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I. Let k = Fq be a finite field of characteristic p, let kn = Fqn be the
unique extension of k of degree n, let V be a quasi-projective variety defined
over k and let f ∈ k(V ) be a rational function on V , also defined over k.
As usual, V (kn) will denote the set of points of V defined over kn. We also
denote by K an algebraic closure of k and for a scheme X over k we denote
by XK the scheme XK = X ⊗K, i.e. X after base change from k to K.

In what follows we shall assume that f is defined everywhere on V and
has no poles on V , so that f : V → A1

k is a morphism. Let ψ0 be a non-trivial
additive character on Fp and let ψn = ψ0 ◦ Trkn/ p

be the corresponding
character on kn; every additive character on kn can be written as ψn(lx) for
some l ∈ kn. Also, we shall write ψ instead of ψ1 for the character induced
on k.

The exponential sum associated with V, f, kn and the character ψn is
by definition

Sn(V, f, ψ) =
∑

x∈V (kn)

ψn(f(x)).

Since the sum is well-defined as soon as f is defined over kn rather than k,
we shall also write Sn(V, lf, ψ) instead of S1(V ⊗ kn, lf, ψn), for l ∈ kn.

Let us assume that f is defined over k. By a well-known theorem (ratio-
nality of the associated Artin L-series) we have

Sn(V, f, ψ) =
r∑

i=1

αi(f)n −
s∑

j=1

βj(f)n

for suitable algebraic integers αi(f), βj(f) called the characteristic roots of
the exponential sum; we denote by %(V, f) = r + s the total number of
characteristic roots of Sn. If d = dimV then by a celebrated theorem of
Deligne [D], each characteristic root has absolute value qw/2 for a certain
integer w, 0 ≤ w ≤ 2d, called the weight of the characteristic root. Moreover,
by [D] any characteristic root has the same absolute value as any of its
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conjugates over the rational field Q, a fact of capital importance for our
considerations.

Deligne’s theorem implies that if rw(f) and sw(f) denote the number of
characteristic roots αi(f) and βj(f) of weight w then

|Sn(V, f, ψ)| ≤
2d∑
w=0

(rw(f) + sw(f))qnw/2 ;

we always have s2d(f) = 0. The sum Sn(V, 0, ψ) is simply the number of
rational points of V over kn, which is traditionally denoted by Nn(V ). If f
is a constant c then Sn(V, c, ψ) = ψ(c)nNn(V ), therefore then r2d(f) ≥ 1,
and r2d(f) = 1 if in addition V is geometrically irreducible.

Suppose now that V is geometrically irreducible. We have Trkn/ p
(y) = 0

if and only if y = xp − x with x ∈ kn. This implies

Sn(V, f, ψ) = Sn(V, f + hp − h, ψ)

whenever h ∈ k(V ). In particular, if V is geometrically irreducible we have
r2d(f) = 1 if and only if f = hp − h+ c, with c ∈ k and h ∈ k(V ).

We also write %(V ) for the total number of characteristic roots associated
with Nn(V ), i.e. %(V ) = %(V, 0).

The problem of estimating the sums Sn(V, f, ψ) is of considerable im-
portance. The connection between exponential sums and L-series was made
explicit by Hasse [Ha]. Weil [W], by proving the Riemann Hypothesis and the
Artin Conjecture for L-series over a function field of dimension 1 of positive
characteristic, essentially solved the problem of finding optimal estimates
of exponential sums in case dimV = 1, and gave the explicit example of
Kloosterman sums. Lang and Weil [LW] and Nisnevich [N] used a slicing
technique to obtain bounds in higher dimensions, and very general explicit
bounds for dimV = 1 are given in [B1]. Once Deligne’s theorem became
available, the problem was reduced to calculating the numbers rw(f) and
sw(f), with the goal of showing that there are no characteristic roots of large
weight, the usually optimal result being that rw(f) = sw(f) = 0 if w > d.
This would give the bound

Sn(V, f, ψ) = O((qn)d/2)

which one expects on probabilistic grounds.
An upper bound for

∑
(rw(f) + sw(f)) was given in [B2], and in case

dimV = 2 Hooley [H] gave necessary and sufficient conditions for the vanish-
ing of r3(f) and s3(f). It should be stressed that the conditions in Hooley’s
theorem are expressed in simple geometric terms and are readily checked in
the specific situations which may arise in applications.

A finer analysis of characteristic roots in each weight, especially if
dimV > 3, requires much deeper considerations from algebraic geometry.
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This has been explored by Katz and Laumon [K], [KL] using tools from
Fourier transform in l-adic cohomology. In particular, they show that in
suitably generic situations the expected optimal estimates are satisfied.

In another direction, Adolphson and Sperber [AS1] extended the Dwork
theory so as to obtain information about the vanishing of the numbers rw(f)
and sw(f). Their conditions, although somewhat restrictive, are easy to
check and provide us with a useful class of exponential sums for which
optimal bounds are available.

The aim of this paper is to provide a set of necessary and sufficient
conditions, much in the spirit of Hooley’s theorem [H], for the validity of
sharp estimates in case dimV = 3. More generally, we give a set of geometric
conditions which imply that the given exponential sum has no characteristic
roots of weight w ≥ 2d − 2; we expect that it should be relatively easy for
the non-expert to verify them, and therefore we hope that our result will be
of some use in practice.

For a geometrically irreducible variety X let Alb(X) denote its Albanese
variety, as defined in [L]. Note that Alb(X) is a birational invariant of X. Let
us also recall that a quasi-projective variety V in projective space Pn may
be defined set-theoretically by finitely many equations Fi(x) = 0 together
with a finite collection of forms Gj(x) such that for every x ∈ V we have
Gj(x) 6= 0 for some j, which may depend on the point x; we say that
the forms Fi, Gj form a presentation of V . Then a function f on V may
be written as f = Pm(x)/Qm(x), for a suitable finite collection of forms
Pm(x), Qm(x) such that at least one of the denominators Qm is not 0 at
any given point of V ; we say that the forms Pm, Qm form a presentation
of f . Now we can state:

Theorem 1. Let V be a quasi-projective variety over k of dimension
d ≥ 3, let f ∈ k(V ) be a rational function on V defined over k and let ψ be
a non-trivial additive character of k. Suppose that :

(i) V is geometrically irreducible;
(ii) the rational function f is defined everywhere on V and has no poles

on V ;
(iii) every fiber Vλ = f−1(λ) ⊗ K consists of precisely one non-empty

irreducible component of dimension d−1, plus possibly components of lower
dimension, for every λ ∈ K. In particular , the map f : VK → A1

K is onto;
(iv) if V d−1

λ is the unique component of dimension d − 1 of Vλ, then
for all but finitely many λ ∈ K we have Vλ = V d−1

λ and dim Alb(V d−1
λ ) =

dim Alb(V ).

Then for p > D(V, f) we have the bound

|Sn(V, f, ψ)| ≤ %(V, f)(qn)d−3/2,
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where the constants D(V, f) and %(V, f) depend only on the embedding di-
mension of V , the degrees and number of forms appearing in a presentation
of V , and the degrees and number of forms appearing in a presentation of f .

R e m a r k. The theorem is true, but not interesting, if d = 2, because in
that case condition (iv) forces V to be birationally equivalent over K to a
product, a factor of which is A1

K . We also note that in case d = 3 we get

|Sn(V, f, ψ)| ≤ %(V, f)q3n/2,

which is usually sharp, except possibly for the value of %(V, f); this is indeed
the main motivation for this paper.

If we assume p > D(V, f) (possibly after increasing D(V, f) to a new
function with the same general dependence on V and f), then (iii) already
implies that f is a separable morphism and Vλ = V d−1

λ for all but finitely
many λ ∈ K. This can be seen by replacing V by its normalization and
applying Bertini’s theorem to the linear pencil associated with f , which we
may because we suppose that p is sufficiently large; we leave the details to
the reader.

The first part of assumption (iv) implies, in the notation of Lang [L],
Ch. VIII, that the sequence

Vλ
j→ VK

f→ A1
K

with j the inclusion is generically exact, whence the induced map j∗ :
Alb(Aλ)→ Alb(VK) is surjective for all but finitely many λ ∈ K. In partic-
ular, we have dim Alb(Vλ) ≥ dim Alb(V ) for almost all λ’s.

The following special case is worth mentioning.

Corollary. The conclusion of Theorem 1 still holds if in addition to
(i), (ii), (iii) we have

(iv)′ if V ′λ is a desingularization of the projective closure of V d−1
λ we have

H1(V ′λ,OV ′λ) = 0 for all but finitely many λ ∈ K.

P r o o f. In fact, for a non-singular projective variety X over K the vector
space H1(X,OX) is the Zariski tangent space at the origin of the group
scheme Pic0(X), hence the hypothesis implies that Pic0(V ′λ) is a point. By
duality, dim Alb(V ′λ) = 0. Since

dim Alb(V ′λ) = dim Alb(V d−1
λ ) ≥ dim Alb(V )

for almost every λ, we see that condition (iv)′ implies condition (iv) and the
result follows.

We shall also prove that if (i) and (ii) of Theorem 1 hold then conditions
(iii) and (iv) are necessary for the conclusion of the theorem, at least if
we want a result valid for all functions lf, l ∈ K∗. At the end we shall
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treat explicitly some special cases in dimension 3 both by an application of
Theorem 1 and, by comparison, by appealing to the results of Adolphson
and Sperber [AS1].

Acknowledgements. We wish to thank P. Deligne and W. Messing
for several useful conversations and suggestions, and we wish to thank the
referee for pointing out several inaccuracies and suggesting corrections and
improvements. We wish also to point out that any inaccuracy or incorrect
statement in this paper is due solely to the authors.

II. For the proof of Theorem 1 we need some auxiliary results. The first
result, which was conjectured by Lang and Weil [LW] in the non-singular
case, is certainly known to the experts, but we have been unable to locate
a formal proof in the literature.

Proposition. Let X be a geometrically irreducible quasi-projective
variety of dimension d, defined over k. Then H1(Alb(XK),Ql(d))̌ can be
identified with the weight 2d − 1 component in the weight filtration of
H2d−1

c (XK ,Ql), where H∗c denotes cohomology with compact supports.
We also have

Nn(X) = (qn)d − (qn)d−1 Tr(φn|Alb(X)) +O((qn)d−1)

where φ denotes the q-th power Frobenius and Tr is the trace in the en-
domorphism algebra of Alb(X). The constant implied in the O( ) term is
bounded in terms of the embedding dimension of X and the degrees and
number of forms appearing in a presentation of X.

P r o o f. If X ′ is birationally equivalent to X over k then X and X ′ may
be identified in a non-empty Zariski open set, therefore

Nn(X ′) = Nn(X) +O((qn)d−1).

This shows that in the proof of the proposition we may replace X by any
model birationally equivalent to X over k.

We note that the second statement of the proposition is an easy conse-
quence of the first. In fact, the Lefschetz fixed point formula gives

Nn(X) =
2d∑

i=0

(−1)i Tr(φn|Hi
c(XK ,Ql))

and, by Deligne’s theorem [D], the group Hi
c is mixed of weight at most

i and at least 2(i − d) if i ≥ d. Since X is geometrically irreducible the
term with i = 2d contributes (qn)d, the term with i = 2d − 1 contributes
−(qn)d−1 Tr(φn|Alb(X)) + O((qn)d−1), and all other terms contribute
O((qn)d−1) at the most. It remains to prove the uniformity statement about
the O( ) term, but this is an immediate consequence of the fact that this
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term is majorized by %(X)(qn)d−1 and the bounds for %(X) stated in [B2]
(see also Theorem 2 of this paper).

We begin by considering separately the cases d = 1 and d = 2. If d = 1 we
can use normalization and assume that X is non-singular and projective over
k. Then the statement of the proposition is a well-known theorem of Weil
(see e.g. [L], Ch. VI, pp. 163–164). If d = 2, one could proceed in a similar
way, using Abhyankar’s resolution of singularities for an algebraic surface
over a perfect field, and using Deligne’s results [D]. However, the following
argument, indicated to us by Deligne, avoids the use of Abhyankar’s difficult
theorem.

Since the result is birational we may assume that XK is a normal pro-
jective surface defined over K, hence with isolated singularities only. We
may assume, changing projective embedding if necessary, that we have a
nice hyperplane pencil π : XK → P1

K on XK , i.e. such that almost all fibers
Cλ = π−1(λ) are non-singular hyperplane sections of XK . By removing a
finite set of points S on the base and setting U = XK − π−1(S) we obtain
the smooth projective morphism between affine smooth varieties

π : U → P1
K − S.

The Leray spectral sequence for cohomology with compact supports gives
the exact sequence (note that H0

c (P1
K − S,R2π!Ql) vanishes, as one sees by

Poincaré duality and the fact that P1
K − S is affine):

0→ H2
c (P1

K − S,R1π!Ql)→ H3
c (U,Ql)→ H1

c (P1
K − S,R2π!Ql),

which we analyze as follows.
For the last term H1

c (P1
K − S,R2π!Ql) we note that R2π!Ql ∼= Ql(−1)

because every fiber is an irreducible projective curve. Thus we deal with
H1

c (P1
K − S,Ql(−1)) and characteristic roots of Frobenius on this group

have weight at most 2, as one verifies using the exact sequence

. . .→ H0(S,Ql)→ H1
c (PK − S,Ql)→ H1(P1,Ql)→ . . .

and the vanishing of H1(P1
K ,Ql). Thus the weight 3 component in the weight

filtration of H3
c (U,Ql) can be identified with the weight 3 component of the

weight filtration of the group H2
c (P1

K − S,R1π!Ql).
Now we have the following isomorphisms:

H2
c (P1

K − S, (R1π!Ql)̌ )̌ ∼= H0(P1
K − S,R1π!Ql)(1) (by duality),

H0(P1
K − S,R1π!Ql)(1) ∼= H0(P1

K − S,R1π!Ql(1)),

H0(P1
K − S,R1π!Ql(1)) ∼= H1(Cλ,Ql(1))π1(P1

K−S),

H1(Cλ,Ql(1))π1(P1
K−S) ∼= [Tl(Pic0(Cλ))⊗Ql]π1(P1

K−S),

Tl(Pic0(Cλ))⊗Ql ∼= (Tl(Alb(Cλ))⊗Ql)̌ (1) (by duality),

[(Tl(Alb(Cλ))⊗Ql)̌ (1)]π1(P1
K−S) ∼= [(Tl(Alb(Cλ))⊗Ql)π1(P1

K
−S)(−1)]̌ .
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Since the co-invariants of Cλ are also given by Alb(XK)we can replace this
last term by

(Tl(Alb(XK))⊗Ql(−1))̌ ∼= H1(Alb(XK),Ql(1)).

This proves the first statement of the proposition in case d = 2.
If d ≥ 3 we cannot use the preceding argument without modification,

since a normalization of X may be singular in codimension 2 and therefore
a generic hyperplane section may also be singular. However, in this case we
may proceed in an alternative way, by induction on the dimension d.

Without loss of generality we may assume that X is an affine subvariety
of ANk , not contained in any hyperplane and we may also suppose that
the proposition holds for varieties of dimension d − 1. Let Yu be a generic
hyperplane section of X, thus defined over k(u), let ju : Yu → X be the
inclusion and let

(ju)∗ : Alb(Yu)→ Alb(X)
be the corresponding canonical homomorphism induced on the Albanese
varieties. Since d ≥ 3 we may apply once more Chow’s result ([L], Ch. VIII,
Th. 5, p. 210) and conclude this time that (ju)∗ is a purely inseparable
isogeny. The space of hyperplane sections of ANk is identified, via Plücker
coordinates, with U = PNk − point and from the preceding result we obtain
that there is a non-empty Zariski open set U0 ⊂ U such that for u ∈ U0(K)
the variety Yu is absolutely irreducible and the map (ju)∗ : Alb(Yu) →
Alb(X) is a purely inseparable isogeny. In particular, if in addition u ∈
U0(kn) we see that

Tr(φn|Alb(Yu)) = Tr(φn|Alb(X)).

Now we compute the number

Nn =
∑

u∈U(kn)

Nn(Yu)

of points lying in all hyperplanes Yu in two different ways. The first method
is as follows.

Since Yu(kn) ⊂ X(kn) we may simply count points of X(kn), attaching
to them a multiplicity equal to the number of hyperplanes over kn through
a given point. The number of such hyperplanes is Nn(PN−1

k ), therefore

Nn = Nn(PN−1
k )Nn(X) = (qn)N−1Nn(X) +O((qn)N+d−2).

The second method computes Nn(Yu) directly. We have
∑

u∈U(kn)

Nn(Yu) =
∑

u∈U0(kn)

Nn(Yu) +
∑

u 6∈U0(kn)

Nn(Yu).

Since the complement of U0 in U has dimension at most N − 1, the contri-
bution of the second sum is clearly O((qn)N+d−2). For the first sum, we use
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the induction hypothesis and the preceding evaluation of Tr(φn|Alb(Yu)) to
obtain

Nn(Yu) = (qn)d−1 − (qn)d−2 Tr(φn|Alb(X)) +O((qn)d−2)

for u ∈ U0(kn). Note again that the constant involved in the O( ) term can
be estimated independently of u, for example by appealing to the bounds in
[B2] for the quantity %(Yu). It follows that

∑

u∈U0(kn)

Nn(Yu)

= Nn(U0)((qn)d−1 − (qn)d−2 Tr(φn|Alb(X))) +O((qn)N+d−2).

We have Nn(U0) = Nn(PNk ) +O((qn)N−1) and we conclude easily

Nn = (qn)N+d−1 − (qn)N+d−2 Tr(φn|Alb(X)) +O((qn)N+d−2) ;

the induction step, and the proof of the proposition, follows from comparing
the two estimates we have obtained for Nn.

Following Hooley, we define

Sn =
∑

l∈k∗n
|Sn(V, lf, ψ)|2

to be the second moment of the exponential sum over l ∈ k∗n. Let Vλ be the
slice of V by f , namely Vλ = f−1(λ). It is clear that Vλ is defined over the
field k(λ), and that

Sn(V, lf, ψ) =
∑

λ∈kn
ψn(lλ)Nn(Vλ).

Lemma 1. Let N∗n = q−nNn(V ). Then

Sn = qn
∑

λ∈kn
(Nn(Vλ)−N∗n)2.

P r o o f. Immediate from the preceding formula for Sn(V, lf, ψ) and or-
thogonality of characters.

Now we proceed to obtain an upper bound for the second moment Sn.
Let W = (f × f)−1(∆) be the pull-back of the diagonal of A1

k × A1
k in the

product V × V , i.e. the subvariety of V × V defined by f(x) = f(y) with
(x, y) ∈ V × V .

Lemma 2. With the hypotheses of Theorem 1 we have

Sn ≤ (%(W ) + %(V )2)(qn)2d−2.

P r o o f. We begin by proving a bound Sn = O((qn)2d−2), for some un-
specified constant involved in the O( ) symbol.
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By the preceding proposition, since V d−1
λ and V are geometrically irre-

ducible we have, for λ ∈ kn,

Nn(Vλ) = (qn)d−1 − (qn)d−2 Tr(φn|Alb(V d−1
λ )) +O((qn)d−2),

Nn(V ) = (qn)d − (qn)d−1 Tr(φn|Alb(V )) +O((qn)d−1).

Note that since %(X) admits an upper bound which depends only on the
degree, number of defining equations for X, and number of variables involved
(see for instance [B2]) the constant implicit in the remainder term of the
estimate for Nn(Vλ) is bounded uniformly with respect to λ.

We use here Chow’s theory of the K/k-image, as in [L], Ch. VIII. The
generically exact sequence of varieties Vλ → V → A1

k yields a surjection

Alb(V d−1
λ )→ Alb(V )→ 0

for all but finitely many λ ∈ K. Now the hypothesis dim Alb(V d−1
λ ) =

dim Alb(V ) shows that this homomorphism is an isogeny and therefore the
traces of Frobenius on the associated abelian varieties are the same. This
proves

Tr(φn|Alb(V d−1
λ )) = Tr(φn|Alb(V ))

for all but finitely many λ ∈ K. By our evaluation of Nn(Vλ) and Nn(V ) we
deduce that

Nn(Vλ)−N∗n = O((qn)d−2)

for almost every λ, while

Nn(Vλ)−N∗n = O((qn)d−3/2)

in any case. Now Lemma 1 and a simple calculation show that Sn =
O((qn)2d−2), as asserted.

To complete the proof of Lemma 2 we note that by Lemma 1,

Sn = qn
∑

λ

Nn(Vλ)2 − 2Nn(V )
∑

λ

Nn(Vλ) +Nn(V )2

= qn
∑

λ

Nn(Vλ)2 −Nn(V )2 = qnNn(W )−Nn(V )2.

Therefore Sn is a sum of characteristic roots and the number of character-
istic roots of Sn does not exceed %(W ) + %(V )2. By Theorem 3 of [B2], we
deduce from the bound Sn = O((qn)2d−2) that the characteristic roots of S
have weight at most 2d − 2. This result and the bound for the number of
characteristic roots of Sn prove Lemma 2.

Our next result is a lower bound for Sn. The idea of proof is due to
Hooley.
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Lemma 3. For any ε > 0 we have the lower bound

Sn ≥ (p− 1)(r2d−2(f) + s2d−2(f)− ε)(qn)2d−2

for infinitely many n’s.

P r o o f. We have

Sn ≥
∑

l∈k∗n
|Sn(V, lf, ψ)|2 ≥

∑

l∈ ∗p
|Sn(V, lf, ψ)|2

=
∑

l∈ ∗p

∣∣∣
∑

i

αi(lf)n −
∑

j

βj(lf)n
∣∣∣
2
.

The sums Sn(V, lf, ψ) for l ∈ F∗p are conjugates of Sn(V, f, ψ), as one sees
expressing them as sums of pth roots of unity and noting that for l ∈ F∗p we
have ψn(lf) = ψn(f)l. Thus by Deligne’s theorem on Galois invariance of
weights we see that rw(lf) = rw(f) and sw(lf) = sw(f) for l ∈ F∗p. Lemma 3
now follows from an easy application of Lemma 2 of [BS].

P r o o f o f T h e o r e m 1. We combine the upper and lower bounds of
Lemmas 2 and 3 and obtain

(p− 1)(r2d−2(f) + s2d−2(f)− ε)(qn)2d−2 ≤ (%(W ) + %(V )2)(qn)2d−2

for infinitely many n’s. This shows that if r2d−2(f) + s2d−2(f) ≥ 1 then we
must have p− 1 ≤ %(W ) + %(V )2. If we define D(V, f) = 1 + %(W ) + %(V )2

we obtain the conclusion of Theorem 1.

R e m a r k. The conditions of Theorem 1 are, in a certain sense, neces-
sary and sufficient. In fact, it is clear from our argument that if Sn is not
O((qn)2d−2) then it must have characteristic roots of weight at least 4d− 3,
hence Sn > (1 − ε)(qn)2d−3/2 for infinitely many n’s and therefore we can-
not have Sn(V, lf, ψ) = O((qn)d−3/2) for every l ∈ k∗n. Now if condition
(iii) is not satisfied we have Nn(Vλ) > (2 − ε)(qn)d−1 for infinitely many
n’s whenever Vλ ⊗ K has 2 or more components of dimension d − 1, and
this implies Sn > (1− ε)(qn)2d−1 infinitely often; this shows that condition
(iii) is necessary. In a similar way we handle condition (iv). The surjection
Alb(V d−1

λ )→ Alb(V )→ 0 shows that

Tr(φn|Alb(V d−1
λ )) = Tr(φn|Alb(V )) +

∑

i

(αi(λ))n/n(λ)

where n(λ) = [k(λ) : k] and where the αi(λ) are characteristic roots of
weight 1 with respect to φn(λ). It follows that

Sn ≥ (qn)2d−3
∑

λ∈k∗n

(∑
αi(λ)n/n(λ)

)2
+O((qn)2d−2).
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If we consider only n’s with kn0 ⊂ kn for fixed large n0, and consider the
contribution to the sum of λ ∈ k∗n0

, we see by applying [BS], Lemma 2, that

Sn > (qn0 −O(1))(qn)2d−2

for infinitely many n’s. Since n0 can be taken arbitrarily large, we have
shown that the negation of (iv) implies that Sn has characteristic roots of
weight at least 4d− 3, and in particular there are infinitely many l 6= 0 for
which the associated sum Sn(V, lf, ψ) has characteristic roots of weight at
least 2d− 2 with respect to φn(λ).

R e m a r k. The following alternative approach has been suggested to
us by Deligne. It is in fact a special case of the considerations in Katz’s
“Théorème Clef” of [K], p. 90, especially Cor. 4, p. 95.

Let Lψ0◦f be the local system of rank 1 on VK determined by the étale
cover T p − T = f(x) of VK and by the character ψ0 and let Lψ0 be the
corresponding system on the affine line A1

K and the cover T p − T = x. We
have the Lefschetz trace formula

S1(VK , f, ψ) =
2d∑

i=0

(−1)i Tr(φ|Hi
c(VK ,Lψ0◦f ))

and our aim is to show that there is no contribution of weight w > 2d −
3 to the traces if conditions (i)–(iv) of Theorem 1 are satisfied and the
characteristic p is sufficiently large.

In what follows, W will be an open set of A1
K over which all the Rqf!Ql

are lisse.
Consider the morphism f : VK → A1

K determined by f . We have a Leray
spectral sequence with Ep,q2 term (no reference to the characteristic p, here):

Ep,q2 = Hp
c (A1

K , R
qf!Ql ⊗ Lψ0)

converging to H∗c (VK ,Lψ0◦f ), therefore

S1(V, f, ψ) =
∑

(−1)p+q Tr(φ|Ep,q2 ).

To show that Hp+q
c (VK ,Lψ0◦f ) is mixed of weight at most 2d − 3, it

suffices to show that all Ep,q2 terms are mixed of weight at most 2d − 3.
Since f is surjective, with all fibres of dimension d− 1, we see that Rqf!Ql
and hence Rqf!Ql⊗Lψ0 vanishes for q > 2d−2. Moreover, Deligne’s theorem
gives that Ep,q2 is a priori mixed of weight at most p+q. So the only possible
terms of weight greater than 2d− 3 are:

• Ep,2d−2
2 with p = 0, 1, 2;

• Ep,2d−3
2 with p = 1, 2;

• Ep,2d−4
2 with p = 2.
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We first consider the terms with p = 2. For these, the birational invari-
ance of H2

c on curves shows that

E2,q
2 = H2

c (A1
K , R

qf!Ql ⊗ Lψ0) = H2
c (W,Rqf!Ql ⊗ Lψ0).

Because we are in large characteristic, the Hooley argument of Galois con-
jugacy, or [K], “Théorème Clef”, p. 90, shows that E2,q

2 = 0 for all q. Note,
however, that the application of Hooley’s argument in this context requires
char(K) − 1 larger than the dimension of the groups H0(W,Rqf!Ql) for
q = 2d−4, 2d−3, and we do not know how to control in general the dimen-
sion of these groups; this creates problems with the determination of D(V, f)
in our Theorem 1. On the other hand, Katz’s Theorem applies effectively
to the case in which V is obtained by reduction modulo p of a fixed variety
defined over the ring of integers of a number field, and this is what matters
in applications.

We next consider the terms with q = 2d−2. By hypothesis (iii), the sheaf
R2d−2f!Ql is geometrically constant, and noting that H∗c (A1

K ,Lψ0) = 0, we
get E∗,2d−2

2 = 0.
So it remains only to show that E1,2d−3

2 = H1
c (A1

K , R
2d−3f!Ql ⊗ Lψ0) is

mixed of weight at most 2d−3; this group is a quotient of H1
c (W,R2d−3f!Ql⊗

Lψ0). Now, over W , the sheaf R2d−3f!Ql is lisse and, being mixed of weight
at most 2d− 3, sits in a short exact sequence of lisse sheaves

0→ Filwt≤2d−4 → R2d−3f!Ql → Grwt=2d−3 → 0;

in fact, here Grwt=2d−3 is the component of weight 2d− 3 in the weight fil-
tration of R2d−3f!Ql. By hypothesis (i), the lisse sheaf Grwt=2d−3 is geomet-
rically constant. By Deligne’s theorem, we know that H1

c (W,Filwt≤2d−4 ⊗
Lψ0) is mixed of weight at most 2d − 3, so we are reduced to showing
that H1

c (W,Grwt=2d−3 ⊗ Lψ0) is mixed of weight at most 2d − 3. Because
Grwt=2d−3 is geometrically constant, it extends uniquely to a geometrically
constant sheaf on A1

K , still denoted by Grwt=2d−3. We have a piece of exact
sequence

⊕

x∈A1
K
−W

(Grwt=2d−3 ⊗ Lψ0)x → H1
c (W,Grwt=2d−3 ⊗ Lψ0)

→ H1
c (A1

K , Grwt=2d−3 ⊗ Lψ0)→ 0.

The stalks are pure of weight 2d− 3, while H1
c (A1

K , Grwt=2d−3 ⊗ Lψ0) = 0,
because Grwt=2d−3 is geometrically constant and H1

c (A1
K ,Lψ0) = 0. There-

fore H1
c (W,Grwt=2d−3 ⊗ Lψ0) is pure of weight 2d− 3, as we wanted.

III. In this section we obtain explicit bounds for D(V, f) and %(V, f)
which generalize the results of [B2] to quasi-projective varieties. The method
of proof is already outlined in [B2].
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Let V be a quasi-projective variety in PN defined over k. By a
set-theoretic presentation of V we mean the following data: a collection
{F1(x), . . . , Fl(x); G1(x), . . . , Gm(x)} of forms defined over k such that

V (K) = {x ∈ PN (K) | F1(x) = . . . = Fl(x) = 0;

Gj(x) 6= 0 for some j, j = 1, . . . ,m}.
The degree of the presentation is the maximum of the degrees of the forms
Fi, Gj and its length is l + m, the number of forms appearing in the pre-
sentation.

Let f be a rational function on V , defined over k. By a presentation of
f we mean the following data: a collection {Pi(x)/Qi(x) | i = 1, . . . , t} of
rational functions in k(PN ) such that for every x ∈ V (K) we have Qi(x) 6= 0
for some i and f(x) = Pi(x)/Qi(x) whenever Qi(x) 6= 0. The degree of the
presentation is the maximum degree of the forms Pi, Qi and its length is t.

The preceding notion of presentation can be generalized to subvarieties
and rational functions of products of projective spaces by replacing the
homogeneous coordinates x by multihomogeneous coordinates (x,x′, . . .).

Theorem 2. Let V and f admit presentations over k of degree at most
D and length at most L, L′ respectively. Then

%(V, f) ≤ (N + 1 + L)(4D + 15)N+1+L+2L′ .

More generally , if the presentations of V and f are given as subvarieties
and functions of a product of projective spaces PN1 × . . . × PNk , the same
estimate for %(V, f) holds provided we replace N+1+L by N1+. . .+Nk+k+L
everywhere.

P r o o f. For notational simplicity we treat only the case V ⊂ PN , the
general case being essentially the same. Suppose first that f is not a constant,
so that t > 0 and no Qi is constant. For subsets I ⊂ {1, . . . , t} and J ⊂
{1, . . . ,m} with I 6= ∅ we fix an element µ ∈ I and define

gIJ =
l∑

i=1

yiFi(x) +
∑

j∈J
zjGj(x) + wµPµ(x) +

∑

i∈I
ui(1− wiQi(x)).

In what follows we assume m ≥ 1, the case m = 0 being simpler.
We begin by evaluating the exponential sum Sn(AN+1+l+|J|+2|I|, gIJ , ψ).

We perform the summation over y1, . . . , yl, zj for j ∈ J and ui for i ∈ I.
Since these variables appear linearly, we find

Sn(AN+1+l+|J|+2|I|, gIJ , ψ) = (qn)l+|I|+|J|
∑′

ψn(wµPµ(x))

where the sum runs over wi ∈ kn, i ∈ I and x ∈ AN+1(kn) such that
Fi(x) = 0 for i = 1, . . . , l, Gj(x) = 0 for j ∈ J and moreover 1−wiQi(x) = 0
for i ∈ I. The condition 1 − wiQi(x) = 0 implies Qi(x) 6= 0, hence x 6= 0,
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wi = 1/Qi(x) and in particular wµPµ(x) = Pµ(x)/Qµ(x) = f(x). Now a
point of V (kn) has exactly qn − 1 affine representatives, thus we obtain

∑′
ψn(wµPµ(x)) = (qn − 1)Sn(VIJ , f, ψ)

where VIJ is the quasi-projective variety determined by Fi(x) = 0 for i =
1, . . . , l, Gj(x) = 0 for j ∈ J and Qi(x) 6= 0 for i ∈ I. We have shown

Sn(AN+1+l+|J|+2|I|, gIJ , ψ) = (qn)l+|I|+|J|(qn − 1)Sn(VIJ , f, ψ).

Let VI be the quasi-projective subvariety of PN determined by Fi(x) = 0
for i = 1, . . . , l, Gj(x) 6= 0 for some j, j = 1, . . . ,m and Qi(x) 6= 0 for i ∈ I.
Then, with M = {1, 2, . . . ,m}, we have

Sn(VI , f, ψ) = Sn(VI∅, f, ψ)− Sn(VIM , f, ψ).

An application of the inclusion-exclusion principle gives

Sn(V, f, ψ) =
∑

I 6=∅
(−1)|I|−1Sn(VI , f, ψ),

therefore

Sn(V, f, ψ) = (qn − 1)−1
∑

I 6=∅
(−1)|I|−1(qn)−l−|I|

× (Sn(AN+1+l+2|I|, gI∅, ψ)− (qn)−mSn(AN+1+l+m+2|I|, gIM , ψ)).

The characteristic roots of the sum S′ appearing in the right-hand side have
weight at most 2N + 2 + 2m, hence

Sn(V, f, ψ) = (q−n + q−2n + . . .+ q−(N+1+m)n)S′ +O(q−n).

On the other hand, the characteristic roots appearing in Sn(V, f, ψ) have
weight at least 0, and it follows that the error term O(q−n) is inconsequential
for the purpose of counting the number of characteristic roots in the left-
hand side of this equation. It follows that

%(V, f) ≤ (N + 1 +m)
∑

I 6=∅
(%(AN+1+l+2|I|, gI∅) + %(AN+1+l+m+2|I|, gIM )),

and Theorem 2 follows easily from [B2], Theorem 1.
Rather similar but simpler considerations hold if f is constant because in

that case we may assume that t = 0, completing the proof of Theorem 2.

Let {Fi, i = 1, . . . , l; Gj , j = 1, . . . ,m} be a presentation for V and let
{Pi/Qi | i = 1, . . . , t} be a presentation of f . Let us abbreviate F, . . . ,Q
for the vectors with components Fi, . . . , Qi. Then a presentation of W in
Pn × Pn is
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{F(x),F(y), Pi(x)Qj(y)− Pj(y)Qi(x),

i, j = 1, . . . , t; G(x)⊗Q(x),G(y)⊗Q(y)}.
An easy application of Theorem 2 now gives in every case

Theorem 3. We have

D(V, f) ≤ 4(N + 1 +mt)(4D + 15)2N+2+2l+t2+2mt,

%(V, f) ≤ (N + 1 +m)(4D + 15)N+1+l+m+2t

with D = max deg(F,G,P,Q).

IV. In this section we treat two examples of exponential sums using
Theorem 1. Our first example generalizes a sum which occurs already in the
work of Iwaniec [I].

Let Sn =
∑
ψn(f(x, y, z)) where

f(x, y, z) = a(x) + y +
b(x)
y

+ z +
c(x)
z
,

where a(x), b(x), c(x) are rational functions in k(x) and where the sum runs
over the kn-rational points of the variety U ×G2

m with U = A1− (a(x))∞−
(b(x))∞ − (c(x))∞.

We want to apply Theorem 1 to this sum. Conditions (i) and (ii) are
trivially verified. The following lemma deals with condition (iii).

Lemma 4. Consider the fiber Vλ = f−1(λ) ⊗ K of the map f over the
point λ. Then if one of

(i) b(x) is identically 0,
(ii) c(x) is identically 0,

(iii) b(x)− c(x) and a(x)− λ are identically 0,

holds, the fiber is reducible. In all other cases, Vλ is irreducible.

P r o o f. The surface Vλ is defined by the equation

F (x, y, z) = (y + z)yz + (a(x)− λ)yz + c(x)y + b(x)z = 0.

If Vλ is reducible then F (x, y, z), considered as an element of the polynomial
ring k(x)[y, z], must have at least one linear factor over an algebraic closure
K of k(x). Clearly the only possibilities for such a factor, up to a constant
multiplier, are y + z − α, y − α, z − α for some α ∈ K. If the factor is for
example z − α then F (x, y, α) = 0 and we obtain

(y + α)yα+ (a(x)− λ)yα+ c(x)y + b(x)α = 0

identically as a polynomial in K[y]. This shows that α = 0 and c(x) = 0
identically. A similar analysis for the two remaining possibilities yields the
statement of Lemma 4.
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The next lemma deals with condition (iv).

Lemma 5. If at least one of a(x), b(x), c(x) is not constant and
b(x), c(x) are not identically 0 then for all but finitely many λ’s we have
dim Alb(Vλ) = 0.

P r o o f. Let πλ : Vλ → P1
K be the projection on the x-line. The fiber

Ex = π−1
λ (x) is the plane cubic (in affine coordinates y, z)

(y + z)yz + (a(x)− λ)yz + c(x)y + b(x)z = 0.

We put this cubic into Weierstrass form (assuming char(k) 6= 2, 3) as follows.
We abbreviate a = a(x), b = b(x), c = c(x) and perform successively the
birational transformations:

• z = ry, obtaining

(1 + r)ry2 + (a− λ)ry + br + c = 0;

• (1 + r)ry = s, obtaining

s2 + (a− λ)rs+ r(1 + r)(br + c) = 0 ;

• s+ 1
2 (a− λ)r = t, 2bt = v, −br − 1

12 ((a− λ)2 − 4b− 4c) = u, getting
the Weierstrass equation

v2 = 4u3 − g2u− g3

with invariants

g2 =
1
12
A2 − 4bc, g3 = − 8

123A
3 +

1
3
Abc

with
A = (a− λ)2 − 4b− 4c.

The discriminant and absolute invariant are

∆ = g3
2 − 27g2

3 = (bc)2(A2 − 64bc),

J = 123g3
2/∆ = (A2 − 48bc)3(bc)−2(A2 − 64bc)−1.

We claim that for generic λ the absolute invariant J is a non-constant ra-
tional function of x, provided neither b(x) nor c(x) is identically 0 and at
least one of a(x), b(x), c(x) is non-constant. In fact, suppose J = J(λ) is
constant, hence J is a rational function of λ only. This gives

(A2 − 48bc)3 − J(λ)(bc)2(A2 − 64bc) = 0.

We deduce that J(λ) has a pole at λ = ∞ of order 8, and looking at the
Laurent expansion we get J(λ) = (bc)−2λ8 + . . . This implies that bc is
constant, and the last displayed equation shows that A = (a− λ)2− 4b− 4c
is algebraic over K(λ). Now this implies that a and b + c are constants.
Since bc was a constant, we deduce that a, b, c are all constants, proving
our claim.



Estimation of certain exponential sums 345

The generically exact sequence of varieties Ex → Vλ → P1
K yields a sur-

jection Alb(Ex) → Alb(Vλ) → 0, hence the K(x, λ)/K(λ)-image A of the
family Ex has dimension not less than dim Alb(Vλ). If we had dim Alb(Vλ) =
1 then the canonical homomorphism Alb(Ex)→ A would be a purely insep-
arable isogeny, because the kernel of the K/k-image is connected ([L], Ch.
VIII, Prop. 3, p. 199). From this we deduce that the J invariant of the fam-
ily Ex is constant, which we have shown is not the case for generic λ. Thus
dim Alb(Vλ) = 0 for almost every λ, completing the proof of our lemma.

By Lemma 4, Lemma 5 and Theorem 1 we obtain

Theorem 4. Assume that at least one of a(x), b(x), c(x) is non-constant ,
that neither b(x) nor c(x) is identically 0, and that if a(x) is constant then
b(x) is not identically equal to c(x). There are constants D and % depending
only on the degrees of a(x), b(x), c(x) such that if p > D we have

|Sn(A1 ×G2
m, f, ψ)| ≤ %q3n/2.

Our second example is the sum Sn(A3, f3, ψ) where f3(x, y, z) is a cubic
polynomial in three variables. We decompose f3 as f3 = C+Q+L+c where
C is homogeneous cubic, Q is homogeneous quadratic, L is linear and c is
constant. If the projective cubic curve C = 0 is non-singular then a special
case of a result of Deligne [D] gives the optimal bound

|Sn(A3, f3, ψ)| ≤ 8q3n/2 ;

in fact, Deligne’s general theorem is that if fr is a polynomial of degree
d in N variables and if the homogeneous part of degree d of fr defines a
non-singular projective variety of dimension N − 2, then the characteristic
roots of the sum Sn(AN , fr, ψ) have weight N , and

|Sn(AN , fr, ψ)| ≤ (r − 1)N (qn)N/2.

Theorem 5. Suppose that the cubic polynomial f3 − λ is irreducible in
K(x, y, z) for every λ ∈ K, and suppose that the projective plane curve C = 0
does not consist of three lines through a point. Then there are constants D
and % such that if p > D we have

|Sn(A3, f3, ψ)| ≤ %q3n/2.

P r o o f. Conditions (i) and (ii) of Theorem 1 are trivially verified, and
condition (iii) is in the hypothesis of Theorem 5; we may note, however, that
if the cubic curve C = 0 is geometrically irreducible then f3−λ is absolutely
irreducible for every λ. For condition (iv), we need verify that if Vλ is the
cubic surface f3(x, y, z)− λ = 0 then Alb(Vλ) is trivial. But a cubic surface
over an algebraically closed field which is not a cone over a non-singular
cubic plane curve is birationally equivalent to a projective plane, thus the
only possibility is that the cubic surface Vλ has a triple point for every λ,
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i.e. it is a cone. In fact, if a cubic surface has a double point, projection from
this point establishes a birational map with the projective plane, while if it
is non-singular then it is well-known that it is rational. For a proof of this
classical result, see for example [R], (7.4), Cor. (b).

Now suppose that the characteristic p is p > D. We claim that this triple
point cannot be a movable singularity and therefore lies in the base set of
the pencil, that is the linear section at infinity. This would mean that the
projective curve C = 0 has a triple point, and since C has degree 3 we would
deduce that it consists of three lines through a point, which was excluded
from our considerations.

In order to complete the proof of the theorem we need to prove our
statement that a triple point for Vλ cannot be an isolated movable singular-
ity. In characteristic 0, this follows from Bertini’s theorem, but in non-zero
characteristic we need to be a little careful because Bertini’s theorem does
not hold anymore in this generality.

Suppose that x(λ) = (x(λ), y(λ), z(λ)) is an isolated singularity of Vλ.
Then we have

f3 − λ = 0,
∂f3

∂x
= 0,

∂f3

∂y
= 0,

∂f3

∂z
= 0

and therefore if p > D we see that K(λ,x(λ)) is a separable finite extension
of K(λ). Once this separability condition is verified, the proof of Bertini’s
theorem in characteristic 0 carries through (for convenience of the reader,
we sketch the argument: suppose f + λg = 0 is our pencil with a singular
point x(λ), and let τ be a primitive element of K(λ,x(λ)) over K(λ) such
that λ is separable over K(τ) (note that either τ or τ ′ = τ −λ will have this
property); differentiating f +λg with respect to τ we obtain dλ

dτ g(x(λ)) = 0,
and since K(τ) is separable over K(λ) we see that dλ/dτ is not identically
0, thus g(x(λ)) = 0 and f(x(λ)) = 0, as was to be shown).

The following generalization to polynomials of higher degree appears to
be new.

Theorem 6. Let fr(x, y, z) be a polynomial of degree r with coefficients
in k, and let Fr(x, y, z) be the homogeneous part of degree r of fr. Suppose
that the projective plane curve of degree r defined by Fr(x, y, z) = 0 is ge-
ometrically irreducible and that its singularities are ordinary nodes. Then
there are constants Dr and %r depending only on r such that if p > Dr we
have

|Sn(A3, fr, ψ)| ≤ %rq3n/2.

P r o o f. Conditions (i), (ii) of Theorem 1 are trivially verified. The va-
lidity of condition (iii) is, as observed before, an immediate consequence of
the absolute irreducibility of Fr. Let Xλ be the projective surface in P3

K
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defined in the affine chart A3
K by the equation fr(x, y, z) − λ = 0 and in

projective coordinates by the homogeneous equation F (x, y, z, w)−λwr = 0,
with F (x, y, z, 0) = Fr(x, y, z).

Since we assume that p > Dr the same argument as in the proof of
Theorem 5 shows that we may apply Bertini’s theorem to deduce that a
general member of the pencil of surfaces Xλ has singularities only on the
base locus of the pencil, i.e. the projective curve defined by Fr(x, y, z) = 0
and w = 0. By our assumption, the only singularities of this curve are
ordinary nodes with distinct tangents. Let (1, 0, 0, 0) be a singularity of Xλ

for a general λ ∈ K, let A be the corresponding local ring and let Â be
the completion of A with respect to its maximal ideal. In affine coordinates
(y, z, w) near (0, 0, 0) we see that if the characteristic is not 2 we have

Â ∼= K[[y, z, w]]/(g)

where g has the form

g = y2 + z2 + wh− λwr
with h in the maximal ideal of Â. For some integer a ≥ 1 we write wh =
ywah1 + zwah2 +w2u(w) with u(w) ∈ K[[w]], and use the invertible change
of variables y′ = y − 1

2w
ah1, z′ = z − 1

2w
ah2, to obtain

g = (y′)2 + (z′)2 + w2ah′ + w2u(w)− λwr
with h′ = − 1

4 (h2
1 +h2

2). By iterating this process, we obtain the normal form

g = y2 + z2 + wbu(w)− λwr
with u(w) ∈ K[[w]], u(0) 6= 0 and b ≥ 2. Now suppose p > r. We can
change the w variable by means of w′ = w(u(w) − λwr−b)1/b if b < r, and
by w′ = w(−λ + u(w)wb−r)1/r if b ≥ r, and get the standard normal form
for the complete local ring

Â ∼= K[[y, z, w]]/(y2 + z2 + wq)

for some integer q with 2 ≤ q ≤ r < p.
It is well-known that this local ring is that of a rational normal double

point, and we deduce that Xλ is a projective surface in P3
K , of degree r, with

isolated singular points having for minimal resolution certain configurations
of rational curves (see Artin [Ar] for more details).

We claim that any projective normal surface X in P3
K with isolated

singular points which are resolved into configurations of rational curves has
trivial Albanese variety.

Let π : X ′ → X be a minimal desingularization of X. We want to prove
that H1(X ′,Ql) vanishes, and for this we use the exact sequence

0→ H1(X,π∗Ql)→ H1(X ′,Ql)→ H0(X,R1π∗Ql)
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which arises from the Leray spectral sequence of the map π : X ′ → X. Since
X is normal we have π∗Ql = Ql on X, and H1(X,Ql) = 0 because X is an
hypersurface in P3

K . This can be verified using the cohomology sequence

. . .→ H1(P3
K ,Ql)→ H1(XK ,Ql)→ H2

c (P3
K −X,Ql)→ . . . ,

noting that H1(P3
K ,Ql) = 0, also dimH2

c (P3
K−X,Ql) = dimH4(P3

K−X,Ql)
by Poincaré duality, and H4(P3

K −X,Ql) = 0 because P3
K −X is an affine

variety. It follows that

0→ H1(X ′,Ql)→ H0(X,R1π∗Ql)

is exact. Finally, we note that R1π∗Ql is of weight 0. In fact, at a simple
point x of X, (R1π∗Ql)x = 0 because π is an isomorphism there, while
at a singular point ξ, we have (R1π∗Ql)ξ ∼= H1(π−1(ξ),Ql), which is of
weight 0 because all components of π−1(ξ) are rational curves. This shows
that H1(X ′,Ql) is of weight 0. On the other hand, X ′ is a non-singular
projective variety, therefore H1(X ′,Ql) is pure of weight 1; this shows that
H1(X ′,Ql) = 0.

Since H1(X ′,Ql) vanishes and X ′ is non-singular we conclude that
Tl(Pic0(X ′)) = 0 and by duality Alb(X ′) is trivial. Since the Albanese vari-
ety is a birational invariant, our assertion follows.

This verifies condition (iv) of Theorem 1, completing the proof of The-
orem 6.

V. In this section, we apply the method of Adolphson–Sperber [AS1] to
the examples discussed in the previous section. We consider first the case of
a cubic polynomial in three variables

f(x, y, z) =
∑

aix
i1yi2zi3 ∈ k[x, y, z].

Let f(x, y, z) = C +Q+L+ c be the decomposition of f into homogeneous
components. We analyze here rather completely the case in which the cubic
curve at infinity C(x, y, z) = 0 consists of three lines rational over k, thus
supplementing the result of Theorem 5, and in fact describing the exact
distribution of weights in all cases.

Suppose that C(x, y, z) = 0 consists of three lines rational over k. Then
a linear change of coordinates allows us to reduce to four cases:

I: C(x, y, z) = ax3;
II: C(x, y, z) = x2y;

III: C(x, y, z) = xyz;
IV: C(x, y, z) = axy(x+ y).

We recall that supp(f) = {i ∈ Z3 | ai 6= 0}, and

∆∞(f) = convex closure in R3 of supp(f) ∪ {0}.
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If σ ⊆ R3, we write f (σ) =
∑
i∈σ∩Z3 aix

i1yi2zi3 . We also say that f is
non-degenerate with respect to ∆∞(f) if ∂f (σ)/∂x, ∂f (σ)/∂y, ∂f (σ)/∂z have
no common zero in (K∗)3 for every closed face σ of ∆∞(f) not passing
through 0. Finally, f is convenient if the intersection of ∆∞(f) with each
coordinate axis contains but is not equal to the origin.

In Theorem 5.17 of [AS1], a very precise result is given for sums on
An which are convenient and non-degenerate. The results apply when the
characteristic p of k is greater than S(∆∞(f)), an effectively computable
constant depending on ∆∞(f); however, using the results of [DL1] this re-
striction on p is removed. In our application to cubic three-variable sums
when f is non-degenerate, but no longer convenient, we use the toric de-
composition of A3:

Sm(A3, f, ψ) =
∑

A⊆S
Sm(G|S−A|m , fA, ψ),

where S = {x, y, z} and fA is the polynomial in the variables S−A obtained
by setting variables in A to 0. This reduces our sum to sums on tori Gim with
i ≤ 3; these can be further analyzed in terms of weights using the results
of [AS2], [AS3], [DL2]; in the end we have a complete description of the
degree and the weights of the associated L-function L(A3, f, ψ, T ) when f
is a non-degenerate cubic polynomial in three variables; we shall abbreviate
L(f, T ) for L(A3, f, ψ, T ). There remains then the problem of degenerate
sums. In the four cases considered, these degenerate sums may be reduced
to non-degenerate ones by rather simple changes of variables.

Let G be the group of isomorphisms of A3 defined over k. Let g ∈ G and
denote by fg the image of f under g. The group G partitions k[x, y, z] into
equivalence classes. Note

L(A3, f, ψ, T ) = L(A3, fg, ψ, T )

for any g ∈ G. If [f ] is the class of f , we define

dim[f ] = min
g∈G

dim∆∞(fg),

and say [f ] has a simple representative if there exists g ∈ G such that fg is
of type

fg(x, y, z) = h(x, y) + az

with a ∈ k∗, h(x, y) ∈ k[x, y]. Clearly if [f ] has a simple representative, then
L(f, T ) = 1.

Theorem 7. Assume char(k) 6= 2, 3. Let f = C +Q+ L+ c ∈ k[x, y, z]
be of degree 3 and suppose that the projective plane curve C(x, y, z) = 0
defines three lines rational over k. Then L(f, T ) = 1 if and only if f has a
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simple representative. If L(f, T ) has a characteristic root with weight > 3,
then dim[f ] < 3.

P r o o f. The proof proceeds by a case-by-case analysis. We write

f(x, y, z) = C(x, y, z) +Ax2 +Bxy + Cy2 +Dxz + Ez2 + Fyz

+Gx+Hy + Jz + c.

C a s e I: a triple line. After a linear transformation, C(x, y, z) has the
normal form C(x, y, z) = ax3.

(i) Consider first the subcase in which F 2− 4EC 6= 0. If EC 6= 0 then f
is non-degenerate and convenient and L(f, T ) is a polynomial of degree 2,
pure of weight 3 [AS1], [DL1]. If instead EC = 0 then f is linear in either
y or z and since then F 6= 0 we can sum over that variable first. Again,
L(f, T ) is a polynomial of degree 2, pure of weight 3.

(ii) Suppose next that F 2 − 4EC = 0. If EC 6= 0 then f is degener-
ate along the 1-dimensional face passing through the lattice points (0, 2, 0),
(0, 1, 1), (0, 0, 2). Since Ez2+Fzy+Cy2 = E(z−αy)2 with α = −F/2E ∈ k∗,
then the linear change z 7→ z + αy brings f into f = ax3 + Ax2 + Bxy +
Dxz+Ez2+Gx+Hy+Jz+c and f becomes non-degenerate. Rather similar
considerations also work in case EC = 0. After an affine transformation, the
possibilities are:

• [f ] has a simple representative, hence L(f, T ) = 1;
• L(f, T ) is a polynomial of degree 1, pure of weight 3;
• 1/L(f, T ) is a polynomial of degree 1 and weight 4, and a normal form

for f is f = ax3 +Ax2 +Dxz +Gx+ Jz + c;
• 1/L(f, T ) is a polynomial of degree 2, pure of weight 4, and a normal

form for f is f = ax3 +Ax2 +Dxz + Ez2 +Gx+ Jz + c with E 6= 0;
• L(f, T ) is a polynomial of degree 2, pure of weight 5, in which case f

can be transformed in a cubic polynomial in x alone.

C a s e II: a line and a double line. After a linear transformation,
C(x, y, z) has the normal form C(x, y, z) = x2y. By translating y 7→ y − A
we may assume A = 0 and

f = x2y +Bxy + Cy2 +Dxz + Ez2 + Fyz +Gx+Hy + Jz + c.

(i) If EC 6= 0 and F 2 − 4EC 6= 0, then f is non-degenerate. There are
several cases depending on whether D or G is 0. In all cases (using [AS2],
[AS3], [DL2]), L(f,A3, ψ, T ) is a polynomial of degree 3, pure of weight 3.

(ii) In any case, if E = 0 then z appears linearly and the sum becomes

Sm(A3, f, ψ) = qm
∑

Dx+Fz+J=0

ψm(x2y +Bxy + Cy2 +Hy +Gx+ c).
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There are now several subcases according to the vanishing of the coefficients,
and they can be treated with the results of [AS1], [AS2], [AS3], [DL1], [DL2].
The possibilities are:

• [f ] has a simple representative, hence L(f, T ) = 1;
• L(f, T ) is a polynomial of degree 1 or 2, pure of weight 3;
• L(f, T ) is a polynomial of degree at most 3, pure of weight 4, in which

case a normal form for f is f = x2y +Bxy + Cy2 +Hy +Gx+ c.

(iii) The more interesting subcases occur when f is degenerate. If D 6= 0
and C = F = 0, then f has the form

f = x2y +Bxy +Dxz +Gx+Hy + Jz + c.

If HDJ 6= 0, then f is degenerate along the two-dimensional face containing
{(2, 1, 0), (1, 1, 0), (0, 1, 0), (1, 0, 1), (0, 0, 1)} if and only if J2−JBD+HD2 =
0. Making no hypotheses concerning the vanishing of J and H, assume
J2 − JBD +HD2 = 0. Then we may write

f = (x+ JD−1)(x+ α)y +D(x+ JD−1)z +Gx+ c

with α = B − JD−1 ∈ k so that x 7→ x− JD−1 produces f̃ = x2y + B̃xy +
Dxz + Gx + c̃, and the quadratic transformation z 7→ z − D−1(x + B̃)y
produces f̃ = Dxz+Gx+ c̃. Hence in this subcase 1/L(f, T ) is a polynomial
of degree 1 and weight 4, and a normal form for f is f = x2y+Bxy+Dxz+
Gx+ c.

The last subcase is D = J = 0 and F 6= 0, and similar considerations
yield the two possibilities:
• [f ] has a simple representative, so L(f, T ) = 1;
• 1/L(f, T ) is a polynomial of degree 1 and weight 4, and a normal form

for f is f = x2y +Bxy + Fyz +Hy + c.
(iv) Finally, we assume E 6= 0. Consider first the case C = 0. Now y

appears linearly so the sum becomes

Sm(A3, f, ψ) = qm
∑

x2+Bx+H+Fz=0

ψm(Dxz +Ez2 +Gx+ Jz + c).

The possibilities which arise can all be handled using [AS2], [AS3], [DL2]
and they lead to the conclusion that L(f, T ) is a polynomial of degree at
most 3, pure of weight 3.

C a s e III: three rational lines not through a point. After a linear trans-
formation, C(x, y, z) has the normal form C(x, y, z) = xyz. By means of the
translation (x, y, z) 7→ (x, y, z)− (F,D,B), we may assume f has the form

f = xyz +Ax2 + Cy2 + Ez2 +Gx+Hy + Jz + c.

(i) If f is convenient, it is easy to see it is also non-degenerate. Then by
[AS1], [DL1], L(f, T ) is a polynomial of degree 2+r pure of weight 3, where
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r = number of non-zero elements of the set {A,C,E}.
(ii) If, however, A = G = 0 (for example) then

Sm(A3, f, ψ) = qm
∑
yz=0

ψm(Cy2 + Ez2 +Hy + Jz + c)

= qm
∑

ψm(Cy2 +Hy + c)

+ qm
∑

ψm(Ez2 + Jz + c)− qmψm(c).

If EC 6= 0 then L(f, T ) is a polynomial of degree 3, mixed with weights
(3, 3, 2).

If E = 0 and CJ 6= 0, or C = 0 and EH 6= 0 then L(f, T ) is a polynomial
of degree 2, mixed with weights (3, 2).

If, however, E = J = 0 and C 6= 0, or C = H = 0 and E 6= 0 then L(f, T )
is a rational function, with numerator of degree 2 mixed with weights (3, 2)
and denominator of degree 1 and weight 4, in which case a normal form for
f is f = xyz + Cy2 +Hy + c.

A similar analysis in the remaining cases yields the following possibilities:

• L(f, T ) is a polynomial of degree 1 with weight 2;
• L(f, T ) is a rational function, with numerator mixed of degree 1 with

weight 2 and denominator of degree 1 and weight 4, in which case a normal
form for f is f = xyz +Hy + c;
• L(f, T ) is a rational function, with numerator mixed of degree 1 with

weight 2 and denominator of degree 2, pure of weight 4, in which case a
normal form for f is f = xyz + c.

C a s e IV: three rational lines through a point. After a linear transfor-
mation, C(x, y, z) has the normal form C(x, y, z) = axy(x+ y). We have

f(x, y, z) = axy(x+y)+Ax2+Bxy+Cy2+Dxz+Ez2+Fyz+Gx+Hy+Jz+c.

We break this case into two subcases depending on whether or not E is zero.
If E 6= 0, then the sum is degenerate if and only if either AD 6= 0 and

D2 − 4AE = 0, or CF 6= 0 and F 2 − 4CE = 0.
If E 6= 0 and the sum is non-degenerate and convenient then L(f, T ) is

a polynomial pure of weight 3 of degree equal to 3!V3 − 2!V2 + V1 − 1 where
V3 = Vol(∆∞(f)) and Vi is the sum of the volumes of the intersections of
∆∞(f) with the i-dimensional coordinate axes, with volume computed with
respect to Haar measure in the axis Ri normalized so that the fundamental
domain of the induced lattice has measure 1. In all cases in which f is non-
degenerate and convenient the degree is 4. If the sum is non-degenerate but
not convenient then we may use the toric decomposition of A3 together with
the weight distribution for sums on tori to obtain that in all non-degenerate
cases L(f, T ) is a polynomial of degree 4 pure of weight 3.
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We consider next the degenerate cases. In case (i) ADE 6= 0 and D2 −
4AE = 0 then the change of variables z 7→ z − D

2Ex transforms f into

f̃(x, y, z) = axy(x+ y) + B̃xy + Cy2 + Ez2 + Fxy +Gx+Hy + Jz + c̃

which is non-degenerate, and again L(f, T ) is a polynomial of degree 4, pure
of weight 3. Case (ii) CFE 6= 0 and F 2 − 4CE = 0 is entirely analogous. In
case (iii), if ACFD 6= 0 and both D2 − 4AE = 0 and F 2 − 4CE = 0 then
the transformation z 7→ z − D

2Ex− F
2E y takes f into

f̃(x, y, z) = axy(x+ y) + B̃xy + Ez2 +Gx+Hy + Jz + c̃

which is non-degenerate and again L(f, T ) is of degree 4 pure of weight 3.
In all cases then with E 6= 0, L(f, T ) is a polynomial of degree 4 pure of
weight 3.

If instead E = 0, then z appears in f(x, y, z) either linearly or not at all.
Hence

Sm(A3, f, ψ) = qm
∑

Dx+Fy+J=0

ψm(axy(x+y)+Ax2+Bxy+y2+Gx+Hy+c).

We only give the list of possibilities:

• [f ] has a simple representative, hence L(f, T ) = 1;
• 1/L(f, T ) is a polynomial of degree 1, with weight 2;
• L(f, T ) is a polynomial of degree at most 2, pure of weight 3;
• 1/L(f, T ) is a polynomial of degree 1 with weight 4, in which case a

normal form for f is f = axy(x+ y) +Ax2 +Bxy +Dxz +Gx+ c.
This completes the proof of Theorem 7.

In the Kloosterman example of Iwaniec [I], we consider

f(x, y, z) = a0(x) + a1(x)y + a2(x)y−1 + a3(x)z + a4(x)z−1.

In the case the ai(x) ∈ k[x, x−1] are Laurent polynomials we write

ai(x) =
d+
i∑

j=d−
i

a
(i)
j xj

with a(i)
d+
i

a
(i)
d−
i

6= 0, so that the degrees of ai(x) are precisely d+
i and d−i . It is

convenient to write Ai = a
(i)
d+
i

, Ãi = a
(i)
d−
i

, di = d+
i , d̃i = d−i .

Theorem 8. Assume that the ai(x) are polynomials in k[x] for i =
1, 2, 3, 4 and that a0(x) ∈ k[x, x−1]. Assume further

(i) each of ai(x), i = 1, . . . , 4 has no multiple non-zero root in K;
(ii) a1(x)a2(x) and a3(x)a4(x) have no common non-zero root in K;

(iii) either
(a) d1 + d2 6= d3 + d4 or
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(b) d1 + d2 = d3 + d4 < 2d0 or
(c) d1 + d2 = d3 + d4 ≥ 2d0 and εA0 ± 2

√
A2A1 ± 2

√
A3A4 6= 0

(where ε = 1 if 2d0 = d1 + d2 and ε = 0 if 2d0 < d1 + d2).

Then f is non-degenerate and L(G3
m, f, ψ, T ) is a polynomial of degree

bounded by 4(d0 + d̃0) + 2(d1 + d2 + d3 + d4) and weight bounded by 3. If
d̃0 < 0, then 0 is an interior point of ∆∞(f) and L(G3

m, f, ψ, T ) is pure of
weight 3.

P r o o f. The function f has possible degeneracies in four 1-dimensional
faces {τi}4i=1 (of ∆∞(f)) such that f (τ1) = a1(x)y, f (τ2) = a2(x)y−1,
f (τ3) = a3(x)z, f (τ4) = a4(x)z−1. The purpose of hypothesis (i) is to en-
sure non-degeneracy along the τi. f also has possible degeneracies along
four 2-dimensional faces {σi}4i=1 such that f (σ1) = a1(x)y+ a3(x)z, f (σ2) =
a1(x)y+a4(x)z−1, f (σ3) = a2(x)y−1 +a3(x)z, f (σ4) = a2(x)y−1 +a4(x)z−1.
Hypothesis (ii) ensures f is non-degenerate along the σi. Finally, in the case
d1 + d2 = d3 + d4 there is a 2-dimensional face σ such that

f (σ) = εA0x
d0 +A1x

d1y +A2x
d2y−1 +A3x

d3z +A4x
d4z−1.

The purpose of hypothesis (iii) is to ensure the non-degeneracy of f along
the face σ. The result for almost all p then follows from [AS1]. The result
for all p follows from [DL1].

R e m a r k. An analogous condition to (iii) for negative degrees d̃i and
coefficients ãi will allow one to consider the case in which all the ai(x) are
Laurent polynomials.

We illustrate the method of removing degeneracies which extends the
applicability of Theorem 8 above to some cases in which the hypotheses
above (imposed to ensure non-degeneracy) are relaxed. We will work with
the specific case which actually occurs in Iwaniec’ work [I]. Let

fabc(x, y, z) = ax

(
y +

1
y

)
+ bx

(
z +

1
z

)
+ cx+

1
x

be defined over Fq. We consider Sn(G3
m, fabc, ψ) when abc 6= 0. It was already

noted in [AS1] that if c 6= ±2a±2b, then fabc is non-degenerate with respect
to ∆∞(fabc), L(G3

m, fabc, ψ, T ) is a polynomial of degree 8, pure of weight 3.
We are now interested in the exceptional cases. Let ε1 and ε2 be two choices
of sign and assume c = 2aε1 + 2bε2. Then write

fabc(x, y, z) =
ax

y
(y + ε1)2 +

bx

z
(z + ε2)2 +

1
x
.

If we set

gab(x, y, z, u, v, w, t) = ax
u2

y
+ bx

v2

z
+

1
x

+ w(u− y − ε1) + t(v − z − ε2),
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then by orthogonality of characters

q2nSn(G3
m, fabc, ψ) = Sn(G3

m × A4, gab, ψ)

where we understand that in the sum on the right the new variables
(u, v, w, t) run over A4(Fqn) = (Fqn)4 and (x, y, z) run over G3

m(Fqn) =
(F∗qn)3. The advantage in going from f (= fabc) to g (= gab) is that g is non-
degenerate with respect to ∆∞(g). Furthermore, for every A ⊆ {u, v, w, t},
the Laurent polynomial gA obtained from g by setting the variables in A to
0 is non-degenerate with respect to ∆∞(gA). This suggests the following:

Definition. Let f(x), g1(x), . . . , gr(x) ∈ Fq[x,x−1], F (x,u) ∈ Fq[x,
x−1,u], and assume f(x) = F (x, g1(x), . . . , gr(x)). Set G(x,u,v) =
F (x,u) +

∑r
i=1 vi(ui − gi(x)) so that

q2nrSn(GNm, f, ψ) = Sn(GNm × A2r, G, ψ).

If GA is non-degenerate with respect to ∆∞(GA) for every A ⊆ {u1, . . . , ur,
v1, . . . , vr}, we will say G removes the degeneracies of f .

Theorem 9. Assume h(x,u) ∈ Fq[x,x−1,u]. Let S = {u1, u2, . . . , ur}.
Assume that hA is non-degenerate with respect to ∆∞(hA) for every A ⊆ S.
Set M = N + r. Assume also that dim∆∞(hA) ≥M − 2|A|. Then

L(GNm × Ar, h, ψ, T )(−1)M+1

is a polynomial of degree equal to
∑

(−1)|A|(M − |A|)! Vol(∆∞(hA)) where
the sum runs over those A ⊆ S with dim∆∞(hA) = M − |A| and where
the volume of ∆∞(hA) is computed in RM−|A| with respect to Haar measure
normalized so that a fundamental domain of the induced lattice has mea-
sure 1. Finally , the L-series

L(GNm × Ar, h, ψ, T )(−1)M+1

is mixed with reciprocal roots having weights less than or equal to M .

P r o o f. According to the Appendix in [AS1], there is an exact sequence
of complexes of p-adic vector spaces with action of Frobenius F (reflecting
the toric decomposition of GNm × Ar):

0→ SK• → K
(0)
• → K

(1)
• → . . .→ K

(r)
• → 0

with K
(i)
• =

⊕
A⊆S(i) K

(A)
• , S(i) being the subsets of S of cardinality i,

where

L(GNm × Ar, h, ψ, T )(−1)M+1
=

M∏

i=0

det(I − TF |Hi(SK•))(−1)i ,
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and

L(GM−|A|m , hA, ψ, T )(−1)M−|A|+1
=
M−|A|∏

i=0

det(I − TF |Hi(K
(A)
• ))(−1)i

for all A ⊆ S. We write

PA(T ) = det(I − TF |H0(K(A)
• ))

for all A ⊆ S. Let δ(A) = M − |A| − dim∆∞(hA). Under the hypothesis of
non-degeneracy of hA we have

(i) PA(T ) is mixed with reciprocal roots having weights at most
dim∆∞(hA),

(ii) det(I − TF |Hi(K
(A)
• )) = PA(qiT )(

δ(A)
i ) for all 0 ≤ i ≤ δ(A),

(iii) det(I − TF |Hi(K
(A)
• )) = 0, for δ(A) < i.

Thus

L(GM−|A|m , hA, ψ, T )(−1)M−|A|+1
=
δ(A)∏

i=0

PA(qiT )(−1)i(δ(A)
i ).

It is useful to break up the exact sequence of complexes into a system of
short exact sequences

0→ C
(i)
• → K

(i)
• → C

(i+1)
• → 0

for i = 0, . . . , r − 1, where C(0)
• = SK• and C

(i+1)
• = cokernel(K(i−1)

• →
K

(i)
• ) for i = 0, . . . , r − 1 (we use the convention K

(−1)
• = SK•). Under

the given hypotheses, Hi(K
(A)
• ) = 0 for all i > δ(A). Our hypothesis that

dim∆∞(hA) ≥M − 2|A| implies then that δ(A) ≤ |A|, so that

Hi(K
(j)
• ) = 0 for all i > j.

Therefore, we prove by downward induction on j using the long exact se-
quence of homology associated with the preceding exact sequence that

Hi(C
(j)
• ) = 0 for all i > j.

As a consequence, Hi(SK•) = 0 for i ≥ 1 and the first assertion of the above
theorem holds. For the second assertion, note that

L(GNm × Ar, h, ψ, T )(−1)M+1
=
∏

A⊆S

δ(A)∏

i=0

PA(qiT )(−1)i+|A|(δ(A)
i )

and the weights of PA(qiT ) are bounded above by

2i+ dim∆∞(hA) ≤ 2δ(A) + dim∆∞(hA) ≤M
again by the hypothesis on dim∆∞(hA).
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We consider the case of g = gab(x, y, z, u, v, w, t). There are 10 faces of
codimension 1 of ∆∞(g) which do not contain the origin. It is not difficult
to check that g is non-degenerate with respect to ∆∞(g). The proof uses
the assumption that c 6= 0. (We remark that the hypothesis that a and b
are not zero is entirely harmless. The sum only simplifies in the case a or b
or both are zero.) It is immediate to verify that for all A ⊆ S = {u, v, w, t},

dim∆∞(gA) = 7− |A| − |A ∩ {w, t}|
so that the preceding theorem applies.

Theorem 10. If c = ±2a ± 2b, abc 6= 0, then L(G3
m, fabc, ψ, T ) is a

polynomial of degree 7 all of whose reciprocal roots have weights at most 3.
In fact , six of the reciprocal roots have weight 3 and one has weight 2.

P r o o f. The first assertion follows directly from Theorem 9 applied to
gab. In fact the polyhedra ∆∞(gA) are all simplicial with respect to the origin
and the second assertion follows from the explicit distribution of weights
[AS2], [DL2].
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[KL] N. Katz et G. Laumon, Transformation de Fourier et majoration des sommes

exponentielles, Inst. Hautes Études Sci. Publ. Math. 62 (1986), 361–418.
[L] S. Lang, Abelian Varieties, Interscience, New York, 1958.

[LW] S. Lang and A. Wei l, Number of points of varieties in finite fields, Amer. J.
Math. 76 (1954), 819–827.

[N] L. B. Nisnev ich, On the number of points of an algebraic manifold in a prime
finite field , Dokl. Akad. Nauk SSSR (N.S.) 99 (1954), 17–20 (in Russian).

[R] M. Reid, Undergraduate Algebraic Geometry, London Math. Soc. Stud. Texts 12,
Cambridge Univ. Press, 1988.
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