, and so it follows that,
by aggregating to the points of K, the points N, and N,, we obtain
a (K+2)-cap of kind. two (since the set thus obtained contains the
four points M,, M,, N;, N, which lie on a plane), which is or complete
or contained in a complete cap of kind two.

§ 3. On complete K}, which cannot be embedded in a cap
of kind two. The problem of embedding a complete K, in a cap of
kind two seems to be exceptional with respect to other cages. In fact,
we show that there exist complete K, not contained in any cap of kind
two. Further, we give necessary conditions in order that this may happen.

Suppose that there exists a complete Km not contained in any cap
of kind two. Through every pomt of 8,,—K;, there must be at least
one secant of K&, (for, if not, K7,, which is complete, would be contained

(*) We call a line secant or chord, tangent, external of K, according as it contains
two, one or no points of K
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in a cap of kind two), and exactly one, since, otherwise, K;, would contain

,

four points on a plane. Tt follows that the > ¢'— K distinct points of
=0

8,— K, lie g—1 by ¢—1 on the K(K—1)/2 secants of K;,, whence

E(g—3)—2 D ¢ =0.

=0

1 K*q—1)—

From (1) it follows that
g—3-+ V8¢t —6q+1
2(g—1)

Let us now denote by H, the number of points common to K g
and to an arbitrarily chosen S,—; of 8,,. The points of 8, lying outside

(@) K=

r=1

the secants of the H;-cap Ki,N Sy—y are 12 ql—(g’) (¢—1)— H, in number.
=0

Through each of them there is one, and only one, line meeting Kzq at

. —H
two points not belonging to the above §,—;. Those secants being (K 9 ‘)
in number, we obtain

D ¢— (E;‘) (¢—1)—H, = (K;H‘) .

=0

H, must therefore satisfy the equation

r—1

) ag—a @K +q—4)+ (B2—E—2 Y q) =0
i=o

Equation (3)—as it can be easily proved—has always two real posi-
tive roots, whatever be K given by (2). In our case, moreover, these roots
must be two integers. In fact, if (3) has only the integer root H,, from
the previous argument every hyperplane meets K}, at the same number H;,
of points; but then also every S, has in common with K, the same
number, N, of points. In faet, equating the number of points of K34
belonging to the ¢-+1 hyperplanes through an arbitrarily chosen 8,—2,
but outside it, to the number of points of Kj, not situated on the S,—s,
we obtain the equality

(H,~N)(g+1)=K—-N,

giving N univocally. Hence we could prove, mductlvely with respect
to I, that every §; (Il=r—1,r—2,..,2,1) meets K}, at the same
number of points, which depends only upon I. But this is impossible,
gince there exist secants and tangents to K;,, whence our assertion.
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Thus we have proved that:

A necessary condition for the ewistence of a complete K} o« not contained
in any cap of kind two, is that the second member of (2) is an integer, and
that equation (3) has two (positive) integer roots Hy and Hy. If such a Kb,
exists, the hyperplanes of Sy, can be divided with respect to I3, into two
disjoint systems (each of them being not empt ), according to whether they
have H, or H, points in common with K,

We observe that, for r =3,¢ =2 and r =4, ¢ = 3, the previous
conditions arve satistied, being K =5,H;=3,H,=1 and K =11,

H, =5, H, = 2 respectively. Moreover, “rhere effectlvely exist 55, and 1]43
not contamed in any cap of kind two, as we shall now prove.

An example of such a 53, is evidently given by the vertices of the
fundamental tetrahedron and the unity point of an Sy, we can also
easily see that every complete K3, is projectively equivalent to such a LH
An example of 1155 can be obtained as follows. In an 8,3 of coordinates
(y, %2, B3, @4, @), leb us consider the vertices A, (i=1,..., 5) of the
fundamental simplex, the unity point U, and the points B;(0, 1,—1, —1, 1)
By(1,0,—1,1,—1), By(1,1,0,—1,—1), Byl,—1,—1,0,1), Byl,
1,—1,0). These 11 points belong—as it can be easﬂy secn——to the iwe
following elliptic quadric cones C; (i =1, ..., 3), projecting from 4; the
remaining 10 points respectively:

( @ty — oty — a5 + @0, — Moy + 045 = 0,

Dy — D32y — Lyll5— Dy -+ Bas + 0405 = 0

(4) L4y — B4y — Lyl + By — 0105+ Loy = 0

Loty — a8y — Llly + Loty — Dy -+ D1 = 0 ,

Wylly — Bylly — Lylp— Lss + Loy + Ly = 0 .
It follows that those points constitute a 11-cap; and also that, if among
them there exist four points on a plane, none of these can be an 4
(i=1,..,5), therefore they will be four among the points U, B;
(¢=1,..,5): but it can be easily shown that the last points are four
by four independent. Hence the 11-cap is a 1155. To prove that it is com-
plete and not contained in any cap of kind two, it suffices to show that
through every point P of §,,—11%4 there is one secant of 11%s. Let @
be the elliptic quadric intersection of the cone C; with the hyperplane
@y = 0. Then @ is the projection from 4, on #; = 0 of the 10 remaining
points of 11%5. If the point P belongs to C,, the property is evident;
otherwise let P'(¢ Q) be the projection from 4, of P on @, = 0. Through
—as it can be easily proved, being ¢ = 3—there are three secants
of @, which, then, are the projection from A, of three secants of 11%s.
These secants meet the line 4,P at three distinct points, different from 4,,
that iy at the three points of A, P different from A4, (since g = 3). One

icm

On caps of kind s in a Galois r-dimensional space 23

among the three secants must, then, contain P, and this completes the
proof. Further—as it can be easily seen—we have that every K}, of
maximum order is projectively equivalent to the 113, just considered.

We prove now that: ’

Given a Koy mot contained in any cap of kind two, if Q is one arbi-
trarily chosen of its poinis, and we fix in any way @ point outside K., on
each of the K—1 secants issuing from Q, by aggregating the K—1 points
thus obtained to those of Koq—@Q we obtain a complete [2(K — 1)ha

For, if three points P; (¢ =1, 2, 3) of the [2(K—1)]-set just con-
gidered are lying on a line 7, the plane Q U r must contain at least four
points of Ky, (@ and the three further points intersected by the lines
P;Q on K;,), and this is impossible. The [2(K—1)]-set is therefore
a [2(K——1)]3,q; this is also complete, because through every point of
8,,— K3, there is a secant of K,,, which is evidently also a secant of
[2(K—1)]g-

From this result it follows the construction of a complete 20%s,
starting from the 113 previously considered.

§ 4. The embedding of a complete K7, in a cap of kind
two. In the foregoing paragraph we have shown that, for particular
values of » and ¢, there exist K;, not contained in any cap of kind two.
But such pairs of values are rather exceptional, as it is shown by the
following results.

THEOREM. Let us fiz » (== 8), we can then determine an integer ¢» such
that, for every q > q., any K3, is contained in a cap of kind two.

First of all, we prove the theorem for r» = 3. Suppose that there
exists a K3, not contained in any cap of kind two. There are obviously
3-secants planes of K, moreover, if ¢ > 2, there are also planes meet-
ing K3, only at two distinet points: for, if not, each of the ¢+1 planes
through a secant of Kj, has a further point in common with the cap,
go that K = g¢-+3, and by (1), ¢¢—2¢*—¢-+2 =0, which contradicts
the hypotesis ¢ > 2. Then we have (cf. § 3, first proposition) H,= 3,
H = 9; from (3) we also have H,+H,= (2K+g—4)/¢ =15, that is

= 2(¢g+1), and by (1), ¢*—¢ = 0, which is impossible, since ¢ > 2.
It follows that

every Kjg, with g > 2, is contained in a cap of kind two .

Let us now prove the theorem for r > 4. We begin by establishing
the following

Levmya. Let us fiz an integer ¢ =4, an index (2 <i<r—1), two
polynomials f;(z) and giw) with integer coefficients, and an mteger constant a;.
If, for an integer ¢ > 0, it is possible to find am integer s; such that

By S (qg—1)+sdafilQ) — 11 +[a9:(0) — @l —2(¢ " +.. +¢+1) =0,


GUEST


24 G. Tallini
then it must be 8; = —(2+ a;) + ¢8s41, Where 8.1 48 an integer such that
Bl 520" (g — 1) +sigalgfira(e) — 11 +

. +[qgi-l-l(Q)*a¢+1]_2(flr-(i+l)+---+Q+1) =0,
where iy, fira(®), gira(2) are an integer constant and two polynomials with
integer coefficients respectively, which can be ewpressed by means of ay,
@), gie).

From (5);, $:+1 denoting an integer, we have immediately $;=—(2 + a;) -+
-+ ¢8;41. Substituting this expression in (5);, we get (5)i4, where
) = f@) — 22+ 2) ¢ q—1) ,
Gisa(q) = (a:+ 222 g—1)— fi(d);fi@ (a;-+-2) -+ gt({l);.fft(o) ,

@it = fi(0) (@ 4-2) — g:(0) .
Thus the lemma is proved.
Let vs now fix 7 > 4, and suppose that there exist, for a given ¢ > 2
(¢ even or odd), a K}, not contained in any cap of kind two. By virtue
of § 3, both the roots H;, H, of equation (3) must be integers, whence,
=1

as Hy+H, = (2K-+¢—4)/g and H,-H, = (B>~ K—2 Y ¢l}/g, we have:
I==0
{2(K~2) = 0 (modg),
RK—K—2 = (K+1)(E—2) = 0 (modg) .

Frop these relations it follows that (since q >2) K =28, (where s, is

an integer); besides, since K must satisfy (1), we have s = s,q (s, an

integer), so that K = 2+ s,¢% Substituting this expression in (1) we get
$30°(g—1) +8,(30—1)—2(¢" "+ .+ g+1) = 0.

This relation coincides with (5); for 4 =2, where f,(z)= 3, g)(1) =0
and @, = 0. Then, from the lemma, and proceeding induectively with

Tespect to 4, we obtain, on putting b; = —(2+ay):
sy =Dby+¢ {bs+ 9 +qbra~q(bry 4 gs2)] ...}
Then we get
(6) K o= apg byt ..+ Dy -2,
where s, is an integer dependent on g and by = —(2+a;) are integers

yvhich .do not 'del‘)end either on ¢ or on #, and which can be determined
mdugslvely with respect to i by virtue of the lemma. "
rom (2) and (6), recalling that ¢ > 3 and » > i bhat
. sommom ) g q nd r > 4, we eagily get that,
1> = [*Z‘Ma’xflbzly ey [br—1[)+1] *,

(*) If ¢ is a real number, we denote by [a] the integral part of a.
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we have |s,| <1 and so s, = 0. Therefore (6) becomes
K = byt ...+ b2+ 2.
On substuting this expression in (1) we get
(M) (Bpag™ T D2 +2)2(¢— 1) = .
= (a4 0 D03 +2 D

Rquality (7) is not an identity in ¢ (for, otherwise, its left-hand side should.
be a polynomial in g of degree r, with leading coefficient 2, and so 7 = 2¢+1
and b,y = ... = by, = 0,b; = 2; but this is impossible, b; being an in-
teger). Consequently, if ¢ > ¢*, ¢ must be a solution of equation (7). Then,
if we denote by ¢, the maximum between ¢* and the greatest integer
root of (7), we conclude with the theorem.

An easy calculation shows that the foregoing g,, for r = 4, is equal
to 11; further, we get that for g # 3 and ¢ < 11 the right-hand side of (2)
is mever integer. Hence we deduce that:

EBvery K., with g # 3, must be contained in a cap of kind two.

‘We now prove that:

Bvery K., with q = 2" h>3,r>4 and hr+h+3 = 2n, must be
contained in a cap of kind two.

Tt suffices to show that, under the hypoteses above, the discri-
minant 4(g) = 8¢"+'+¢?— 6¢+1 of (1) is never a square. For, on supposing
A(q) = a* (a positive integer), we have (since g > 8):

(6+2"(a—2" = a?— 8¢ = ¢ —6g+1>1,
whence (¢—2") > 1, and so:
2" < (a+2")(a—2") = ¢*—6g+1 < 2%,
But this relation is absurd, since at present n > 25.

We have, moreover, that:

Bvery Kis is contained in a cap of kind two.

Tor, if we suppose the discriminant of (1) 4(2) = 2¥m+)—7 = o?
(where a is a positive integer), we get

2n+2 < (2n+2+a) (2n+2_a> — 22(n+2)_a2 =17 ,
and this is impossible.

§ 5. Construction of a K;, as intersection of caps of kind
two. From the previous results we see that in a space 8,4 corresponding
to a general choice of ¢, every cap of kind three—and so every K;,
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(cf. § 2)—is contained in a cap of kind two. Our purpose is now to show
that:

In such an 8,q, every Kiq, with s >4, is the complele intersection
of h caps of kind two, where, if q> 2,

-ttt g1 -0~ ('3)
¢3—s+3
so that h = q+1 when g is sufficiently large with respect to s.

Tet h (> 0) denote the number of all the caps of kind two which
contain a given Kj,. If the result is not true, then these caps meet in
a point P not belonging to Kj,. Let Py be a point of K;, The line PP,
is a tangent of K;, at P; (for, if not, each of the h caps just considered
should contain three collinear points). Let @ (s P, Py) be a point of PP,.
Then @ cannot belong to any of the h caps, and so there is a line through
it meeting K2, at two distinet points, P,, P say. If B (+ P, P,) is a point
of PP,, through R also there must be a line meeting K7, at two distinet
points, Py, P; say. Consequently, the 8, joining the points P,P,P,, P,
must contain the 5 points P; (§ =1, ..., B) of K;,4, and this is impossible,
since § > 4.

Let us now fix an (s—1)-secant S,—, of K7, Through each of its

.qs—ﬁ-{-...+q+1—(8;1)(q—1)—(s—1) points, not belonging to the (8'2'1

secants of the cap S;_s ~ Kig, there cannot be any secant line of K7,
(for, if not, the §,—, joining 8,—, and such a secant, should contain § 41
points of KSg). Then, through each of those points there is at least one
of the % caps, on the other hand each of these caps meets S,—» in at most
4*°—¢+3 points, if ¢>2, distinet from those of K74 (°). It must therefore be

(8) b=

@5+ 3 > gt b g+ 1= (75 = 1) = (1),
whence (8) follows at once.

§ 6. Further results about the embedding of a K7, in
a cap of lower kind. Let us fix a K7, (s > 2) and, for every integer
$ < s, denote by N, the number of pointssof 8,, through which there
is at least a f-secant §;-, of K;,. We sghall prove that .

K K C\
@ m<(e-ve(E)a-nes s (G- 4K,
where the equality sign holds if and only if through every point of Sy, lying

outside each (1—1)-secant Si— of K4, there is af most an 1-secant Si—y
of Kpg, for 1=2,..,1.

(®*) We recall that the greatest number of points of Si¢ {t = 2, ¢ odd or even,
q > 2) three by three non collinear is < gt-1-2 (cf. [7], p. 124).
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Yor, the points of an §;—, not lying on any face of one of its I-simplexes
are evidently (¢—1)"1in number. Therefore, the points of the (ll() l-secants
Si_, of K2, which do not lie on any face of the I-simplexes 81N Krg
are m; in number, where 7;< (?)(q—l)’—l, the equality holding if and
only if the hypotesis of the proposition is satistied. Our statement follows
on adding the limitations just obtained, for I =%, 1—1,...,2,1.

Evidently we have also that:

If © (< s) is any positive integer, a necessary and sufficient condition
in order that a Ki, is not properly contained in any cap of kind h =1,
t+1,..,8 is that every point of S.q lies on at least a t-secant 8, of EKrq
i.6., that Ny=¢"+...+q+1.

From this lagt result and by virtue of (9), it follows that:

If a K54 is not properly contained in any cap of kind kb =*%,1+1, ..., s,
then

10) gt otart< (De-nmr+ (E) ek (5)a-DHE.

On putting in (10) = s we have that, for a complete K7, it must be

D ¢ etert < (e (B e e (G) )+ K

Tet us now suppose for K%, s> 3 and put o = [(s+1)/2]; then, if
1=2,..., 0, through every point P of 8,4, not lying on any (1—1)- secant
Si—s of Kig, there is at most an l-secant Sp— of K5, For, if through P
there are two such spaces, S8i—; and Si’; say, their intersection 8; (i = 0,
since P e 8;) must have in common with K, at most ¢ points (for, if
not, P must betong to an (i +1)-secant S; of K74, and so to an (I—1)-secant
Si_ of K2g). Then the space Syo—; = Si_1U Si’; meets K7, at least in
21— distinet points, which must therefore be dependent and so 21—4
> s-1. But this is impossible, since 21—i < s+ 1, being I <o =[(s+1)/2]
< (s+1)/2 and ¢ = 0. By virtue of the first result of the present § 6, we
then have that, if ¢ <o, the equality sign must hold in (9). Since
N;< ¢+ ...+¢+1, on puting

K K
D7, ¢, K) = ¢+ gt 1= [ F) ==+ ()@= D+ K]
it follows that for a K;, (s > 3) we have
(12) Dt,r,q,K) =0,
We observe that
' D(2,7’,q,]()>D(3,'I’,q,K)>...>D(0’,7‘,Q,K),
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whenee for a K2, (s > 3) by virtue of (12) at most D(o,7, ¢, K) may
be zero. Hence, being D(t,7, ¢, K) =¢"+...+q¢+1—Ny, if 1 <o, and
by virtue of second result of the present § 6, we obtain that:

Given any Kjq (s> 3), only two cases may oocur:

@) D(o,r,q,K)> 0, and then K, is properly contained in at least
one cap of kind h, where o <h <s.

(II) D(c,r,q, K) =0, and then K7, is not properly comfained in
any cap of kind h= o, ..., s (and so 8 # 4, of. first result § 2); but, 4f 8225,
K2, is contained in a cap of kind o—1 (because then o—122 and
D(o—1,r,q, K)> 0).

If o, denotes the least positive integer » satisfying

()a—114 ot (G- D +o— (@ + ot g+ D) 305
gince for a complete K;, both (11) and (12) must hold, we have
(13) gy <K <ang.

We have—as it can be easily proved—that

o (dh)t
(14) q_m“qr_‘lm =

Then from (13) we see that, for any complete K, having ¢ sufficiently
large with respect to r, we have

(15) Vel=1 g—st1le < K < Vol 1 glr—otDle .
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Unitary products of arithmetical functions

by

E. ComEN (Knoxville, Tenn.)

1. Introduction. In this paper » and r will represent positive
integers. The wnitary product (convolution) g(n) of two arithmetical
functions F(n), g(n) was defined in an earlier paper [1] by

(11) g(m) = D f(d)9(8),

@
where the summation is over all relatively prime pairs d,é such that
8 = n, that is, over all complementary pairs d,d of unitary divisors .
of m. If the condition, (4, ) =1, is removed, the summation in (1.1)
becomes the ordinary Dirichlet (or direct) product of the functions
f(n), g(n).

In [1] the unitary product was used in treating several asymptotic
problems in elementary number theory. It is the purpose of the present
paper to apply this method to additional problems involving the distri-
bution of sets of integers. We shall use a generalized unitary inversion
formula proved in § 3 (Theorem 2.3).

Let n have distinct prime factors py, ..., p;, and place

(1.2) n = pi... pt,

5o that ¢ = 0 in case n == 1. Suppose a and b to be positive integers. We
denote by Sap the set of integers n in (1.2) such that each e; is divisible
by either & or b, and by S&, the set of # such that each ¢; is divisible by
one of the integers a, b, but not by both (i =1, ..., #). For real x, Sau(w)
and §%,(e) will denote the number of n < & contained in Say and Sip,
respectively. Asymptotic representations of Sus(«) and 8%(x) are deduced
in § 4 under certain natural conditions on a and b.

Our investigation of the distribution of Sap and Sip involves the
consideration of two divisor functions, t,3(n) and is(n), defined as
follows: 7,5(n) is the number of decompositions of » in the form n = ass,
while zXs(n) denotes the number of such decompositions, under the
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