On strong Lehmer pseudoprimes in the case of negative discriminant in arithmetic progressions

by

A. ROTKIEWICZ (Warszawa)

1. The Lehmer numbers can be defined as follows:

\[P_n(\alpha, \beta) = \begin{cases}
\frac{\alpha^n - \beta^n}{\alpha - \beta} & \text{if } n \text{ is odd}, \\
\frac{\alpha^n - \beta^n}{\alpha^2 - \beta^2} & \text{if } n \text{ is even},
\end{cases} \]

where \(\alpha \) and \(\beta \) are distinct roots of the trinomial \(f(z) = z^2 - \sqrt{L}z + M \); its discriminant is \(D = L - 4M \), and \(L > 0 \) and \(M \) are rational integers. We can assume without any essential loss of generality that \((L, M) = 1 \) and \(M \neq 0 \).

The Lehmer sequence \(P_k \) is defined recursively as follows: \(P_0 = 0, P_1 = 1, \) and for \(n \geq 2, \)

\[P_n = \begin{cases}
LP_{n-1} - MP_{n-2} & \text{if } n \text{ is odd}, \\
P_{n-1} - MP_{n-2} & \text{if } n \text{ is even}.
\end{cases} \]

Let \(V_n = \frac{\alpha^n + \beta^n}{\alpha + \beta} \) for \(n \) odd, and \(V_n = \alpha^n + \beta^n \) for \(n \) even denote the \(n \text{th} \) term of the associated recurring sequence.

The associated Lehmer sequence \(V_k \) can be defined recursively as follows: \(V_0 = 2, V_1 = 1, \) and for \(n \geq 2, \)

\[V_n = \begin{cases}
LV_{n-1} - MV_{n-2} & \text{for } n \text{ even}, \\
V_{n-1} - MV_{n-2} & \text{for } n \text{ odd}.
\end{cases} \]

An odd composite number \(n \) is a strong Lehmer pseudoprime with parameters \(L, M \) (or an \(sLp \) for the bases \(\alpha \) and \(\beta \)) if \((n, DL) = 1 \), and with \(\delta(n) = n - (DL/n) = d \cdot 2^s \), \(d \) odd, where \((DL/n) \) is the Jacobi symbol, we have either

(i) \(P_d \equiv 0 \pmod{n} \), or
(ii) \(V_{d \cdot 2^r} \equiv 0 \pmod{n} \), for some \(r \) with \(0 \leq r < s \).

Each odd prime \(n \) satisfies either (i) or (ii), provided \((n, DL) = 1 \) (cf. [2]).
In 1982 I proved [4] that if \(D = L - 4M > 0 \) and \(L > 0 \) then every arithmetic progression \(ax + b (x = 0, 1, 2, \ldots) \), where \(a, b \) are relatively prime integers, contains an infinite number of odd strong Lehmer pseudoprimes with parameters \(L, M \) (that is, sLp’s for the bases \(\alpha \) and \(\beta \)). In the present paper we prove the following

Theorem T. If \(\alpha, \beta \) defined above are different from zero and \(\alpha/\beta \) is not a root of unity (that is, \(\langle L, M \rangle \neq \langle 1, 1 \rangle, \langle 2, 1 \rangle, \langle 3, 1 \rangle \)) then every arithmetic progression \(ax + b (x = 0, 1, 2, \ldots) \), where \(a, b \) are relatively prime integers, contains an infinite number of odd strong Lehmer pseudoprimes for the bases \(\alpha \) and \(\beta \).

In comparison with [4] the novelty of this theorem lies in the case \(D < 0 \).

An odd composite \(n \) is an Euler Lehmer pseudoprime for the bases \(\alpha \) and \(\beta \) if \((n, MD) = 1\) and
\[
P_{(n-\varepsilon(n))/2} \equiv 0 \pmod{n} \text{ if } (ML/n) = 1, \text{ or } \]
\[
V_{(n-\varepsilon(n))/2} \equiv 0 \pmod{n} \text{ if } (ML/n) = -1, \text{ where } \varepsilon(n) = (DL/n).
\]

If \(n \) is a strong Lehmer pseudoprime for the bases \(\alpha \) and \(\beta \), then it is an Euler Lehmer pseudoprime for the bases \(\alpha \) and \(\beta \) (cf. [4], Theorem 1); thus if the assumptions of Theorem T hold, then every arithmetic progression \(ax + b (x = 0, 1, 2, \ldots) \), where \(a, b \) are relatively prime integers, contains an infinite number of odd Euler Lehmer pseudoprimes for the bases \(\alpha \) and \(\beta \).

2. For each positive integer \(n \) we denote by \(\Phi_n(\alpha, \beta) = \Phi_n(L, M) \) the \(n \)th cyclotomic polynomial
\[
\Phi(L, M) = \Phi_n(\alpha, \beta) = \prod_{(m,n)=1} (\alpha - \zeta_n^m \beta) = \prod_{d|n} (\alpha^d - \beta^d)^{\mu(n/d)},
\]
where \(\zeta_n \) is a primitive \(n \)th root of unity and the product is over the \(\varphi(n) \) integers \(m \) with \(1 \leq m \leq n \) and \((m,n) = 1 \); \(\mu, \varphi \) are the Möbius and Euler functions respectively.

It will be convenient to write
\[
\Phi(\alpha, \beta; n) = \Phi_n(\alpha, \beta).
\]

It is easy to see that \(\Phi(\alpha, \beta; n) > 1 \) for \(D = L - 4M > 0 \) and \(n > 2 \).

A. Schinzel [5] proved that if \(\alpha \) and \(\beta \) are complex and \(\beta/\alpha \) is not a root of unity, then for every \(\varepsilon > 0 \) and \(n > N(\alpha, \beta, \varepsilon) \),
\[
|\Phi(\alpha, \beta; n)| > |\alpha|^{\varphi(n) - 2^\nu(n) \log^{2+\varepsilon} n},
\]
where \(\nu(n) \) the number of prime factors of \(n \) and \(N(\alpha, \beta, \varepsilon) \) can be effectively computed.

M. Ward [7] proved that \(\Phi(\alpha, \beta; n) > n \) for \(n > 12 \) and \(D > 0 \).
A prime factor \(p \) of \(P_n(\alpha, \beta) \) is called a primitive prime factor of \(P_n \) if \(p \mid P_n \) but \(p \nmid DLP_1 \ldots P_{n-1} \).

The following results are well known.

Lemma 1 (Lehmer [2]). Let \(n \neq 2^2, 3 \cdot 2^9 \). Denote by \(r = r(n) \) the largest prime factor of \(n \). If \(r \mid \Phi(\alpha, \beta; n) \), then every prime \(p \) dividing \(\Phi(\alpha, \beta; n) \) is a primitive prime divisor of \(P_n \). Every primitive prime divisor \(p \) of \(P_n \) is \(\equiv (DL/p) \mod n \).

If \(r \mid \Phi(\alpha, \beta; n) \) and \(r \parallel n \) (that is, \(r \mid n \) but \(r^{l+1} \nmid n \)) then \(r \parallel \Phi(\alpha, \beta; n) \) and \(r \) is a primitive prime divisor of \(P_{n/r} \).

Lemma 2. For \(n > 12 \) and \(D > 0 \) the number \(P_n \) has a primitive prime divisor (see Durst [1], Ward [7]).

If \(D < 0 \) and \(\beta/\alpha \) is not a root of unity, then \(P_n \) has a primitive prime divisor for \(n > n_0(\alpha, \beta) \). Here \(n_0(\alpha, \beta) \) can be effectively computed (Schinzel [5]); in fact, \(n_0 = n_0(\alpha, \beta) = e^{452} \cdot \Delta^{67} \) (Stewart [6]).

We have \(|\Phi(\alpha, \beta; n)| > 1 \) for \(n > n_0 \) (Schinzel [5], Stewart [6]).

Lemma 3 (Rotkiewicz [3], Lemma 5). Let

\[
\Phi(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}) = 2p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} (p_1^2 - 1)(p_2^2 - 1) \cdots (p_k^2 - 1).
\]

If \(q \) is a prime such that \(q^2 \parallel n \) and \(a \) is a natural number with \(a\Phi(a) \mid q - 1 \), then \(\Phi(\alpha, \beta; n) \equiv 1 \mod a \).

3. Proof of Theorem T. The case \(D > 0 \) is considered in [4], so we assume that \(D < 0 \).

If for each pair of relatively prime integers \(a, b \) there is at least one strong Lehmer pseudoprime with parameters \(L, M \) of the shape \(ax + b \), where \(x \) is a natural number, then there are infinitely many such pseudoprimes. We may suppose without loss of generality that \(a \) is even and \(b \) is odd and that \(4DL \mid a \).

The proofs of the above results are the same as in the case \(D > 0 \). Thus, the theorem will be proved if we can produce a strong Lehmer pseudoprime \(n \) with parameters \(L, M \) with \(n \equiv b \mod a \).

Given \(a \) and \(b \) as described, with \(2^\lambda \parallel b - (DL/b) \), \(\lambda \geq 1 \), we start our construction by choosing four distinct primes \(p_1, p_2, p_3, p_4 \) that are relatively prime to \(a \). Furthermore, we introduce two further primes \(p \) and \(q \), with \(q > p_i \) \((i = 1, 2, 3, 4)\), which are to satisfy certain conditions detailed below. Firstly, we require that

\[
2^\lambda p_1 p_2 p_3 p_4 q^2 \parallel p - \varepsilon(p), \quad \varepsilon(p) = (DL/p), \quad (DL, p) = 1.
\]

We apply Dirichlet’s theorem on primes in arithmetic progressions to select a prime \(q \) with

\[
2p_1 p_2 p_3 p_4 (p_1^2 - 1)(p_2^2 - 1)(p_3^2 - 1)(p_4^2 - 1) \mid q - 1, \quad 3 \cdot 2^{2\lambda + 3} a\Phi(a) \mid q - 1.
\]
Then automatically we have \(q > p_i \ (i = 1, 2, 3, 4) \). Since \((a, b) = 1\) and \(4DL \mid a\), we have \((DL/b) \neq 0\).

By the Chinese Remainder Theorem there exists a natural number \(m \) such that

\[
(2) \quad m \equiv (DL/b) + p_1p_2p_3p_4q^2 \pmod{p_1^2p_2^2p_3^2p_4^2q^3}, \quad m \equiv b \pmod{2^{\lambda+1}a}.
\]

From (2) it follows that \((m, 2ap_1^2p_2^2p_3^2p_4^2q^3) = 1\) and by Dirichlet’s theorem, there exists a positive \(x \) such that

\[
2^{\lambda+1}ap_1^2p_2^2p_3^2p_4^2q^3x + m = p
\]

is a prime.

Since \(4DL \mid a\), we have \(p \equiv m \pmod{4DL} \), hence

\[
\varepsilon(p) = (DL/p) = (DL/m) = (DL/b).
\]

Thus \(2^{\lambda}p_1p_2p_3p_4q^2 \mid p - \varepsilon(p)\) and \((DL, p) = 1\). This gives (a).

Since \(p \) is prime, it satisfies the conditions

\[
P_i \equiv 0 \pmod{p} \quad \text{or} \quad V_{2r_d} \equiv 0 \pmod{p}
\]

for some \(r, 0 \leq r < \lambda \), with

\[
p - \varepsilon(p) = 2^{\lambda}d, \quad \varepsilon(p) = (DL/p).
\]

So

\[
(3) \quad \text{either} \quad P_{(p-\varepsilon(p))/2^\nu} \equiv 0 \pmod{p} \quad \text{or} \quad V_{(p-\varepsilon(p))/2^\nu} \equiv 0 \pmod{p}
\]

for some \(\mu, 0 < \mu \leq \lambda \).

Our considerations rest on the fact that only one of the numbers \(m_i = \Phi(\alpha, \beta; (p - (DL/p))/2^{\nu}p_i) \ (1 \leq i \leq 4) \) is divisible by \(p \) and only one of them is divisible by the highest prime factor \(r \) of \(p - (DL/p) \).

Indeed, let \(s_i = (p - \varepsilon(p))/2^{\nu}p_i \). We can assume that \(s_i > n_0(\alpha, \beta) \), so by Lemma 2, \(P_s \) has a primitive prime divisor. Hence if \(p \) divided more than one of the \(m_i \), then by Lemma 1, \(p \) would be a primitive prime factor of both \(P_{s_i} \) and \(P_{s_j} \), which is absurd if \(s_i \neq s_j \). So we may suppose that \(p \) divides neither \(m_1 \) nor \(m_2 \) nor \(m_3 \). By (a) we have \(r \leq q \), so \(r > p_1, p_2, p_3, p_4 \) and thus \(r \) is the greatest prime divisor of \(s_1, s_2 \) and \(s_3 \). Again by Lemma 1, if \(r \) were to divide both \(m_2 \) and \(m_3 \), then \(r \) would be a primitive prime factor of both \(P_{s_2/r} \) and \(P_{s_3/r} \), where \(r^k \parallel p - \varepsilon(p) \). But this is absurd, so without loss of generality \(r \) does not divide \(m_2 \) and \(m_1 \).

Thus without loss of generality one can assume that neither \(m_1 = \Phi(\alpha, \beta; (p - (DL/p))/2^{\nu}p_1) \) nor \(m_2 = \Phi(\alpha, \beta; (p - (DL/p))/2^{\nu}p_2) \) is divisible by \(p \) or \(r \).

Now the proof of Theorem T can be divided into four cases:

(i) the first alternative of (3) holds with \(m_1 > 0 \) or \(m_2 > 0 \) (where \(\nu = \lambda \)),
where

\[m \]

or

\[m \]

or

\[m \]

where

\[\nu = \lambda \]

or

\[\nu = \mu - 1 \]

By Lemma 2 we can assume that

\[|\Phi(\alpha, \beta; (p - \varepsilon(p))/2^\nu p_1)| > 1 \]

where \(\nu = \lambda \) or \(\nu = \mu - 1 \) and \(i = 1, 2 \).

It will be convenient to write

\[n_i = pm_i \quad (i = 1, 2), \quad m_{12} = m_1 m_2, \quad n_{12} = pm_1 m_2. \]

In case (i) without loss of generality we can assume that \(m_1 > 0 \), and

\[n_1 = p\Phi(\alpha, \beta; (p - \varepsilon(p))/2^\lambda p_1) \]

is the required strong Lehmer pseudoprime. The proof is the same as in the case \(D > 0 \) (cf. [4]).

In case (ii) also without loss of generality we can assume that \(m_1 > 0 \), and

\[n_1 = p\cdot\Phi(\alpha, \beta; (p - \varepsilon(p))/2^{\lambda-1} p_1) \]

is the required strong Lehmer pseudoprime of the form \(ax + b \). The proof is the same as in the case \(D > 0 \) (cf. [4]).

In case (iii),

\[n_{12} = p \cdot \Phi(\alpha, \beta; (p - \varepsilon(p))/2^\lambda p_1) \cdot \Phi(\alpha, \beta; (p - \varepsilon(p))/2^\lambda p_2) \]

is the required strong Lehmer pseudoprime.

Indeed, since \(\tau \) does not divide \(m_1 \) and \(m_2 \), Lemma 1 implies that every prime factor \(t \) of \(m_1 \) is congruent to \((DL/t) \mod s_1 \) or \(s_2 \), hence is congruent to \((DL/t) \mod (p - \varepsilon(p))/2^\lambda p_1 p_2 \).

Since

\[m_{12} = \Phi(\alpha, \beta; (p - \varepsilon(p))/2^\lambda p_1) \cdot \Phi(\alpha, \beta; (p - \varepsilon(p))/2^\lambda p_2) > 0 \]

we have

\[m_{12} \equiv (DL/m_{12}) \pmod{(p - \varepsilon(p))/2^\lambda p_1 p_2}, \]

where \(m_{12} = m_1 m_2 \) with \(m_i = \Phi(\alpha, \beta; (p - \varepsilon(p))/2^\lambda p_i) \) for \(i = 1, 2 \).

Certainly \(q^2 \| (p - \varepsilon(p))/2^\lambda p_1 p_2 \) and \(a\Psi(a) \mid q - 1 \). By Lemma 3, \(m_i \equiv 1 \pmod{a} \) for \(i = 1, 2 \), hence we have \(m_{12} \equiv 1 \pmod{a} \). Since \(4DL \mid a \), we obtain \(m_{12} \equiv 1 \pmod{4DL} \). So \((DL/m_{12}) = 1 \) and from (4) it follows that

\[m_{12} \equiv 1 \pmod{(p - \varepsilon(p))/2^\lambda p_1 p_2}. \]

Since \(p_1 p_2 \Psi(p_1 p_2) \mid q - 1 \) and \(q^2 \| (p - \varepsilon(p))/2^\lambda p_1 p_2 \), by Lemma 3 we have

\[m_i \equiv (p_1 p_2) \pmod{2^\lambda p_1 p_2} \]

hence

\[m_{12} \equiv 1 \pmod{p_1 p_2}. \]

The requirement on \(q \) that

\[3 \cdot 2^{2^\lambda+3} \mid q - 1 \]

implies by Lemma 3 (recall that

\[2^{\lambda+1}\Psi(2^{\lambda+1}) = 3 \cdot 2^{2^\lambda+3} \]

and \(q^2 \| (p - \varepsilon(p))/2^\lambda p_1 p_2 \) that \(m_i \equiv 1 \pmod{2^{\lambda+1}} \).
for \(i = 1, 2 \), hence

\[
(7) \quad m_{12} = 1 \pmod{2^{\lambda + 1}}.
\]

Recalling \(p_1 \parallel p - \varepsilon(p), p_2 \parallel p - \varepsilon(p) \) and \(2^\lambda \parallel p - \varepsilon(p) \), we conclude from (5), (6) and (7) that

\[
m_{12} \equiv 1 \pmod{2(p - \varepsilon(p))},
\]

which says that

\[
(8) \quad n_{12} = pm_{12} = p(2(p - \varepsilon(p))\varpi + 1) = (p - \varepsilon(p))(2p\varpi + 1) + \varepsilon(p)
\]

for some positive \(\varpi \); \(n_{12} \) is positive because \(\Phi(\alpha, \beta, s_1) \cdot \Phi(\alpha, \beta, s_2) > 1 \) for \(s_i > n_0(\alpha, \beta) \), by Lemma 2.

Now we use the first alternative of (3). We have

\[
(9) \quad \varepsilon(n_{12}) = (DL/pm_1m_2) = (DL/p) \cdot (DL/m_1m_2) = (DL/p) \cdot 1 = \varepsilon(p).
\]

By (9) we have

\[
\frac{n_{12} - \varepsilon(n_{12})}{2^\lambda} = \frac{n_{12} - \varepsilon(p)}{2^\lambda} = \frac{p - \varepsilon(p)}{2^\lambda}(2p\varpi + 1)
\]

and

\[
m_{12} = \Phi(\alpha, \beta; (p - \varepsilon(p))/2^\lambda p_1) \cdot \Phi(\alpha, \beta; (p - \varepsilon(p))/2^\lambda p_2) \cdot P_{(p-\varepsilon(p))/2^\lambda}.
\]

Moreover, \(p \mid P_{(p-\varepsilon(p))/2^\lambda}, (p, m_{12}) = 1 \). Hence

\[
n_{12} = pm_{12} \mid P_{(p-\varepsilon(p))/2^\lambda} \mid P_{(n_{12}-\varepsilon(n_{12}))/2^\lambda},
\]

where \((n_{12} - \varepsilon(n_{12}))/2^\lambda\) is odd. Hence \(n_{12} \) is an sLP with parameters \(L, M \).

In case (iv),

\[
n_{12} = p^2\Phi(\alpha, \beta; (p - \varepsilon(p))/2^{\mu-1}p_1) \cdot \Phi(\alpha, \beta; (p - \varepsilon(p))/2^{\mu-1}p_2)
\]

is the required strong Lehmer pseudoprime. We have, as before,

\[
\frac{n_{12} - \varepsilon(n_{12})}{2^\mu} = \frac{p - \varepsilon(p)}{2^\mu}(2p\varpi + 1)
\]

and we note that \(2p\varpi + 1 \) is odd. Hence

\[
m_{12} = \Phi(\alpha, \beta; (p - \varepsilon(p))/2^{\mu-1}p_1) \cdot \Phi(\alpha, \beta; (p - \varepsilon(p))/2^{\mu-1}p_2) \cdot V_{(p-\varepsilon(p))/2^\mu},
\]

\(p \mid V_{(p-\varepsilon(p))/2^\mu} \) and since \((p, m_{12}) = 1 \) we have

\[
n_{12} = pm\Phi(\alpha, \beta; (p - 1)/2^{\mu-1}p_1) \cdot \Phi(\alpha, \beta; (p - 1)/2^{\mu-1}p_2)
\]

\(\mid V_{(p-\varepsilon(p))/2^\mu} \mid V_{(n_{12}-\varepsilon(n_{12}))/2^\mu} \)

so also in this case \(n_{12} \) is an sLP with parameters \(L, M \).

These remarks conclude the proof for we have \(a\Psi(a) \mid q - 1 \) and \(q^2 \parallel (p - \varepsilon(p))/p_1p_2 \), so Lemma 3 yields \(m_{12} \equiv 1 \pmod{a} \). Hence \(n_{12} = pm_{12} \equiv b \pmod{a} \) as required.
References

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
ŚNIADECKICH 8
00-950 WARSZAWA, POLAND

and

TECHNICAL UNIVERSITY IN BIAŁYSTOK
WIEJSKA 45
15-351 BIAŁYSTOK, POLAND

Received on 4.8.1993
and in revised form on 13.4.1994