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Some generalizations of the S,, sequence of Shanks
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H. C. WiLLiaAMS (Winnipeg, Man.)

1. Introduction. The problem of detecting infinite parametric families
N of positive non-square integers such that if N € N a unit 7 of some order
in Q(v/N) can be easily predicted is a very old one. Several examples of such
families are provided in Chapter XII of Dickson [4]. Perhaps the best known
among these parametric families is that of the Richaud-Degert types. For
these we have N = M?+r with r | 4M. This itself is a special case of the more
general N = A2X?4+ BX +C, where A|4gcd(242, B)? and A = B?—4A2C,
discovered by Schinzel [12]. Usually the units for these families are given by
very simple expressions; for example, in the case of Schinzel’s example above
a unit 1 of the maximal order of Q(+/N) is given by

_ { (2A2X 4+ B +2AV/N)/\/]A] if |A] is a perfect integral square,
T=\ (242X 1 B 124V N)2/|A|  otherwise.

Of particular interest, of course, is the question of when the predicted
unit is the fundamental unit of the order in question. One way of approaching
this question is to make use of continued fractions. In this paper we denote
the simple continued fraction expansion of 6,

1
0 =qo +
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qs3 +
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(90,q15- -+, Gqn-1 € Z) by 0 = {q0,q1,92, - - -y qn—1,0n). We will concern our-
selves with the problem of detecting the fundamental unit ¢ in the order
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Z[v], where
v=v(N)=(N+o-1)/o
and

_J1 if N#1 (mod4),
12 if N=1 (mod 4).

Thus, if N is square-free, we see that ¢ is the fundamental unit of Q(vN).
It is well known that the continued fraction expansion of v is periodic with
period length 7 = w(N) and

V= <q07q1ana s aQ7r>~

In this case we have 6 = v, Oy = (Py + VN)/Qk, g = |0k], Pry1 =
G Qr — P, Qrr1 = (N — P,§+1)/Qk (k=0,1,2,...). Also,

(1.1) HP +\ﬁ.

In fact, if Pj = Pj41 (j < m), then 7 = 2j and
j

P; +W
(1.2) e=(Qj/o) H< ) .

=1

Thus, if we can find a parametric family of N values such that 7w(N) is
bounded by a small integer, it is a relatively simple matter to predict €. For
example, in the case of the Richaud-Degert types we always have 7(N) < 6.

Let h(d) denote the class number of Q(v/d). In 1969 Shanks [13] tabulated
h(d) for all d = n? — 8 such that 0 < d < 10000 and d is a prime or prime
power. He discovered that h(d) = 1 except for d = 4481 = 672 — 8 =
(26 4 3)2 — 8. This discovery led Shanks to give consideration to numbers of
the form

Sp=(2"+3)2 -8 =(2"4+1)2 +4-2™.

He was able to give reasons for why one would expect that as n increased one
would have h(S,,) exceeding any given bound. Later in [14] he pointed out
without proof that for N = S,, one would have loge = 2n2?log 2 + O(n2=").
In [17] Yamamoto gave results concerning S,, which, essentially, are Py = 1,
Qo=2q =2"141 Py =2"+1, Qo1 = 2", go;q = 20T,
Py = 2" — 1, Qo = 271 qo; = 2"7%. Thus, ¢ = ay"/2", where a =
(2" +1++/5S,)/2, v = (2" +3++/S,,) /2. This seems to be the first example
ever found of a parametric family in which a fundamental unit can be easily
predicted even though the period length of the continued fraction becomes
arbitrarily large.
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2. Generalizations of Shanks’ sequence. Since 1969 a number of
generalizations of Shanks’ sequence have been described. Hendy [7] consid-
ered values of N given by

N = (o(ga" + (o — 1)/q)/2) + o%a", o € {1,2}
with ¢ |a — 1. Here we have n(N) = 2n + 1 for v(N) and € = ay" /a™ with
a=(qa" +(a—1)/¢+VN)/2, 7= (¢’a" +a+1+qVN)/2.
Later Bernstein [2], [3] considered
N = (o(a™ + p(a+ N)/2)* — o*pura”,
wu, A € {—1,1}, and Williams [15] extended this to
N = (o(ga" + p(a+2)/q)/2)? — o®pra™
where q|la + A\, p,A € {—1,1}. Levesque and Rhin [9] and Levesque [§]
discussed
N = (o(ra" + pla +1))/2)* — o%pra
with ¢ =1 and 7 |a + 1. Azuhata [1] examined
N = (a" + p(a® + X)? — 4 pa™
with n > k > 1, ged(n, k) = 1.
In [5] Halter-Koch combined all of these forms except that of Azuhata
into
N = (o(gra™ + pla + \)/q))* — o®ura"r
with rq|a + X\ and
_J 1 if2|gra” 4+ pla+ N)/q,
2 if 2¢qra™ + pla+ N)/q.
For these values of N he found that 7(IN) = en + b where ¢ € {2,3,4,6, 8},
be{—4,-3,-2,0,1,2,4}. Also,
o Joyt/a” (r=1),
= Va2 /(e (r> 1),
where
a = (o(qra” + p(a+A)/q) + 2VN)/(20),
v = (o(q®ra” + p(a — X)) +2¢V'N) /(20).
If we combine the Halter-Koch form with that of Azuhata, we get
(2.1) N = (o(gra® + p(a* + X)/a)/2)? — o*pra”r
with u, A € {—1,1}, qr|a® + X, ged(n, k) = 1, and n > k > 1. Also,

1 if 2 gra™ + p(a® + N\)/q,
2 if2tgra™ + p(a® +N)/q.
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Predicting the value of 7(NN) for these values of N is much more difficult
than for the Halter-Koch cases. For example, if r = p = —A = 1, we get the
form considered at some length by Mollin and Williams [10].

3. Period lengths. In order to discuss the simple continued fraction
period length for v(N) for N given by (2.1) we must define some symbols.
Consider positive integers r, s with r > 1. We can find the simple continued
fraction expansion of

S/’I” = <QOaQ17Q2w~7Qm>
with ¢, > 1. Define M (r,s) = 2[(m +1)/2|, M(r,s) = 2|m/2] + 1. Since
¢m > 1, there is no ambiguity in the definition of M(r,s) or M(r,s). If, for
a fixed @ such that ged(a, Q) = 1, we denote by s; that integer satisfying
s; =a' (mod Q),

where 1 < s; < @), then we define

Q) =Y M(s,Q), W(a,Q)= ZM ~ 5, Q
=1

Here we use w = w(a, Q) to represent the multiplicative order of @ modulo Q.
The functions W (a, @) and W'(a, Q) have a number of curious properties.
We refer the reader to Mollin and Williams [11] for a discussion of W (a, Q).
Undoubtedly, a more extensive investigation would reveal many more prop-
erties of these interesting number theoretic functions.

In [10] it was shown that for r =y = —A =11in (2.1) we get

7(N)=2n+k+ kW(a,q)/w(a,q).
In order to obtain the complete story on the period lengths for v(N) with

N given by (2.1), we need now to give special attention to the case of A = 1.
If Q > 2, we see that 2|w(a, Q) when @ |a* + 1. In this case we get

W(a, Q) =W'(a, Q).
Also, if we define

X(5,Q) =91 ifs>Q/2,2|M(s,Q),

0 otherwise

{—1 if s < Q/2, 2t M(s,Q),

and
w/2

= ZX(S%Q) (WZQJ(G, Q))7
i=1
it is easy to show that

2Wi(a, Q) = W(a, Q) +24(a,Q),  2W3(a,Q) = W(a, Q) — 24(a, Q),
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where

We now have the following values of w(NN) for N given by (2.1). We must
partition the problem into several cases.

Case At A=—-1, u=1.
1) If r > 1 and q > 2, then
2n + k + kW (a, q)/(2w(a?, q))

m(N) = —kW (a?,qr)/(2w(a, qr))
+kW(a,qr)/w(a, qr) if 2|k,
A+ 2k + KW (a,q) /w(a, @) + kW (a,qr) fw(a,qr) if 21k,

2) If r > 1 and q = 2, then

(V) = { 2n + k + kW (a, 2r)/w(a,2r) — kW (a?,2r)/(2w(a?,2r)) if 2|k,
| 4n+ 2k + kW (a,2r)/w(a,2r) if 21k.

3) If r > 2 and q = 1, then

T(N) = { 2n 4k + kW (a,r)/w(a,r) — kW (a?,7)/(2w(a®,7)) if 2|k,
dn + 2k + kW (a,r)/w(a,r) if 21k.

4) If r =2 and q = 1, then

2otk if 2]k,
”(N)_{4n+2/<: if 21k.

5) If r =1 and ¢ > 2, then 7(N) =2n+ k+ kW (a,q)/w(a,q).
6) Ifr=1 and g = 1,2, then 71(N) = 2n + k.

Case B: A=1, u=1.

1) If r > 1 and q > 2, then

3n+3k/2 + kW (a?, q)/(2w(a?, q))
+kW (a, qr)/w(a, qr) — kW (a®, qr)/(2w(a®, qr))

w(N) = +A(a?, q) + A(a, qr) — A(a?, qr) if 21k,
6n + 2k + kW (a, q)/w(a,q) + kW (a, qr)/w(a, qr)
+A(a, q) + A(a, qr) if 24k.

2) If r > 1 and q = 2, then

3n+3k/2+ kW (a,2r)/w(a,2r)
m(N) = { —kW (a?,2r)/(2w(a?,2r)) + A(a,2r) — A(a®,2r) if 2|k,

6n + 3k + kW (a, 2r)/w(a,2r) + A(a, 2r) if 21k.
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3) If r > 2 and q = 1, then

In+k/2—-2+kW(a,r)/w(a,r)
—kW (a?,7)/(2w(a?, 7)) + A(a,r) — A(a®,r) if 2]k,
6n+k‘—2+k‘W(a r)/w(a,r) + A(a,r) if 21k.

4) If r =2 and q = 1, then

m(N) =

C[3n+k—2 i 2]k,
”(N)_{6n+2k—2 if 21k.

5) Ifr=1and q > 2, then n(N) =3n+k+ kW (a,q)/w(a,q)+ A(a, q).
6) If r =1 and q = 2, then w(N) = 3n + 2k.
7 Ifqg=r=1, then m(N) = 3n — 2.
Case C: A=1, p=—1.
1) If r > 1 and q > 2, then
3n+ kW (a,qr)/w(a,qr)
—kW (a?, qr)/(2w(a®,qr)) + kW (a®, q)/(2w(a®, q))

m(N) = —A(a,qr) + A(a?,qr) — A(a?,q) if 2|k,
6n + kW(a,q)/w(a,q) + kW (a,qr)/w(a, qr)
—A(a, q) — A(a, qr) if 24k

2) If r > 1 and q = 2, then

3n+k/2+4+ kW (a,2r)/w(a,2r)
m(N) = —kW (a?,2r)/(2w(a?,2r)) + A(a?,2r) — A(a,2r) if 2|k,
6n + k + kW (a,2r)/w(a,2r) — A(a, 2r) if 21k.
3) If r > 2 and q = 1, then

{3nk/22+kW(ar/ (a,r

\_/

T(N)={  —kW(a?,r)/(2u(a?, 1) + A(a®,r) — Aa,r) if 2|k,

)
6n—k—2+kW(a,r)/w(a,r) — A(ar) if 2tk.
4) If r =2 and q = 1, then

(3n—2 if 2|k,
7T(N)_{Gn—2 if 21k
(
(
(

N) =3n+kW(a,q)/w(a,q) — A(a,q).
N)=3n+k.
N)=3n—-Fk—2.

5) Ifr =1 and g > 2, then «

6) Ifr=1 and g =2, then «

N Ifr=1andq=1, then 7

Case D: A=p=-1.

1) If r > 1 and q > 2, then
dn + kW' (a, qr)/w(a, qr) — kW'(a?, qr)/(2w(a?, qr))

m(N) { +EW' (a2, qr)/ (2w(a?, q)) if 2|k,
8n + kW'(a,q)/w(a,q) + kW'(a,qr)/w(a, qr) if 2tk.
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2) If r > 1 and q = 2, then

dn — 2+ kW'(a,2r)/w(a,2r)
T(N) = —kW'(a?,2r)/(2w(a?,2r)) if 2|k,
8n — 2+ kW'(a,2r)/w(a,2r) if 2tk.
3) If r > 2 and q = 1, then
dn — 2 + kW’(a r)/w(a,, T)

W oL ) et ) i 2]k,
8n—2+ kW’(a r)/w(a,r) if 21k, a > 2,
8n — 6+ kW'(a,r)/w(a,r) if 21k, a=2.

4) If r =2 and q = 1, then

 [4n—2 if 2|k,
”(N)_{sn—zx if 21k.

5) If r=1 and ¢ > 2, then 7(N) = 4n + kW'(a,q)/w(a,q).

6) If r =1 and ¢ = 2, then 7(N) = 4n — 2.

7 Ifq=r =1, then
dn—2 if a#£2and n>k+1,
dn—6 ifa=2andn>k+1, n>3,

T(N)=R4n—2 if a>3 and n=k+1,

dn—-6 ifa=3andn=k+1, n>2,
dn—10 if a=2andn=k+1,n>4.

4. Preliminary results. As there are many cases to be considered in
Section 3, it is not our intention to give a complete proof of each of them.
Rather, we will indicate the proof techniques used for the more difficult
cases, particularly where they may differ from those used in [10].

The symbols A;, €; will have the same meanings as those assigned on
p. 236 of [10]. We also put o = k —n + A; and 0; = n — \;. Now let
Q € {q,qr} and put

t_o;=Q, t_1;=pa% (mod Q),
where 0 <t_; ; < Q. Put

tooi/to1; = (10,5, 1,5y s Bm,j)s

where
. %(t—l,ﬁt—lj) if A= -1,
- M(tfl’j,tfg’j) if A=1.

Note that A = (—=1)™"1. If we put A_2; =0, A_; ; = 1 and define

bnt1,j = Hnt1,jln = tn—1,5,
Ant1j = fint1jAn; + Anry (1 <n<m—1),
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we get
(4.1) tiiAipry +tis A, =Q (=2<i<m—1)
and
Ani=Q, Ap_1;=pa’ (mod Q).

Putting

Cij=a%t; —pAN—=1)"4A;;, Dij=a%A;;+p(-1)",,
we get
(4.2) Cijtiv1,; —tijCiv1; = (=1)" 1 pAQ,
(4.3) DijAir1; = Div1Ai; = (=1)'nQ,
(4.4) D; jCis15 + CijDig1y = (a" + 2)Q,
(4.5) Diy1j = piv1,;Di; + Di—1j,
(4.6) Ci—1j = pi41,;Cij + Ciyry (-1 <i<m—1).

Now it is easy to show by induction, using (4.5) and (4.6), that Q| C; ;
and Q|Di,j for —2 < 7 < m. AAISO7 D,QJ‘ == C’m,j = ILLQ, Di7j > 0 for
-1 <i<m,and C;; > 0 for =2 <7 < m — 1. Furthermore, if D; ; = 0,
then p =1, Q > a%, 1 = —1;0or p = =1, to; = a%, po; = 1,1 = 0,
Q>a% . IfC;;=0,thenpu=1,Q >a%,i=m—-1orp=—1,t,_2; =1,
Ap2;j=Q—a%,i=m—2,Q >a%.

Let T = (0/2)(gra™ + p(a® + X)/q). In most cases we have

T if pA\ <0,
L\/NJ_{T—I it A > 0.

If, as in [10], we put Ry, = (P, + |V/N])/o and S}, = Q, /o (h=0,1,2,...),
we have the following results.
THEOREM 4.1. If j <n —1 and
Ry = (qr/Q)a"t; 1 Ai; + nCi—1;D; ;/(qQ),
Sp=(qr/Q)a"t; ;Ai; + pCi;Di;/(qQ) (-1 <i<m—1),
then qn = pit1,5-
In order to prove Theorem 4.1 we require two lemmas.
LEMMA 4.2. If =1 <i<m—1, then S, > D, j/q.

Proof. Suppose that ¢ > 0 and Cj41,; > 0. In this case D;1q ; >D; ; >0
and Ci41,; > Q. By (4.4) we have

(@ +X)Q > D; ;Q + Ci ;D ;.
Hence

Sp > a" — Ci;D;;/(qQ) > a™ — (a" + X)/q+ Di;/q > D; ;/q.
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The particular cases of i = —1, Ciy1; <0 (t=m—1)or Cip1,; =0 (i =
m — 2,m — 3) can be dealt with separately. In each case it can be shown
that Sh > DZ,]/(] ]
LEMMA 4.3. If r,s € Z, str and either |a —r/s| < 1/s or —1/s <
a—r1r/s <0, then |a] = |r/s]. =
Proof of Theorem 4.1. We first note that
[ LoRh—D)/(@S)] if A >0,
=\ | Rn/Shl if uA < 0.
Also, from (4.2) we get
tiJ‘Rh - ti,ljjSh = Di’j(—l)iA/q.
If Sy, | Ry, then Sy, | D; ;/q. Since, by Lemma 4.2, S, > D, ;/q, we can
only have D; ;/q = 0.
If Sh'th, then qn = LRh/ShJ by Lemma 4.3. Thus, if S}J’Rh, we get
Ry tic,| _ Dy 1
Sh Lij aSntiy  tij
If Sy | Ry, we get Ry, = cti—1,, Sp = ct; ; with ¢ > 1. Hence,
oR;, — 1 tiij 1 1

= < —.
O'Sh ti,j O'Sh ti,j

Thus, if ti,jTtiija we get dh = Hi+1,5 by Lemma 4.3.

Ift; j|ti1,, thent; ; =1 and ¢ = m — 1 or m — 2. In these cases it is
easy to show that D; ; #0,as 0, #0and 9o; #0 (j <n—1). Ifi =m -2,
then t,,_3; = ptm—1,; +1 and Ry, — t;,—3;S, < 0. Hence

LRh/ShJ = tmf?;,j —1= Hm—1,5-
If i=m — 1, then
[Rn/Sh] =tm—25 = fim.;- ®

The following result can be proved in the same manner as Lemma 5.2 of
[10] except that we use (4.1)—(4.3).

THEOREM 4.4. If Ry, and Sy, are given by the formulas of Theorem 4.1,
then

Rpi1 = qnSh — Ry + 2T /0 = (qr/Q)a"t; jAiv1,; + nCi jDiya1,5/(4Q),

Shi1 = (2T/0)Rhs1 — Ry, .y — pAra”

= (qr/Q)a" Aiy1 jtiv1,; + pCiv1,Div15/(qQ). m
5. An example. In this section we will develop the continued fraction

expansion of v(NN) for certain N with A =1, p = —1, r > 1. We do this to
exemplify the techniques that were used to obtain all the results of Section 3.
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However, in the interest of brevity, we will concentrate our efforts here on a
few particular cases.

We define
v; =a% (mod gr), ~;=a% (mod q),
6; =a¥ (mod gr), &;=a% (mod q),

where 0 < 7,07 < qr,0<7;,0; <q. Put iy, =1t;;, A7, = A;;, CF,; = Cij,
Df’j = D, j, where the t; ;, A; ;, C;;, D;; are those defined in Section 4
with Q = gr. Put ¢; ;, A; ;, C; j, D; j to be those defined in Section 4 with
Q=q.
We also define
ni)=3+cw;, (0<i<n-1)

where w; = 0 when ¢; = 0. Since

S = k- 1)/n] = k-1,
=0

we see that there are exactly k — 1 values of i € {1,...,n — 2} such that
g; = 1. Let iq,...,7,_1 be those values of 7. Then
in—1

Zej:h—l and isj:h;
=0 =0

thus, 45, is the least value of j such that |[(j + 1)k/n] = h. It follows that
j > |hn/k]. Since for j = |hn/k| we get [(j + 1)k/n| = h, we have j =
in = |hn/k]. If ¢; = 1, where j = i, we put

w; — {M(qr—v;f,q'r) if 21,

M(q—,q)  if2]h.
Define

@) =1+ @) (1<j<n-—1).

We will now deal with the case of ¢ > 2. In this case we get [VN| =T
and
Ry=1+(T—-1)/o, So=1, q@=1+(T-1)/v;
Ry, =2T/o, Si=rd", ¢ =q-1,
Ry =(q—1)ra™, Sy=gqra™+ (a"+1)/q—ra™—ad*, ¢ =1,
Ry =qra™ —a®, Ss=d", q3=qra""—1.

By making use of Theorem 4.4 and the techniques of [10] we can now develop
the continued fraction expansion of v(N).
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For1 <h<k-—1,|hn/k] <j<[(h+1)n/k|,j<n—1,2th, s=1()),
we get,
Ry =2T/o, Ss= ra" N,
_{qa“'—l if e, =0,
Qs qat —1 — (ak+ri—n — v7)/(gqr) ife;=1.
If, in this case €; =0, then ¢(j + 1) = ¢(j) + 3 and

Rgsiq = qra” — m"”‘j,

Ssi1 =qra”™ + (a’g +1)/q —ra”

N +k Ntk
Rojo=qra” —a™T"  S,o=0a%T"  qu0=qra

Y Aj+k

I —a y  Gs+1 = L;

If e; = 1, then let m:]\?(qr—’yj,qr). We get (5 +1) =¢(j) +m+3
and for —1 <i<m,
Ryyira = a't;_y ;A7 ; — Ci 1 D}/ (¢%r),
Sepive = a"t] ;AT ; — CF D}/ (¢Pr),
]t if © <m,
Qs+i+2 = qan*>\j+l _1— (ak*/\jJrl — 5;.‘)/((]7‘) if ¢ = m.
For 1 <h <k—1, |hn/k] <j<|[(h+1)n/k|,j<n—1,2|h,s=1(j),
we get
Ry, =2T/o, Ss5= a" N
[ qrad —1 if e; =0,
s = gra® —1— (a"*NTm — ) /(qr) ife; = 1.
If, in this case, ¢; = 0, then ¥(j + 1) = ¢(j) + 3 and

Repy = gqra”™ —a"™,

Sst1=qra” + (aF +1)/q —ra™tF —a" N g =1

Nj+k n—X\—k _q
, :

N4k
Rsio =qra™ —ra ith, Ssyo =Tra Gs+2 = qa

If &; = 1, then let m = M(q — v;,q). We get ¥(j + 1) = ¢(j) + m + 3 and
for —1<i<m
Royiya =ra"ti1 ;45— Ci1;Dij /¢,
Seyive =rat; jA;; — Ci;Ds /¢,
iy if © < m,
Qs+it2 = qra™ Nt — 1 — (aF N — 8;)/q ifi=m.

Ifweputj=n—-1,0=9¢(n—-1)—1, wegete,—1 =1, A\y_1 =n—k. If
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2|k —1, then
Roy1 =2T/o, Spy1=rd", gqoy1=qa" " —1;
Royo = qra™ —ra®, Sgio=qra” + (a" +1)/q—ra* —a”, qoi2=1;
Roys = qra" —a®,  Spiz=a", qoss=qr—1;
Rgpa=2T/0, Spra=r, qora=qa" — (" +1)/(rq).
Also, Rg45 = 2T /0 = Rpy4. Since R; = R; 41 can occur at most once in
the period of the continued fraction expansion of (V) and since no value
of S; =1 for i <6 +5 (see Lemma 4.2), we must have 7(N) = 2(0 + 4).
If 24k — 1, then we find that
Rgi1=2T/o, Spi1=a" qos1=qra" " —1;
Roio = qra™ —a®, Spia =qra" + (a* +1)/q—a* —ra", qoi2=1;
Rgi3 =qra” —ra”, Spyz=ra", qoy3=q—1;
R9+4 = 2T/O', Sg+4 = 1;
hence, m(N) = 0 + 4.
It remains to evaluate ¢(n — 1). Clearly

k—1

1/1(n71):3n73+2wih.

h=1

Putting tp = ¢ — 7, t;, = qr — 7}, , we get

ty = (=1)P/El gk (mod ¢), ¢ = (=1)" kg (mod gr).
If we put

k=1 k—1
M(th7 + Z th7 QT
2|h, h=1 2th, h=1
then ¢p(n — 1) =3n — 3+ (2.
If £ is odd, then

(k=1)/2 (k=1)/2
> Mtai,q)+ Y M(ts_y,qr).
=1 =1

Also, if h # k, then t,_; = —t;l (mod ¢) from which it is easy to show
that

M(tk,h, Q) = M(tha Q)
Similarly
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Since k — h and h have opposite parity, it follows that we can write
k—1 k—1
20 = 3" W(tsq) + 3 M(t.ar)
i=1 i=1

Now @ > 2 means that w(a, Q) = 2u where p is odd and p | k. Hence,
by the remarks at the beginning of Section 3 we have

k
Z M(Q - 5;,Q) = |k/w(a,Q)|W'(a,Q) + Wa(a, Q)
= kW(CL, Q)/w(aa Q) - A(a’7 Q)

If we consider the sum Ef;ll M (t;,q) and sum this over j = —in (mod k),
we get,
k—1 k—1
i=1 j=1
Also,
k—1 k—1
ZM(trvqr): M((JT—S;,C]T‘),
i=1 j=1

where s; = a’ (mod q), sf =a' (mod qr), 0 < s; < ¢q, 0 < sF < gqr.
Thus, we get

m(N) = 6n+ kW (a,qr)/w(a,qr) + kW(a,q)/w(a,q) — A(a, qr) — A(a, q).

To obtain the result when 2 | k, we note that

k k
> M(ty,qr)= Y M(qg—s}qr)
2th, h=1 245, j=1
and
koo k
Z M(thJQ)_ Z M(q_SJ7Q)
2|k, h=1 2|4, j=1
Also,
k k/2
> Mg—sj,9) = > M(qg—s2,9)
2|7, 5=1 i=1
= |k/(2w(a®,q))|W'(a*, q) + Wa(a?, q)
and
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6. The fundamental units. The method of [10] can be extended to
determine the values of P;,Q; (i =1,2,...,m(N)) for any N given by (2.1).
We can then use (1.1) to produce the value of €. Curiously, although the
formulas for 7(N) given above are quite complicated, the values for ¢ are
very simple and are given below.

Define

a = (o(gra™ + p(a® + 1) /q) + 2V N)/(20),
7= (o(¢’ra" + p(a" = \)) +2¢V'N)/(20).
If » =1, then
e=a"y"/a"  and  N(e) = (u\)F(=\)".
If » > 1, then
- akaym/(rk2akm) i 2|k,
k2 f(rkg2kn) if 24 k.
In each of these cases N(e) = 1.
We indicate how these results can be proved by once again discussing
one case only. The proofs for the remaining cases are similar or simpler.

We first note that by making use of the identities given in Section 1 we
can easily show that if ¢; = (P; +v/N)/Q;, then

@ivis1 = (Piy1gi + Qiv1 + GiVN)/Qit1.
Also, if we put
B = (o(gra™ — u(a® + X)/q) + 2V N)/(20),

we get aff = ra™y.

We consider the example of N with pu = =1, A =1, r > 1, ¢ > 2
discussed in Section 5. Let s, j and h have the meanings assigned to them
in the continued fraction development of v(IN) given in Section 5. If £; = 0,
we get,

_ [ BjartE(24h),
e {ﬁ/<m+k> (2] ).
Also,
_ [a/(ra"=%) (2th),
i {a/a"-% (2] h).
Thus, if €; = 0, then

PsPs+1¥Ps+2 = aﬁ/(ran+k) = ’7/ak
Ife; =1, set

m-—+2

Xi = H Psti-
i=1
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If we put
806 = (PS + \/N)/QS - <q67Q17qé7 .. ‘)7

and A}/Bl = (¢}, q},--.,q}) with gcd(A}, B;) =1 and B} > 0, then we get
Xj = Qs(Api1 — B 1P0)/ Qs smta-

(See, for example, Williams and Wunderlich [16]).

If 2t h, then
0y = a/(ra’“)‘j), q = gat —1— (akfnw‘j - )/ (ar),
¢ =pi-1y; (i=1,2,...,m+1).
Since
(0,55 1,55 - -+ s Bom,j) = qr/(qr — ’Y;)y
we get

(G0 Qs - - Gora) = a0 + (qr —73)/(qr) = (¢Pra — a*~"F29) /(qr).

Hence,

/ 2 A k—n4+M\; / _
A1 =qra™ —a i, B =qr
Now, Qs = ora™ % and Qsimi2 = ora’+1; therefore x; = v/ati+1 =
7y /ak=n+Ai+1, Furthermore,

psx; =7/(ra")  (2th).

By similar reasoning it can be shown that

@sx; =7/a"  (2]h).
We also note that
« if 21k,
Por1Porapers =y/a’  and g4 = {oz/r if 2J\(k.

We are now ready to evaluate ¢ = Hf:f ;. We note that there are k — 1

values of j = |hn/k|(h =1,...,k — 1) such that ¢; = 1 and j <n —2. Of
these exactly (k — 1)/2 are such that h is odd when k is odd and exactly
k/2 of these are such that h is odd when k is even. Thus, if 21k, then

¢=r®02( T ety [T ve/rah))(3/ab)a

0<j<n—2 0<j<n-2
;=0 g;=1

= r=D/2(y /Ry 10D (30 (ra) (ay/ab)
— ak,yn/(r(k:—l)/Qank).
Since in this case we have Pyi4 = Ppy5, we see by (1.2) that

€ = (Q9+4/U)C2 — 72"a2k/(rka2"k)
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when 21h. If 2| k, then

e = ¢ = M2(1/a)" H(vaf (rat) 7 () (ra) = 7k /(4 2am),

It would be of some considerable interest to produce a simpler proof of
the fundamentality of these units than that afforded by producing the very
intricate continued fraction period of v(IN); however, no such technique is
known to the author. Also, from the above formulas for €, we see that the
regulator R of Q(v/N) is O((log N)?). It would be of very great interest
if an infinite parametric family of N values could be produced such that
for each N the complete continued fraction period could be predicted but
R > (log N)3. No such family is known, although the family given by Ya-
mamoto [17] (see also Halter-Koch [6]):

N = (a"r +a —1)* +4ra",

where a, r are primes and a < r, is such that R > (log N)? infinitely
often. Nevertheless, no one knows (beyond a certain point) how to predict
its period. For example, if a = 3, r = 5 we get

m(N)
29
81
217
652
1801
2216
22206
44776
20968
61748
566474

—_ =
Do BEoxuo ok w3
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