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On strong Lehmer pseudoprimes
in the case of negative discriminant
in arithmetic progressions

by

A. RoTKIEWICZ (Warszawa)

1. The Lehmer numbers can be defined as follows:

Po(a, ) = { (" = p")/(a—B)  ifnisodd,

(a™ — ") /(a? — 3?) if n is even,

where a and 3 are distinct roots of the trinomial f(z) = 22 — VL z + M;
its discriminant is D = L —4M, and L > 0 and M are rational integers.
We can assume without any essential loss of generality that (L, M) = 1 and
M # 0.

The Lehmer sequence Py, is defined recursively as follows: Py =0, P; =1,
and for n > 2,

P _ LP, 1 —MP,_5 ifnisodd,
"\ P,_1—MP,_o if n is even.
Let V,, = (a™+ ") /(a+ ) for n odd, and V,, = o™ + " for n even denote
the nth term of the associated recurring sequence.

The associated Lehmer sequence Vj, can be defined recursively as follows:
Vo=2,V; =1, and for n > 2,

vV o— LV, 1—MV,_o forn even,
" Vo1 — MV,,_s  for n odd.

An odd composite number n is a strong Lehmer pseudoprime with pa-
rameters L, M (or an sLp for the bases o and 3) if (n, DL) = 1, and with
d(n) =n—(DL/n)=d-2°, d odd, where (DL/n) is the Jacobi symbol, we
have either

(i) P4 =0 (mod n), or
(ii) Vg.or =0 (mod n), for some r with 0 <r < s.

Each odd prime n satisfies either (i) or (ii), provided (n, DL) = 1 (cf. [2]).
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In 1982 I proved [4] that if D = L —4M > 0 and L > 0 then every
arithmetic progression axz+b (z = 0,1,2,...), where a, b are relatively prime
integers, contains an infinite number of odd strong Lehmer pseudoprimes
with parameters L, M (that is, sLp’s for the bases « and 3). In the present
paper we prove the following

THEOREM T. If a, 3 defined above are different from zero and o/ (3 is not
a root of unity (that is, (L, M) # (1,1), (2,1), (3,1)) then every arithmetic
progression ax +b (x = 0,1,2,...), where a, b are relatively prime integers,

contains an infinite number of odd strong Lehmer pseudoprimes for the bases
a and (.

In comparison with [4] the novelty of this theorem lies in the case D < 0.

An odd composite n is an Euler Lehmer pseudoprime for the bases «
and 3 if (n, MD) =1 and

P(nfs(n))/Q =0 (HlOd 7’L) if (ML/n) = 1, or

Vin—em))/2 =0 (mod n) if (ML/n)= —1, where e(n) = (DL/n).

If n is a strong Lehmer pseudoprime for the bases a and (3, then it is
an Euler Lehmer pseudoprime for the bases a and § (cf. [4], Theorem 1);
thus if the assumptions of Theorem T hold, then every arithmetic progres-
sion ax + b (x = 0,1,2,...), where a, b are relatively prime integers, con-

tains an infinite number of odd Euler Lehmer pseudoprimes for the bases «
and (3.

2. For each positive integer n we denote by @, («a,3) = @, (L, M) the
nth cyclotomic polynomial

(L, M) =d,(a,3) = H (a—(¢"B) = H(O‘d — ghyuln/d),
(m,n)=1 dn

where ¢, is a primitive nth root of unity and the product is over the ¢(n)
integers m with 1 < m < n and (m,n) = 1; u and ¢ are the Mdbius and
Euler functions respectively.

It will be convenient to write

b(a, B5n) = Dy (a, B).
It is easy to see that &(«, f;n) > 1 for D=L —4M >0 and n > 2.
A. Schinzel [5] proved that if @ and [ are complex and 3/« is not a root
of unity, then for every ¢ > 0 and n > N(«, 3, ¢),

‘dj(a7 /87 n)’ > |a’(p(n)_21/(n> 10g2+s n,

where v(n) the number of prime factors of n and N(a, 3, €) can be effectively
computed.
M. Ward [7] proved that @(«, 3;n) > n for n > 12 and D > 0.
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A prime factor p of P,(«, 3) is called a primitive prime factor of P, if
p| P, but p{ DLP5 ... P,_;.
The following results are well known.

LEMMA 1 (Lehmer [2]). Let n # 29,3-29. Denote by r = r(n) the largest
prime factor of n. If r{®(a, B;n), then every prime p dividing ®(c, B;n) is
a primitive prime divisor of P,. Every primitive prime divisor p of P, is
= (DL/p) (mod n).

If 7| ®(a, B;n) and v || n (that is, v |n but r'F1in) then r|| ®(a, B;n)
and r is a primitive prime divisor of Py, ..

LEMMA 2. For n > 12 and D > 0 the number P, has a primitive prime
divisor (see Durst [1], Ward [7]).

If D < 0 and B/« is not a root of unity, then P, has a primitive
prime divisor for n > ng(a, 3). Here ng(a, B) can be effectively computed
(Schinzel [5]); in fact, ng = no(a, 3) = %2 - 457 (Stewart [6]).

We have |P(c, B;n)| > 1 for n > ngy (Schinzel [5], Stewart [6]).

LEMMA 3 (Rotkiewicz [3], Lemma 5). Let
U(ptpy? . ppt) =200 pe7 - pt (- D — 1) (i — 1),
If q is a prime such that ¢* || n and a is a natural number with a¥(a)|q—1,
then &(«, f;n) =1 (mod a).

3. Proof of Theorem T. The case D > 0 is considered in [4], so we
assume that D < 0.

If for each pair of relatively prime integers a, b there is at least one strong
Lehmer pseudoprime with parameters L, M of the shape ax + b, where z
is a natural number, then there are infinitely many such pseudoprimes. We
may suppose without loss of generality that a is even and b is odd and that
4DL|a.

The proofs of the above results are the same as in the case D > 0. Thus,
the theorem will be proved if we can produce a strong Lehmer pseudoprime
n with parameters L, M with n =b (mod a).

Given a and b as described, with 2* || b — (DL/b), A > 1, we start our
construction by choosing four distinct primes p1, p2, p3, ps that are relatively
prime to a. Furthermore, we introduce two further primes p and ¢, with
q>p; (i=1,2,3,4), which are to satisfy certain conditions detailed below.
Firstly, we require that

(a) 2 p1ipapspaq’ |l p —e(p),  e(p) = (DL/p), (DL,p)=1.

We apply Dirichlet’s theorem on primes in arithmetic progressions to
select a prime ¢ with

(1) 2p1pepspa(pi — 13— 1) P3—1)(pi—1)[¢—1, 3-2**"aW(a)|q—1.
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Then automatically we have ¢ > p; (i = 1,2,3,4). Since (a,b) = 1 and
4DL |a, we have (DL/b) # 0.

By the Chinese Remainder Theorem there exists a natural number m
such that

(2) m=(DL/b) + p1pap3pag® (mod p%p%pgpiq?’), m=0b (mod 2>‘+1a).

From (2) it follows that (m, 2ap?p3p3p3q®) = 1 and by Dirichlet’s theorem,
there exists a positive x such that

2>‘+1ap%p§p§piq3x 4+ m =p 1is a prime.

Since 4DL | a, we have p = m (mod 4DL), hence
e(p) = (DL/p) = (DL/m) = (DL/b).

Thus 2*p1pep3paq? || p — e(p) and (DL, p) = 1. This gives (a).
Since p is prime, it satisfies the conditions

P;=0 (modp) or Varg=0 (mod p)
for some r, 0 < r < A, with
p—elp)=2d, <(p) = (DL/p).
So
(3)  either Py_.p)) 2> =0 (mod p) or V(,_cp)) 2« =0 (mod p)

for some p, 0 < p < A

Our considerations rest on the fact that only one of the numbers m,; =
b(a, B (p—(DL/p))/2"p;) (1 < i < 4) is divisible by p and only one of them
is divisible by the highest prime factor 7 of p — (DL/p).

Indeed, let s; = (p—e(p))/2"p;- We can assume that s; > ng(«, 3), so by
Lemma 2, P, has a primitive prime divisor. Hence if p divided more than
one of the m;, then by Lemma 1, p would be a primitive prime factor of both
Py, and Ps,, which is absurd if s; # s;. So we may suppose that p divides
neither m; nor mso nor mg. By (a) we have 7 < ¢, so 7 > p1, p2, p3, p4 and
thus 7 is the greatest prime divisor of s1, so and s3. Again by Lemma 1, if
7 were to divide both ms and mg, then 7 would be a primitive prime factor
of both P, 7 and P, 7\, where 7*||p — &(p). But this is absurd, so without
loss of generality 7 does not divide mo and m;.

Thus without loss of generality one can assume that neither m; =
&(a, B; (p— (DL/p))/2"p1) nor my = P, B; (p— (DL/p))/2"ps) is divisible
by p or 7.

Now the proof of Theorem T can be divided into four cases:

(i) the first alternative of (3) holds with m; > 0 or my > 0 (where
v=2J\),
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(ii) the second alternative of (3) holds for some 0 < p < A with my >0
or mg >0 (where v = pu — 1),

(iii) the first alternative of (3) holds, but my, ma < 0 (where v = \),

(iv) the second alternative of (3) holds for some 0 < p < A with my,
mg < 0 (where v = —1).

By Lemma 2 we can assume that

|P(cv, B; (p —e(p))/2"pi)| > 1
where v=Xorv=pu—1andi=1,2.
It will be convenient to write

n; =pm; (i=1,2), mizg=mimy, N2 =pmims.

In case (i) without loss of generality we can assume that m; > 0, and
n1 = p®(a, B; (p — €(p))/2*p1) is the required strong Lehmer pseudoprime.
The proof is the same as in the case D > 0 (cf. [4]).

In case (ii) also without loss of generality we can assume that m; > 0, and
n1 = p-P(a, 3; (p—e(p))/2#~p1) is the required strong Lehmer pseudoprime
of the form ax + b. The proof is the same as in the case D > 0 (cf. [4]).

In case (iii),

niz = p - (e, G5 (p — £(p))/2*p1) - D(a, B; (p — £(p) /2" p2)
is the required strong Lehmer pseudoprime.
Indeed, since 7 does not divide m; and msy, Lemma 1 implies that every
prime factor ¢ of m4 is congruent to (DL/t) mod s; or sq, hence is congruent
to (DL/t) mod (p — (p))/2*p1po.

) Since mi2 = P(av, B; (p — €(p))/2*p1) - B(v, B; (p — £(p)) /2 p2) > 0 we

(4) mis = (DL/my3) (mod (p — (p))/2"p1p2),

where mys = mimsy with m; = ®(a, 8; (p — e(p)) /2 p;) for i = 1,2.

Certainly ¢2 || (p — (p))/2*p1p2 and a¥(a) |q — 1. By Lemma 3, m; =
1 (mod a) for i = 1,2, hence we have mjs = 1 (mod a). Since 4DL |a,
we obtain mis =1 (mod 4DL). So (DL/m12) = 1 and from (4) it follows
that

(5) miz =1 (mod (p — e(p))/2*pip2)-

Since p1pa¥(p1p2) | q—1 and ¢2 || (p—e(p)) /22 p1p2, by Lemma 3 we have
m; = (mod pips) for i = 1,2, hence

(6) miz =1 (mod pips).

The requirement on g that 3-22*3 | ¢—1 implies by Lemma 3 (recall that
ML (2M1) = 3.2223 and ¢2 || (p—e(p)) /2 p1p2) that m; =1 (mod 22F1)
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for ¢ = 1,2, hence
(7) mis =1 (mod 2**1).
Recalling p; | p — e(p), p2 || p — e(p) and 2* || p — £(p), we conclude from
(5), (6) and (7) that
miz =1 (mod 2(p — &(p))),
which says that
(8)  miz =pmiz =p2p—e(p)T+1) = (p—(p)(2pT + 1) +2(p)

for some positive Z; ni5 is positive because @(«, 3, s1) - D(a, 3, 82) > 1 for
s; > no(a, #), by Lemma 2.
Now we use the first alternative of (3). We have

(9) e(mz) = (DL/pmumz) = (DL/p) - (DL/mimz) = (DL/p) -1 =€(p).
By (9) we have

niz — 8(”12) niz — 5(17) p— 5(17) _
5 = 3 =" (2pT + 1)

and

miy = B(a, B; (p— £(p)) /2 p1) - (e, B; (p — (1) /2*P2) | Plp—e(py) /2>
Moreover, p | P,—c(p)) 2>, (P, m12) = 1. Hence

Ni12 = pmi2 ‘ P(p—s(p))/2* ’P(nlgfa(n12))/2x’
where (n12 —(n12))/2” is odd. Hence nis is an sLp with parameters L, M.
In case (iv),
n1g = pP(a, B; (p — e(p)) /2" 'p1) - P(a, B; (p — £(p)) /2" ' p2)
is the required strong Lehmer pseudoprime. We have, as before,
niz — e(ny2) _b— E(P)(
oM - om
and we note that 2px + 1 is odd. Hence
miy = D(a, B; (p — e(p)) /2" 'p1) - Pa, B; (p — €(p)) /2" ' p2) [ Vip—c(p)) /2>

P | Vip—c(p))/2» and since (p,mi2) = 1 we have

iz = pP(a, B; (p — 1)/2" " p1) - B(a, B; (p — 1)/2" pa)
| Vio—c)) /22 | Vinaz—c(nrz)) /20
so also in this case n1s is an sLp with parameters L, M.
These remarks conclude the proof for we have a¥(a)|g—1 and ¢° || (p —

e(p))/p1p2, so Lemma 3 yields mis = 1 (mod a). Hence nis = pmiz = b
(mod a) as required.

2px +1)

all
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