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Normal integral bases and the Spiegelungssatz of Scholz
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Jan Brinkhuis (Rotterdam)

Introduction. In Hilbert’s Zahlbericht one can find the first global re-
sult on the Galois module structure of rings of integers ([H], Satz 132).
Slightly extended it states that if N/Q is a tame extension with abelian Ga-
lois group ∆, then oN , the ring of integers in N , is free as a module over the
group ring Z∆; moreover, an explicit canonical algebraic integer a such that
oN = Z∆a can be given. The numbers aδ (δ ∈ ∆), the algebraic conjugates
of a, are said to form a normal integral basis of the field extension N/Q.

This result has been the starting point for a modern development, which
has led to the deep result that the structure of oN as a module over Z∆, for
arbitrary tame Galois extensions of number fields N/K with Galois group ∆,
is determined in terms of the symplectic root numbers of N/K (see [F]
and [T1]). Fröhlich’s book [F] also contains a detailed introduction and a
rather complete list of references. For a more recent survey on Galois module
theory we refer to [Ca–Ch–F–T].

In the special case that ∆ is of odd order the result mentioned above
gives that oN is a free Z∆-module, but the proof does not provide an explicit
basis. If one considers the richer oK∆-module structure of oN rather than
the Z∆-module structure alone, then oN is expected to be “usually” not even
free if K 6= Q. Results of Taylor show that by modifying both oN and oK∆
one can sometimes—if K and N are certain ray class fields over imaginary
quadratic number fields—achieve the “ideal” of free modules with explicit
generators (see [C–T]). However, if one decides not to modify the original
classical problem of the determination of the oK∆-module structure of oN ,
then a natural question is to what extent, for given K and ∆, the realization
of ∆ as a Galois group of a tame extension N/K is determined by the
ramification of N/K together with the structure of oN as an oK∆-module.
This point of view is worked out in [B2]. In a sense the core of the question
is how rare unramified extensions which possess a normal integral basis are.
We mention in passing that this question is equivalent to a special case of a
problem considered by Taylor in recent work, that of determining the kernel
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of the homomorphism ψ (see [T4]). In [B3] it is shown that such extensions
cannot exist if K is totally real and ∆ is abelian of odd degree. It seemed
worthwhile, also in view of the current interest in the theme of the Galois
module structure of abelian extensions of imaginary quadratic number fields
(see for example [T2]), to consider the following further example: K is an
imaginary quadratic number field and ∆ is cyclic of order 3. Our result is
that one gets at most one such an extension for each K. We recall here
that it is generally believed that the number of all unramified cubic cyclic
extensions of an imaginary quadratic field can be arbitrarily large. Our result
is essentially a reformulation of the classical Spiegelungssatz of Scholz which
is concerned with a relation between the ideal class groups of Q

√−d and
Q
√

3d ([S]). In fact, there exists a quite general connection between reflection
theorems and Galois module structure, but the present special case could be
dealt with so directly that it seemed appropriate to give a separate account
of it, before dealing with the general situation. Before stating our result
precisely, we finally remark that only very few explicit examples of normal
integral bases are known.

Theorem. (i) A given imaginary quadratic number field has at most one
unramified cubic cyclic extension with a normal integral basis.

(ii) Let m be a rational integer which cannot be written in the form
n3−n2 for any rational integer n. Then the splitting field N of the polynomial
f(X) = X3−X2−m is an unramified cubic cyclic extension of the imaginary
quadratic number field K = Q

√−27m2 − 4m and the roots of f(X) form a
normal integral basis of the extension N/K; this basis is moreover selfdual
with respect to the trace form.

(iii) There are no examples of unramified cubic cyclic extensions of imag-
inary quadratic number fields with a normal integral basis other than those
given in (ii).

(iv) A given imaginary quadratic number field K = Q
√−d has an un-

ramified cubic cyclic extension with a normal integral basis if and only if
in the real quadratic number field Q

√
3d there is an algebraic unit which is

≡ 1 mod 3
√

3 and which is not a third power.

This work was begun in May 1988 while the author enjoyed the hospi-
tality of the University of Bordeaux I.

1. Notation and auxiliary results. Let N/K be a Galois extension
of algebraic number fields with Galois group ∆. A basis of oN , the ring of
algebraic integers in N , as a module over oK , the ring of algebraic integers
in K, which consists of the algebraic conjugates over K of one algebraic
integer a, is called a normal integral basis; then a is called a normal integral
generator . Let the group ∆ act on the group ring N∆ by the Galois action
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on the coefficient ring N . For each n ∈ N let the Lagrange resolvent of n be
the element of N∆ defined by

R(n) =
∑

δ

nδδ−1,

where δ runs over ∆. It satisfies the relation R(n)δ = R(n) · δ for all δ ∈ ∆.
The extension N/K will be called unramified if it is unramified at all finite
primes of K.

(1.1) Proposition. (i) If N/K is unramified and if moreover it has a
normal integral generator a, then R(a) ∈ oN∆

×, the group of units of oN∆.
(ii) If there is an element u ∈ oN∆

× with uδ = u · δ for all δ ∈ ∆,
then N/K is unramified , u = R(a) for some a ∈ oN and this number a is a
normal integral generator of N/K.

P r o o f. See [B1].

The trivial homomorphism ∆→ 1 induces a morphism of rings N∆→ N
which is called augmentation and which is denoted by aug. Let TrN/K be
the trace map from N to K. For each n ∈ N , one has, by the definitions,
the following identity:

(1.2) augR(n) = TrN/K n.

Let ̂ denote the standard involution on N∆ given by inversion on ∆.

(1.3) Corollary of Proposition (1.1). The following conditions on
an algebraic integer a in N are equivalent and imply that N/K is unramified
and that a is a normal generator of N/K.

(i) For all γ, δ ∈ ∆,

TrN/K(aγaδ) =
{

1 if γ = δ,
0 otherwise.

(ii) R(a)R̂(a) = 1.

An algebraic integer in N which satisfies the conditions of Corollary (1.3)
is called a selfdual normal integral generator (with respect to the trace form)
and the basis it generates a selfdual normal integral basis (with respect to
the trace form).

In the rest of this section we assume that the extension N/Q is Galois
and K/Q is abelian. We choose an embedding i : N ↪→ C; then complex
conjugation on C restricts to an automorphism of N which we denote in the
usual way by writing x for the image of x ∈ N under the automorphism. This
automorphism of N depends in general on the chosen embedding i, but its
restriction to K is independent of the choice of i. One defines an involution
on N∆, which in a sense “plays the role of complex conjugation”, by the
formula
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(1.4)
∑

δ

aδδ =
∑

δ

aδδ
−1,

where δ runs over ∆; that is, one acts on N by and simultaneously on
∆ by inversion. For each abelian group A let tor(A) be its torsion subgroup.
Let µ be the group of roots of unity in Qc, an algebraic closure of Q. Let Zc

be the ring of algebraic integers in Qc. We will need the following facts.

(1.5) Lemma. (i) If u ∈ oK∆
× then u(u)−1 ∈ tor(oK∆×).

(ii) tor(Zc∆×) = µ ·∆.

P r o o f. See [B1] for (i); (ii) is a well-known fact.

2. Proof of the Theorem

(2.1) R e m a r k. To put the last statement of (ii) in a more general per-
spective, we mention that the argument in Taylor’s article [T3] in Proposi-
tion 4.2.3 shows that if N/K is abelian, odd, unramified and with a normal
integral basis, then it necessarily has a selfdual normal integral basis.

(2.2) R e m a r k. We want to draw attention in particular to the somewhat
unusual verification, in the proof of (iii) below, that the number m ∈ Q√−d
satisfies m = m.

(2.3) P r o o f o f (ii). Let m be a rational integer which cannot be written
in the form n3−n2 with n ∈ Z. Then the polynomial f(X) = X3−X2−m
is irreducible over Q. Let N be the splitting field of f(X) and let α1, α2, α3

be the roots of f(X). The discriminant of f(X) is −27m2−4m = [(α1−α2)
× (α2 − α3)(α3 − α1)]2 (see [Jac], Vol. III, p. 93, formula (6)). This is a
negative number, so it is not a square in Z and therefore the Galois group of
N over Q is the symmetric group S3. Moreover, N contains the imaginary
quadratic field K = Q

√−27m2 − 4m and N/K is a cubic cyclic extension.
Expressing the coefficients of f(X) in terms of its roots we obtain the re-
lations α1 + α2 + α3 = 1 and α1α2 + α2α3 + α3α1 = 0; it follows that
α2

1 + α2
2 + α2

3 = 1. The last two relations can be written as follows:

TrN/K(αiαj) = δi,j for all 1 ≤ i, j ≤ 3

(with Tr = Trace and δ = Kronecker delta), that is, α1, α2, α3 form a
selfdual normal integral basis of N/K; moreover, by Corollary (1.3), N/K
is unramified.

(2.4) P r o o f o f (iii). Let N be an unramified cubic cyclic extension of
an imaginary quadratic field K such that N/K has a normal integral basis.
Let β1, β2, β3 be a normal integral basis of N/K and let δ ∈ ∆ = Gal(N/K)
be such that βδ1 = β2. We let w be R(β1), the Lagrange resolvent of β1. Then
wδ = w · δ and by Proposition (1.1) one has w ∈ oN∆

×. Therefore ŵδ =
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ŵ · δ−1 and it follows that the element u = ŵw−1 satisfies u ∈ oN∆
×,

uδ = u·δ and uû = 1. It follows from Proposition (1.1)(ii) and Corollary (1.3)
that, if we write u = α1 +α2δ

−1 +α3δ
−2 with α1, α2, α3 ∈ oN , then α1, α2,

α3 form a selfdual normal integral basis of N/K. That is, α1, α2, α3 form a
set of algebraic integers in N satisfying the relations α2

1 + α2
2 + α2

3 = 1 and
α1α2 + α2α3 + α3α1 = 0 and hence (α1 + α2 + α3)2 = 1. Therefore we may
assume that α1 + α2 + α3 = 1, replacing, if necessary, α1, α2, α3 by −α1,
−α2, −α3. Moreover, the numbers α1, α2, α3 are roots of the polynomial
f(X) = X3−X2−m, where m = α1α2α3. We still have to show that m ∈ Z.
The problem is that though we know that the algebraic integers α1, α2, α3

form a complete set of conjugates over K and so that their product m lies
in oK , we do not yet know whether they form a complete set of conjugates
over Q, that is, we do not yet know whether m = m, where is complex
conjugation. We recall that the properties of α1, α2, α3 can be expressed in
terms of the Lagrange resolvend u as follows:

u ∈ oN∆
×, uû = 1, uδ = u · δ, aug u = 1,

where aug is the augmentation homomorphism from oN∆
× to o×N . It follows

that the action of the group ∆ = Gal(N/K) leaves u3 fixed, that is, all the
coefficients of u3 lie in K and therefore u3 ∈ oK∆

×. As K/Q is abelian, it
follows from Lemma (1.5)(i) that u3(u3)−1 ∈ tor(oK∆×).

Now we need the fact that an unramified abelian extension of a quadratic
number field is always Galois over Q. By lack of a reference we include a
proof. For each ideal of K its absolute norm is a principal ideal; therefore
the Galois action of Gal(K/Q) on the ideal classgroup ClK leaves each sub-
group of ClK stable. Transferring this fact, via the canonical isomorphism
from class field theory, from ClK to Gal(HK/K), where HK is the maximal
unramified abelian extension of K, gives the following result (see also state-
ment (i) of Theorem (11.5) in [C–F]): each subgroup of Gal(HK/K) is a
normal subgroup of Gal(HK/Q). By Galois theory this can be reformulated
as follows: each unramified abelian extension of K is Galois over Q.

We choose an embedding N ↪→ C and define “complex conjugation” on
the group ringN∆ accordingly (see (1.4)). It follows that uu−1 ∈ tor(oN∆×)
and so by Lemma (1.5)(ii) that uu−1 ∈ µN ·∆.

On the other hand, as aug u = 1, it follows that aug(uu−1) = 1. Therefore
uu−1 ∈ ∆, that is,

α1 + α2δ
−1 + α3δ

−2 = (α1 + α2δ + α3δ
2)γ

for some γ ∈ ∆. Hence, applying the map from N∆ to N which sends each
element to the product of its coefficients, we get

m = α1α2α3 = α1α2α3 = m,

that is, m ∈ Z, as required.
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Finally, the polynomial

f(X) = (X − α1)(X − α2)(X − α3) = X3 −X2 −m
is clearly not reducible over Q, and so m cannot be written in the form
n3 − n2 for any n ∈ Z.

In the proof of (iv) we will use the following lemma.

(2.5) Lemma. Let N be an unramified cubic cyclic extension of an imag-
inary quadratic number field K with a selfdual normal integral basis α1, α2,
α3 with α1 +α2 +α3 = 1. Then m = α1α2α3 lies in Z and for each primitive
cube root of unity ζ the following identity holds:

(α1 + α2ζ
−1 + α3ζ

−2)3 = 1 + 27
2 m± 3

2

√
81m2 + 12m

where the sign ± has to be chosen suitably.

P r o o f. We have already shown that m ∈ Z in the proof of statement
(iii) of the Theorem. An easy calculation, using α1 + α2 + α3 = 1, α1α2 +
α2α3 + α3α1 = 0 and α1α2α3 = m, gives the identity

(α1 + α2δ
−1 + α3δ

−2)3

= (1 + 9m) +
(− 9

2m− 3
2D
)
δ−1 +

(− 9
2m+ 3

2D
)
δ−2,

where D = (α1−α2)(α2−α3)(α3−α1). We recall that D2 = −27m2− 4m.
Specializing δ to ζ and writing ζ = − 1

2 + 1
2

√−3 gives the identity in the
statement of the lemma.

(2.6) R e m a r k. The following consequence is perhaps of some indepen-
dent interest:

Let m ∈ Z be such that 81m2 + 12m is not a square. Then 1 + 27
2 m +

3
2

√
81m2 + 12m is an algebraic unit in the real quadratic number field

Q
√

81m2 + 12m.

(2.7) P r o o f o f (iv). Firstly we prove the following implication. If an
imaginary quadratic number field K = Q

√−d has an unramified cubic cyclic
extension with a normal integral basis, then there is an algebraic unit t in
Q
√

3d which is ≡ 1 mod 3
√

3 and which is not a third power in Q
√

3d. We
use statement (iii) of the theorem: let m ∈ Z be such that N is the splitting
field of X3 − X2 − m and let α1, α2, α3 be the roots of this polynomial.
Then the choice t = (α1 + α2ζ

−1 + α3ζ
−2)3 has the required properties by

Lemma (2.5).
Secondly we prove the converse. Let t be an algebraic unit in Q

√
3d which

is ≡ 1 mod 3
√

3 and which is not a third power in Q
√

3d. Let s be a cube
root of t. Let v be a valuation above 3 on the number field Q(s, ζ). Then the
product of the three numbers s− 1, s− ζ and s− ζ2 is u− 1 ≡ 0 mod 3

√
3,

so at least one of them has v-valuation ≥ v(
√

3). Therefore, as these three
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numbers are clearly congruent modulo
√

3, it follows that each of them has
v-valuation ≥ v(

√
3). As this holds for each valuation v on Q(s, ζ) above 3,

we conclude that s ≡ 1 mod
√

3. Now we define the numbers α1, α2, α3 by
the following system of equations:

α1 + α2 + α3 = 1,

α1 + ζ−1α2 + ζ−2α3 = s,

α1 + ζα2 + ζ2α3 = s−1.

Adding the equations gives 3α1 = 1 + s + s−1 = 3 + s−1(s − 1)2, which is
≡ 0 mod 3, as s ≡ 1 mod

√
3. Therefore α1 is an algebraic integer. In the

same way one proves that α2 and α3 are also algebraic integers. Now we
consider the element u = α1 + α2δ

−1 + α3δ
−2 in the group ring Zc∆ where

∆ is a cyclic group of order 3 with generator δ. Let ζ be a primitive cube
root of unity. We use the fact that the map from Qc∆ to Qc×Qc×Qc given
by a + bδ + cδ2 → (a + b + c, a + bζ + cζ2, a + bζ2 + cζ) is an isomorphism
of Qc-algebras: it follows that uû = 1 and that the coefficients of u3 lie
in K. The latter fact can be expressed as follows: u3 = (u3)ω for all ω ∈
ΩK = Gal(Qc/K). Therefore u(uω)−1 ∈ tor(Zc∆×), which is equal to µ ·∆
by Lemma (1.5). Therefore, as aug u = 1, it follows that u(uω)−1 ∈ ∆ for
all ω ∈ ΩK . That is, the coefficients of u form a complete set of algebraic
conjugates over K of one integer. As moreover uû = 1, it follows from
Corollary (1.3) that the coefficients α1, α2, α3 of u form a selfdual normal
integral basis of the unramified cubic cyclic extension K(α1, α2, α3)/K.

(2.8) P r o o f o f (i). Let K = Q
√−d be an imaginary quadratic number

field. Suppose N/K is an unramified cubic cyclic extension with a normal
integral basis. Let α1, α2, α3 be a selfdual normal integral basis of N/K
with α1 + α2 + α3 = 1. We write u = α1 + α2δ

−1 + α3δ
−2 in Zc∆ where

δ ∈ ∆ = Gal(N/K) is defined by αδ1 = α2. Then uû = 1 and u3 ∈ oK∆
×.

Therefore (α1 + ζα2 + ζ2α3)(α1 + ζ2α2 + ζα3) = 1 and (α1 + ζα2 + ζ2α3)3 ∈
o×K(ζ). We write s = α1 + ζ2α2 + ζα3 and t = s3. Then

α1 + α2 + α3 = 1,

α1 + ζ2α2 + ζα3 = s,

α1 + ζα2 + ζ2α3 = s−1,

and t ∈ o×K(ζ) with t ≡ 1 mod 3
√

3.
Clearly N(ζ) = K(ζ)(s), so t determines N(ζ) and so it determines N .

Now we consider the following subgroups of o×K(ζ):

U = {r ∈ o×K(ζ) | r ≡ 1 mod 3
√

3},
V = {w3 | w ∈ o×K(ζ), w ≡ 1 mod

√
3}.
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Clearly t ∈ U and changing t by a factor which belongs to V does not
change the field K(ζ)(s); therefore the image of t in the quotient group
U/V determines N . Moreover, as t = (α1 + ζ−1α2 + ζ−2α3)3, it does not
belong to V , that is, the image of t in U/V is not trivial. Furthermore,
replacing t by t−1 also does not change the field K(ζ)(s). So the image
of t in the set S of orbits in (U/V ) − {1} under the action by inversion
determines N . Therefore, in order to prove (i), it suffices to show that S
cannot have more than one element. Applying Dirichlet’s unit theorem to
the biquadratic imaginary number field K(ζ) it follows that U/V ' Z/3
or ' 1, which gives the desired conclusion.

3. A Galois module interpretation of the Spiegelungssatz of
Scholz. We recall the following classical result. Let, for each d ∈ Z, r3(d)
be the 3-rank of the ideal classgroup of Q

√
d.

(3.1) Theorem (Scholz [S]). Let d ∈ N. Then r3(−d)− r3(3d) = 0 or 1.

This is the simplest non-trivial example of Leopoldt’s Spiegelungssatz
(see [Jau] for details). We are now going to outline a version of the usual
proof of (3.1).

(3.2) S k e t c h o f t h e p r o o f o f (3.1). Combining class field theory
and Kummer theory, a “reflection homomorphism” md from (ĈlQ√−d)3,
the 3-torsion subgroup of the dual of the ideal classgroup of Q

√−d, to
(ClQ

√
3d)3, the 3-torsion subgroup of the ideal classgroup of Q

√
3d, is defined

for all d ∈ Z. Then the following description of its kernel in terms of unit
groups is derived:

(3.3) kermd '
{u ∈ o∗Q

√
3d
| u ≡ 1 mod 3

√
3}

{u ∈ (o∗Q
√

3d
)3 | u ≡ 1 mod 3

√
3} .

Therefore, by Dirichlet’s unit theorem, we get

(3.4) dim 3 kermd =
{

0 or 1 if d > 0,
0 if d < 0.

It is a routine exercise in finite abelian groups to derive Theorem (3.1) from
statement (3.4).

From this outline of the proof it is clear that (3.3) is the heart of the
matter. Combining (3.3) with statement (iv) of the main result of this pa-
per we get the following Galois module interpretation for the kernel of the
reflection homomorphism md.

(3.5) Corollary. If d > 0 then the kernel of the reflection homomor-
phism md is non-trivial if and only if there exists an unramified cubic cyclic
extension of Q

√−d with a normal integral basis.
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