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1. Introduction. The problem of detecting infinite parametric families
N of positive non-square integers such that if N ∈ N a unit η of some order
in Q(

√
N) can be easily predicted is a very old one. Several examples of such

families are provided in Chapter XII of Dickson [4]. Perhaps the best known
among these parametric families is that of the Richaud–Degert types. For
these we haveN = M2+r with r | 4M . This itself is a special case of the more
general N = A2X2+BX+C, where ∆ | 4 gcd(2A2, B)2 and ∆ = B2−4A2C,
discovered by Schinzel [12]. Usually the units for these families are given by
very simple expressions; for example, in the case of Schinzel’s example above
a unit η of the maximal order of Q(

√
N) is given by

η =
{

(2A2X +B + 2A
√
N)/

√
|∆| if |∆| is a perfect integral square,

(2A2X +B + 2A
√
N)2/|∆| otherwise.

Of particular interest, of course, is the question of when the predicted
unit is the fundamental unit of the order in question. One way of approaching
this question is to make use of continued fractions. In this paper we denote
the simple continued fraction expansion of θ,

θ = q0 +
1

q1 +
1

q2 +
1

q3 +
.. .

+
1

qn−1 +
1
θn

(q0, q1, . . . , qn−1 ∈ Z) by θ = 〈q0, q1, q2, . . . , qn−1, θn〉. We will concern our-
selves with the problem of detecting the fundamental unit ε in the order
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Z[ν], where

ν = ν(N) = (
√
N + σ − 1)/σ

and

σ =
{

1 if N 6≡ 1 (mod 4),
2 if N ≡ 1 (mod 4).

Thus, if N is square-free, we see that ε is the fundamental unit of Q(
√
N).

It is well known that the continued fraction expansion of ν is periodic with
period length π = π(N) and

ν = 〈q0, q1, q2, . . . , qπ〉.
In this case we have θ0 = ν, θk = (Pk +

√
N)/Qk, qk = bθkc, Pk+1 =

qkQk − Pk, Qk+1 = (N − P 2
k+1)/Qk (k = 0, 1, 2, . . .). Also,

(1.1) ε =
π∏

i=1

Pi +
√
N

Qi
.

In fact, if Pj = Pj+1 (j ≤ π), then π = 2j and

(1.2) ε = (Qj/σ)
j∏

i=1

(
Pi +

√
N

Qi

)2

.

Thus, if we can find a parametric family of N values such that π(N) is
bounded by a small integer, it is a relatively simple matter to predict ε. For
example, in the case of the Richaud–Degert types we always have π(N) ≤ 6.

Let h(d) denote the class number ofQ(
√
d). In 1969 Shanks [13] tabulated

h(d) for all d = n2 − 8 such that 0 < d < 10000 and d is a prime or prime
power. He discovered that h(d) = 1 except for d = 4481 = 672 − 8 =
(26 + 3)2− 8. This discovery led Shanks to give consideration to numbers of
the form

Sn = (2n + 3)2 − 8 = (2n + 1)2 + 4 · 2n.
He was able to give reasons for why one would expect that as n increased one
would have h(Sn) exceeding any given bound. Later in [14] he pointed out
without proof that for N = Sn one would have log ε = 2n2 log 2 +O(n2−n).
In [17] Yamamoto gave results concerning Sn which, essentially, are P0 = 1,
Q0 = 2, q0 = 2n−1 + 1, P2i−1 = 2n + 1, Q2i−1 = 2n+2−i, q2i−1 = 2i+1,
P2i = 2n − 1, Q2i = 2i+1, q2i = 2n−i. Thus, ε = αγn/2n, where α =
(2n+ 1 +

√
Sn)/2, γ = (2n+ 3 +

√
Sn)/2. This seems to be the first example

ever found of a parametric family in which a fundamental unit can be easily
predicted even though the period length of the continued fraction becomes
arbitrarily large.
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2. Generalizations of Shanks’ sequence. Since 1969 a number of
generalizations of Shanks’ sequence have been described. Hendy [7] consid-
ered values of N given by

N = (σ(qan + (a− 1)/q)/2)2 + σ2an, σ ∈ {1, 2}
with q | a− 1. Here we have π(N) = 2n+ 1 for ν(N) and ε = αγn/an with
α = (qan + (a− 1)/q +

√
N)/2, γ = (q2an + a+ 1 + q

√
N)/2.

Later Bernstein [2], [3] considered

N = (σ(an + µ(a+ λ))/2)2 − σ2µλan,

µ, λ ∈ {−1, 1}, and Williams [15] extended this to

N = (σ(qan + µ(a+ λ)/q)/2)2 − σ2µλan

where q | a + λ, µ, λ ∈ {−1, 1}. Levesque and Rhin [9] and Levesque [8]
discussed

N = (σ(ran + µ(a+ 1))/2)2 − σ2µra

with µ = 1 and r | a+ 1. Azuhata [1] examined

N = (an + µ(ak + λ))2 − 4λµan

with n > k ≥ 1, gcd(n, k) = 1.
In [5] Halter-Koch combined all of these forms except that of Azuhata

into

N = (σ(qran + µ(a+ λ)/q))2 − σ2µλanr

with rq | a+ λ and

σ =
{

1 if 2 | qran + µ(α+ λ)/q,
2 if 2 - qran + µ(α+ λ)/q.

For these values of N he found that π(N) = cn+ b where c ∈ {2, 3, 4, 6, 8},
b ∈ {−4,−3,−2, 0, 1, 2, 4}. Also,

ε =
{
αγn/an (r = 1),
α2γ2n/(ra2n) (r > 1),

where
α = (σ(qran + µ(a+ λ)/q) + 2

√
N)/(2σ),

γ = (σ(q2ran + µ(a− λ)) + 2q
√
N)/(2σ).

If we combine the Halter-Koch form with that of Azuhata, we get

(2.1) N = (σ(qran + µ(ak + λ)/q)/2)2 − σ2µλanr

with µ, λ ∈ {−1, 1}, qr | ak + λ, gcd(n, k) = 1, and n > k ≥ 1. Also,

σ =
{

1 if 2 | qran + µ(ak + λ)/q,
2 if 2 - qran + µ(ak + λ)/q.
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Predicting the value of π(N) for these values of N is much more difficult
than for the Halter-Koch cases. For example, if r = µ = −λ = 1, we get the
form considered at some length by Mollin and Williams [10].

3. Period lengths. In order to discuss the simple continued fraction
period length for ν(N) for N given by (2.1) we must define some symbols.
Consider positive integers r, s with r > 1. We can find the simple continued
fraction expansion of

s/r = 〈q0, q1, q2, . . . , qm〉
with qm > 1. Define M(r, s) = 2b(m + 1)/2c, M(r, s) = 2bm/2c + 1. Since
qm > 1, there is no ambiguity in the definition of M(r, s) or M(r, s). If, for
a fixed Q such that gcd(a,Q) = 1, we denote by si that integer satisfying

si ≡ ai (mod Q),

where 1 ≤ si < Q, then we define

W (a,Q) =
ω∑

i=1

M(si, Q), W ′(a,Q) =
ω∑

i=1

M(Q− si, Q).

Here we use ω = ω(a,Q) to represent the multiplicative order of a modulo Q.
The functions W (a,Q) and W ′(a,Q) have a number of curious properties.
We refer the reader to Mollin and Williams [11] for a discussion of W (a,Q).
Undoubtedly, a more extensive investigation would reveal many more prop-
erties of these interesting number theoretic functions.

In [10] it was shown that for r = µ = −λ = 1 in (2.1) we get

π(N) = 2n+ k + kW (a, q)/ω(a, q).

In order to obtain the complete story on the period lengths for ν(N) with
N given by (2.1), we need now to give special attention to the case of λ = 1.
If Q > 2, we see that 2 |ω(a,Q) when Q | ak + 1. In this case we get

W (a,Q) = W ′(a,Q).

Also, if we define

χ(s,Q) =

{−1 if s < Q/2, 2 -M(s,Q),
1 if s > Q/2, 2 |M(s,Q),
0 otherwise

and

A(a,Q) =
ω/2∑

i=1

χ(si, Q) (ω = ω(a,Q)),

it is easy to show that

2W1(a,Q) = W (a,Q) + 2A(a,Q), 2W2(a,Q) = W (a,Q)− 2A(a,Q),
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where

W1(a,Q) =
ω/2∑

i=1

M(si, Q), W2(a,Q) =
ω/2∑

i=1

M(Q− si, Q).

We now have the following values of π(N) for N given by (2.1). We must
partition the problem into several cases.

C a s e A: λ = −1, µ = 1.

1) If r > 1 and q > 2, then

π(N) =





2n+ k + kW (a2, q)/(2ω(a2, q))
−kW (a2, qr)/(2ω(a, qr))
+kW (a, qr)/ω(a, qr) if 2 | k,

4n+ 2k + kW (a, q)/ω(a, q) + kW (a, qr)/ω(a, qr) if 2 - k.

2) If r > 1 and q = 2, then

π(N) =
{

2n+ k + kW (a, 2r)/ω(a, 2r)− kW (a2, 2r)/(2ω(a2, 2r)) if 2 | k,
4n+ 2k + kW (a, 2r)/ω(a, 2r) if 2 - k.

3) If r > 2 and q = 1, then

π(N) =
{

2n+ k + kW (a, r)/ω(a, r)− kW (a2, r)/(2ω(a2, r)) if 2 | k,
4n+ 2k + kW (a, r)/ω(a, r) if 2 - k.

4) If r = 2 and q = 1, then

π(N) =
{

2n+ k if 2 | k,
4n+ 2k if 2 - k.

5) If r = 1 and q > 2, then π(N) = 2n+ k + kW (a, q)/ω(a, q).
6) If r = 1 and q = 1, 2, then π(N) = 2n+ k.

C a s e B: λ = 1, µ = 1.

1) If r > 1 and q > 2, then

π(N) =





3n+ 3k/2 + kW (a2, q)/(2ω(a2, q))
+kW (a, qr)/ω(a, qr)− kW (a2, qr)/(2ω(a2, qr))
+A(a2, q) +A(a, qr)−A(a2, qr) if 2 | k,

6n+ 2k + kW (a, q)/ω(a, q) + kW (a, qr)/ω(a, qr)
+A(a, q) +A(a, qr) if 2 - k.

2) If r > 1 and q = 2, then

π(N) =





3n+ 3k/2 + kW (a, 2r)/ω(a, 2r)
−kW (a2, 2r)/(2ω(a2, 2r)) +A(a, 2r)−A(a2, 2r) if 2 | k,

6n+ 3k + kW (a, 2r)/ω(a, 2r) +A(a, 2r) if 2 - k.
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3) If r > 2 and q = 1, then

π(N) =





3n+ k/2− 2 + kW (a, r)/ω(a, r)
−kW (a2, r)/(2ω(a2, r)) +A(a, r)−A(a2, r) if 2 | k,

6n+ k − 2 + kW (a, r)/ω(a, r) +A(a, r) if 2 - k.

4) If r = 2 and q = 1, then

π(N) =
{

3n+ k − 2 if 2 | k,
6n+ 2k − 2 if 2 - k.

5) If r = 1 and q > 2, then π(N) = 3n+ k+ kW (a, q)/ω(a, q) +A(a, q).
6) If r = 1 and q = 2, then π(N) = 3n+ 2k.
7) If q = r = 1, then π(N) = 3n− 2.

C a s e C: λ = 1, µ = −1.

1) If r > 1 and q > 2, then

π(N) =





3n+ kW (a, qr)/ω(a, qr)
−kW (a2, qr)/(2ω(a2, qr)) + kW (a2, q)/(2ω(a2, q))
−A(a, qr) +A(a2, qr)−A(a2, q) if 2 | k,

6n+ kW (a, q)/ω(a, q) + kW (a, qr)/ω(a, qr)
−A(a, q)−A(a, qr) if 2 - k.

2) If r > 1 and q = 2, then

π(N) =





3n+ k/2 + kW (a, 2r)/ω(a, 2r)
−kW (a2, 2r)/(2ω(a2, 2r)) +A(a2, 2r)−A(a, 2r) if 2 | k,

6n+ k + kW (a, 2r)/ω(a, 2r)−A(a, 2r) if 2 - k.

3) If r > 2 and q = 1, then

π(N) =





3n− k/2− 2 + kW (a, r)/ω(a, r)
−kW (a2, r)/(2ω(a2, r)) +A(a2, r)−A(a, r) if 2 | k,

6n− k − 2 + kW (a, r)/ω(a, r)−A(a, r) if 2 - k.

4) If r = 2 and q = 1, then

π(N) =
{

3n− 2 if 2 | k,
6n− 2 if 2 - k.

5) If r = 1 and q > 2, then π(N) = 3n+ kW (a, q)/ω(a, q)−A(a, q).
6) If r = 1 and q = 2, then π(N) = 3n+ k.
7) If r = 1 and q = 1, then π(N) = 3n− k − 2.

C a s e D: λ = µ = −1.

1) If r > 1 and q > 2, then

π(N) =





4n+ kW ′(a, qr)/ω(a, qr)− kW ′(a2, qr)/(2ω(a2, qr))
+kW ′(a2, qr)/(2ω(a2, q)) if 2 | k,

8n+ kW ′(a, q)/ω(a, q) + kW ′(a, qr)/ω(a, qr) if 2 - k.
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2) If r > 1 and q = 2, then

π(N) =





4n− 2 + kW ′(a, 2r)/ω(a, 2r)
−kW ′(a2, 2r)/(2ω(a2, 2r)) if 2 | k,

8n− 2 + kW ′(a, 2r)/ω(a, 2r) if 2 - k.

3) If r > 2 and q = 1, then

π(N) =





4n− 2 + kW ′(a, r)/ω(a, r)
−kW ′(a2, r)/(2ω(a2, r)) if 2 | k,

8n− 2 + kW ′(a, r)/ω(a, r) if 2 - k, a > 2,
8n− 6 + kW ′(a, r)/ω(a, r) if 2 - k, a = 2.

4) If r = 2 and q = 1, then

π(N) =
{

4n− 2 if 2 | k,
8n− 4 if 2 - k.

5) If r = 1 and q > 2, then π(N) = 4n+ kW ′(a, q)/ω(a, q).
6) If r = 1 and q = 2, then π(N) = 4n− 2.
7) If q = r = 1, then

π(N) =





4n− 2 if a 6= 2 and n > k + 1,
4n− 6 if a = 2 and n > k + 1, n > 3,
4n− 2 if a > 3 and n = k + 1,
4n− 6 if a = 3 and n = k + 1, n > 2,
4n− 10 if a = 2 and n = k + 1, n > 4.

4. Preliminary results. As there are many cases to be considered in
Section 3, it is not our intention to give a complete proof of each of them.
Rather, we will indicate the proof techniques used for the more difficult
cases, particularly where they may differ from those used in [10].

The symbols λj , εj will have the same meanings as those assigned on
p. 236 of [10]. We also put %j = k − n + λj and σj = n − λj . Now let
Q ∈ {q, qr} and put

t−2,j = Q, t−1,j ≡ µa%j (mod Q),

where 0 < t−1,j < Q. Put

t−2,j/t−1,j = 〈µ0,j , µ1,j , . . . , µm,j〉,
where

m =
{
M(t−1,j , t−2,j) if λ = −1,
M(t−1,j , t−2,j) if λ = 1.

Note that λ = (−1)m−1. If we put A−2,j = 0, A−1,j = 1 and define

tn+1,j = µn+1,jtn,j − tn−1,j ,

An+1,j = µn+1,jAn,j +An−1,j (−1 ≤ n ≤ m− 1),
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we get

(4.1) ti,jAi+1,j + ti+1,jAi,j = Q (−2 ≤ i ≤ m− 1)

and
Am,j = Q, Am−1,j ≡ µaσj (mod Q).

Putting

Ci,j = aσj ti,j − µλ(−1)iAi,j , Di,j = a%jAi,j + µ(−1)iti,j ,

we get

(4.2) Ci,jti+1,j − ti,jCi+1,j = (−1)i+1µλQ,

(4.3) Di,jAi+1,j −Di+1,jAi,j = (−1)iµQ,

(4.4) Di,jCi+1,j + Ci,jDi+1,j = (ak + λ)Q,

(4.5) Di+1,j = µi+1,jDi,j +Di−1,j ,

(4.6) Ci−1,j = µi+1,jCi,j + Ci+1,j (−1 ≤ i ≤ m− 1).

Now it is easy to show by induction, using (4.5) and (4.6), that Q |Ci,j
and Q |Di,j for −2 ≤ i ≤ m. Also, D−2,j = Cm,j = µQ; Di,j ≥ 0 for
−1 ≤ i ≤ m, and Ci,j ≥ 0 for −2 ≤ i ≤ m − 1. Furthermore, if Di,j = 0,
then µ = 1, Q > a%j , i = −1; or µ = −1, t0,j = a%j , µ0,j = 1, i = 0,
Q > a%j . If Ci,j = 0, then µ = 1, Q > aσj , i = m−1; or µ = −1, tm−2,j = 1,
Am−2,j = Q− aσj , i = m− 2, Q > aσj .

Let T = (σ/2)(qran + µ(ak + λ)/q). In most cases we have

b
√
Nc =

{
T if µλ < 0,
T − 1 if µλ > 0.

If, as in [10], we put Rh = (Ph + b√Nc)/σ and Sh = Qh/σ (h = 0, 1, 2, . . .),
we have the following results.

Theorem 4.1. If j < n− 1 and

Rh = (qr/Q)anti−1,jAi,j + µCi−1,jDi,j/(qQ),

Sh = (qr/Q)anti,jAi,j + µCi,jDi,j/(qQ) (−1 ≤ i ≤ m− 1),

then qh = µi+1,j.

In order to prove Theorem 4.1 we require two lemmas.

Lemma 4.2. If −1 ≤ i ≤ m− 1, then Sh > Di,j/q.

P r o o f. Suppose that i ≥ 0 and Ci+1,j > 0. In this case Di+1,j >Di,j ≥0
and Ci+1,j ≥ Q. By (4.4) we have

(ak + λ)Q ≥ Di,jQ+ Ci,jDi,j .

Hence

Sh ≥ an − Ci,jDi,j/(qQ) ≥ an − (ak + λ)/q +Di,j/q > Di,j/q.
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The particular cases of i = −1, Ci+1,j < 0 (i = m − 1) or Ci+1,j = 0 (i =
m − 2,m − 3) can be dealt with separately. In each case it can be shown
that Sh > Di,j/q.

Lemma 4.3. If r, s ∈ Z, s - r and either |α − r/s| < 1/s or −1/s ≤
α− r/s ≤ 0, then bαc = br/sc.

P r o o f o f T h e o r e m 4.1. We first note that

qh =
{ b(σRh − 1)/(σSh)c if µλ > 0,
bRh/Shc if µλ < 0.

Also, from (4.2) we get

ti,jRh − ti−1,jSh = Di,j(−1)iλ/q.

If Sh |Rh, then Sh |Di,j/q. Since, by Lemma 4.2, Sh > Di,j/q, we can
only have Di,j/q = 0.

If Sh -Rh, then qh = bRh/Shc by Lemma 4.3. Thus, if Sh -Rh, we get∣∣∣∣
Rh
Sh
− ti−1,j

ti,j

∣∣∣∣ =
Di,j

qShti,j
<

1
ti,j

.

If Sh |Rh, we get Rh = cti−1,j , Sh = cti,j with c > 1. Hence,∣∣∣∣
σRh − 1
σSh

− ti−1,j

ti,j

∣∣∣∣ =
1
σSh

<
1
ti,j

.

Thus, if ti,j - ti−1,j , we get qh = µi+1,j by Lemma 4.3.
If ti,j | ti−1,j , then ti,j = 1 and i = m − 1 or m − 2. In these cases it is

easy to show that Di,j 6= 0, as σi 6= 0 and %j 6= 0 (j < n− 1). If i = m− 2,
then tm−3,j = µm−1,j + 1 and Rh − tm−3,jSh < 0. Hence

bRh/Shc = tm−3,j − 1 = µm−1,j .

If i = m− 1, then
bRh/Shc = tm−2,j = µm,j .

The following result can be proved in the same manner as Lemma 5.2 of
[10] except that we use (4.1)–(4.3).

Theorem 4.4. If Rh and Sh are given by the formulas of Theorem 4.1,
then
Rh+1 = qhSh −Rh + 2T/σ = (qr/Q)anti,jAi+1,j + µCi,jDi+1,j/(qQ),

Sh+1 = (2T/σ)Rh+1 −R2
h+1 − µλran

= (qr/Q)anAi+1,jti+1,j + µCi+1,jDi+1,j/(qQ).

5. An example. In this section we will develop the continued fraction
expansion of ν(N) for certain N with λ = 1, µ = −1, r > 1. We do this to
exemplify the techniques that were used to obtain all the results of Section 3.
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However, in the interest of brevity, we will concentrate our efforts here on a
few particular cases.

We define
γ∗j ≡ a%j (mod qr), γj ≡ a%j (mod q),

δ∗j ≡ a%j (mod qr), δj ≡ a%j (mod q),

where 0 < γ∗j , δ
∗
j < qr, 0 ≤ γj , δj < q. Put t∗i,j = ti,j , A∗i,j = Ai,j , C∗i,j = Ci,j ,

D∗i,j = Di,j , where the ti,j , Ai,j , Ci,j , Di,j are those defined in Section 4
with Q = qr. Put ti,j , Ai,j , Ci,j , Di,j to be those defined in Section 4 with
Q = q.

We also define

η(i) = 3 + εiwi (0 ≤ i ≤ n− 1)

where wi = 0 when εi = 0. Since
n−2∑

i=0

εi = bk(n− 1)/nc = k − 1,

we see that there are exactly k − 1 values of i ∈ {1, . . . , n − 2} such that
εi = 1. Let i1, . . . , ik−1 be those values of i. Then

ih−1∑

j=0

εj = h− 1 and
ih∑

j=0

εj = h;

thus, ih is the least value of j such that b(j + 1)k/nc = h. It follows that
j ≥ bhn/kc. Since for j = bhn/kc we get b(j + 1)k/nc = h, we have j =
ih = bhn/kc. If εj = 1, where j = ih, we put

wj =
{
M(qr − γ∗j , qr) if 2 -h,
M(q − γj , q) if 2 |h.

Define

ψ(j) = 1 +
j−1∑

i=0

η(i) (1 ≤ j ≤ n− 1).

We will now deal with the case of q > 2. In this case we get b√Nc = T
and

R0 = 1 + (T − 1)/σ, S0 = 1, q0 = 1 + (T − 1)/γ;

R1 = 2T/σ, S1 = ran, q1 = q − 1;

R2 = (q − 1)ran, S2 = qran + (ak + 1)/q − ran − ak, q2 = 1;

R3 = qran − ak, S3 = ak, q3 = qran−k − 1.

By making use of Theorem 4.4 and the techniques of [10] we can now develop
the continued fraction expansion of ν(N).
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For 1 ≤ h ≤ k−1, bhn/kc ≤ j < b(h+ 1)n/kc, j < n−1, 2 -h, s = ψ(j),
we get

Rs = 2T/σ, Ss = ran−λj ,

qs =
{
qaλj − 1 if εj = 0,
qaλj − 1− (ak+λj−n − γ∗j )/(qr) if εj = 1.

If, in this case εj = 0, then ψ(j + 1) = ψ(j) + 3 and

Rs+1 = qran − ran−λj ,
Ss+1 = qran + (ak + 1)/q − ran−λj − aλj+k, qs+1 = 1;

Rs+2 = qran − aλj+k, Ss+2 = aλj+k, qs+2 = qran−λj−k − 1.

If εi = 1, then let m = M(qr − γ∗j , qr). We get ψ(j + 1) = ψ(j) +m+ 3
and for −1 ≤ i ≤ m,

Rs+i+2 = ant∗i−1,jA
∗
i,j − C∗i−1,jD

∗
i,j/(q

2r),

Ss+i+2 = ant∗i,jA
∗
i,j − C∗i,jD∗i,j/(q2r),

qs+i+2 =
{
µi+1,j if i < m,
qan−λj+1 − 1− (ak−λj+1 − δ∗j )/(qr) if i = m.

For 1 ≤ h ≤ k−1, bhn/kc ≤ j < b(h+ 1)n/kc, j < n−1, 2 |h, s = ψ(j),
we get

Rs = 2T/σ, Ss = an−λj ,

qs =
{
qraλj − 1 if εj = 0,
qraλj − 1− (ak+λj−n − γj)/(qr) if εj = 1.

If, in this case, εj = 0, then ψ(j + 1) = ψ(j) + 3 and

Rs+1 = qran − an−λj ,
Ss+1 = qran + (ak + 1)/q − raλj+k − an−λj , qs+1 = 1;

Rs+2 = qran − raλj+k, Ss+2 = raλj+k, qs+2 = qan−λj−k − 1.

If εi = 1, then let m = M(q − γj , q). We get ψ(j + 1) = ψ(j) + m + 3 and
for −1 ≤ i ≤ m

Rs+i+2 = ranti−1,jAi,j − Ci−1,jDi,j/q
2,

Ss+i+2 = ranti,jAi,j − Ci,jDi,j/q
2,

qs+i+2 =
{
µi+1,j if i < m,
qran−λj+1 − 1− (ak−λj+1 − δj)/q if i = m.

If we put j = n− 1, θ = ψ(n− 1)− 1, we get εn−1 = 1, λn−1 = n− k. If
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2 | k − 1, then

Rθ+1 = 2T/σ, Sθ+1 = rak, qθ+1 = qan−k − 1;

Rθ+2 = qran − rak, Sθ+2 = qran + (ak + 1)/q − rak − an, qθ+2 = 1;

Rθ+3 = qran − ak, Sθ+3 = an, qθ+3 = qr − 1;

Rθ+4 = 2T/σ, Sθ+4 = r, qθ+4 = qan − (ak + 1)/(rq).

Also, Rθ+5 = 2T/σ = Rθ+4. Since Ri = Ri+1 can occur at most once in
the period of the continued fraction expansion of ν(N) and since no value
of Si = 1 for i ≤ θ + 5 (see Lemma 4.2), we must have π(N) = 2(θ + 4).

If 2 - k − 1, then we find that

Rθ+1 = 2T/σ, Sθ+1 = ak, qθ+1 = qran−k − 1;

Rθ+2 = qran − ak, Sθ+2 = qran + (ak + 1)/q − ak − ran, qθ+2 = 1;

Rθ+3 = qran − ran, Sθ+3 = ran, qθ+3 = q − 1;

Rθ+4 = 2T/σ, Sθ+4 = 1;

hence, π(N) = θ + 4.
It remains to evaluate ψ(n− 1). Clearly

ψ(n− 1) = 3n− 3 +
k−1∑

h=1

wih .

Putting th = q − γih , t∗h = qr − γ∗ih , we get

th ≡ (−1)bhn/kca−nk (mod q), t∗h ≡ (−1)bhn/kca−nh (mod qr).

If we put

Ω =
k−1∑

2|h, h=1

M(th, q) +
k−1∑

2-h, h=1

M(t∗h, qr),

then ψ(n− 1) = 3n− 3 +Ω.
If k is odd, then

Ω =
(k−1)/2∑

i=1

M(t2i, q) +
(k−1)/2∑

i=1

M(t∗2i−1, qr).

Also, if h 6= k, then tk−h ≡ −t−1
h (mod q) from which it is easy to show

that

M(tk−h, q) = M(th, q).

Similarly

M(t∗k−h, q) = M(t∗h, q) (k 6= h).
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Since k − h and h have opposite parity, it follows that we can write

2Ω =
k−1∑

i=1

M(ti, q) +
k−1∑

i=1

M(t∗i , qr).

Now Q > 2 means that ω(a,Q) = 2µ where µ is odd and µ | k. Hence,
by the remarks at the beginning of Section 3 we have

k∑

j=1

M(Q− Sj , Q) = bk/ω(a,Q)cW ′(a,Q) +W2(a,Q)

= kW (a,Q)/ω(a,Q)−A(a,Q).

If we consider the sum
∑k−1
i=1 M(ti, q) and sum this over j ≡ −in (mod k),

we get
k−1∑

i=1

M(ti, q) =
k−1∑

j=1

M(q − sj , q).

Also,
k−1∑

i=1

M(t∗i , qr) =
k−1∑

j=1

M(qr − s∗j , qr),

where si ≡ ai (mod q), s∗i ≡ ai (mod qr), 0 < si ≤ q, 0 < s∗i < qr.
Thus, we get

π(N) = 6n+ kW (a, qr)/ω(a, qr) + kW (a, q)/ω(a, q)−A(a, qr)−A(a, q).

To obtain the result when 2 | k, we note that
k∑

2-h, h=1

M(t∗h, qr) =
k∑

2-j, j=1

M(q − s∗j , qr)

and
k∑

2|h, h=1

M(th, q) =
k∑

2|j, j=1

M(q − sj , q).

Also,
k∑

2|j, j=1

M(q − sj , q) =
k/2∑

i=1

M(q − s2i, q)

= bk/(2ω(a2, q))cW ′(a2, q) +W2(a2, q)

and
k∑

2-j, j=1

M(qr − s∗j , qr) =
k∑

i=1

M(qr − s∗i , qr)−
k/2∑

i=1

M(qr − s∗2i, qr).
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6. The fundamental units. The method of [10] can be extended to
determine the values of Pi, Qi (i = 1, 2, . . . , π(N)) for any N given by (2.1).
We can then use (1.1) to produce the value of ε. Curiously, although the
formulas for π(N) given above are quite complicated, the values for ε are
very simple and are given below.

Define
α = (σ(qran + µ(ak + λ)/q) + 2

√
N)/(2σ),

γ = (σ(q2ran + µ(ak − λ)) + 2q
√
N)/(2σ).

If r = 1, then

ε = αkγn/akn and N(ε) = (µλ)k(−λ)n.

If r > 1, then

ε =
{
αkγn/(rk/2akn) if 2 | k,
α2kγ2n/(rka2kn) if 2 - k.

In each of these cases N(ε) = 1.
We indicate how these results can be proved by once again discussing

one case only. The proofs for the remaining cases are similar or simpler.
We first note that by making use of the identities given in Section 1 we

can easily show that if ϕi = (Pi +
√
N)/Qi, then

ϕiϕi+1 = (Pi+1qi +Qi+1 + qi
√
N)/Qi+1.

Also, if we put

β = (σ(qran − µ(ak + λ)/q) + 2
√
N)/(2σ),

we get αβ = ranγ.
We consider the example of N with µ = −1, λ = 1, r > 1, q > 2

discussed in Section 5. Let s, j and h have the meanings assigned to them
in the continued fraction development of ν(N) given in Section 5. If εj = 0,
we get

ϕs+1ϕs+2 =
{
β/aλj+k (2 -h),
β/(raλj+k) (2 |h).

Also,

ϕs =
{
α/(ran−λj ) (2 -h),
α/an−λj (2 |h).

Thus, if εj = 0, then

ϕsϕs+1ϕs+2 = αβ/(ran+k) = γ/ak.

If εj = 1, set

χj =
m+2∏

i=1

ϕs+i.
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If we put

ϕ′0 = (Ps +
√
N)/Qs = 〈q′0, q′1, q′2, . . .〉,

and A′i/B
′
i = 〈q′0, q′1, . . . , q′i〉 with gcd(A′i, B

′
i) = 1 and B′i > 0, then we get

χj = Qs(A′m+1 −B′m+1ϕ
′
0)/Qs+m+2.

(See, for example, Williams and Wunderlich [16]).
If 2 -h, then

ϕ′0 = α/(ran−λj ), q′0 = qaλj − 1− (ak−n+λj − γ∗j )/(qr),

q′i = µi−1,j (i = 1, 2, . . . ,m+ 1).

Since

〈µ0,j , µ1,j , . . . , µm,j〉 = qr/(qr − γ∗j ),

we get

〈q′0, q′1, . . . , q′m+1〉 = q′0 + (qr − γ∗j )/(qr) = (q2raλj − ak−n+λj )/(qr).

Hence,

A′m+1 = q2raλj − ak−n+λj , B′m+1 = qr.

Now, Qs = σran−λj and Qs+m+2 = σraλj+1 ; therefore χj = γ/aλj+1 =
γ/ak−n+λj+1 . Furthermore,

ϕsχj = γ/(rak) (2 -h).

By similar reasoning it can be shown that

ϕsχj = γ/ak (2 |h).

We also note that

ϕθ+1ϕθ+2ϕθ+3 = γ/ak and ϕθ+4 =
{
α if 2 - k,
α/r if 2 | k.

We are now ready to evaluate ζ =
∏θ+4
i=1 ϕi. We note that there are k−1

values of j = bhn/kc(h = 1, . . . , k − 1) such that εj = 1 and j ≤ n − 2. Of
these exactly (k − 1)/2 are such that h is odd when k is odd and exactly
k/2 of these are such that h is odd when k is even. Thus, if 2 - k, then

ζ = r(k−1)/2
( ∏

0≤j≤n−2
εj=0

(γ/ak)
∏

0≤j≤n−2
εj=1

γα/(rak)
)

(γ/ak)α

= r(k−1)/2(γ/ak)n−1−(k−1)(γa/(rak))k−1(αγ/ak)

= akγn/(r(k−1)/2ank).

Since in this case we have Pθ+4 = Pθ+5, we see by (1.2) that

ε = (Qθ+4/σ)ζ2 = γ2nα2k/(rka2nk)
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when 2 -h. If 2 | k, then

ε = ζ = rk/2(γ/ak)n−k(γα/(rak))k−1(γα)/(rak) = γnαk/(rk/2ank).

It would be of some considerable interest to produce a simpler proof of
the fundamentality of these units than that afforded by producing the very
intricate continued fraction period of ν(N); however, no such technique is
known to the author. Also, from the above formulas for ε, we see that the
regulator R of Q(

√
N) is O((logN)2). It would be of very great interest

if an infinite parametric family of N values could be produced such that
for each N the complete continued fraction period could be predicted but
R � (logN)3. No such family is known, although the family given by Ya-
mamoto [17] (see also Halter-Koch [6]):

N = (anr + a− 1)2 + 4ran,

where a, r are primes and a < r, is such that R � (logN)3 infinitely
often. Nevertheless, no one knows (beyond a certain point) how to predict
its period. For example, if a = 3, r = 5 we get

n π(N)
2 29
3 81
4 217
5 652
6 1801
7 2216
8 22206
9 44776
10 20968
11 61748
12 566474
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