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Introduction. There are a number of interesting results connecting the
geometry of the roots of a polynomial with integer coefficients with algebraic
properties of the roots. The best known is Kronecker’s famous result which
states that if a polynomial with integer coefficients has all its zeros on the
unit circle then these must all be roots of unity [1].

One cannot extend this too far, as the existence of Salem numbers shows:
a Salem polynomial f(x) is a monic irreducible polynomial with integer
coefficients which has one positive root outside the unit circle, one inside
the circle and the remainder on the circle. The roots on the unit circle are
obviously not roots of unity since f is irreducible. In fact, there are no
nontrivial multiplicative relations between these roots, as shown by Pisot
(see [3, p. 32]).

Another related result, due to Smyth [4], is that if f(x) is a Pisot poly-
nomial then it has no two conjugates of equal modulus, except for pairs of
complex conjugate roots. A Pisot polynomial is a monic polynomial with
integer coefficients with a single positive root outside the unit circle and
the rest inside. A generalization of this due to Mignotte [2] is that there
is no nontrivial multiplicative relation between the zeros of a Pisot polyno-
mial.

An obvious way to construct polynomials with roots of equal modulus
is to take f(x) to be of the form g(xm), so the roots of f are all of the mth
roots of the roots of g. Of course, even if g is irreducible, f may or may not
be irreducible.

Michael Hollander asked the author for an example of an irreducible f(x)
with a positive root α1 of largest modulus and m−1 other roots of modulus
α1 but which is not of this form. The purpose of this note is to show that
such examples do not exist.
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Theorem. Let f(x) be an irreducible polynomial of degree n with integer
coefficients. Let αj , j = 1, . . . , n, be the roots of f listed in order of decreasing
modulus. Assume that α1 > 0 and that |αj | = α1, for j = 1, . . . ,m, for some
m ≤ n and that |αj | < α1 if j > m. Then m divides n and there is an
irreducible polynomial g of degree n/m with integer coefficients such that
f(x) = g(xm).

P r o o f. We will use induction on m. Clearly the result is true if m = 1.
If m is even then −α1 must be a root of f(x) and hence, being irreducible,

f must be even and hence of the form h(x2). Clearly h has m/2 roots of
equal modulus, one being α2

1 > 0 and hence by induction h(x) = g(xm/2)
so f(x) = g(xm).

To illustrate the main ideas, we next treat the case m = 3. Now α2 and
α3 are complex conjugates and hence we have

(1) α2
1 = α2α3.

Since f is irreducible its Galois group G is transitive so there is an automor-
phism σ ∈ G taking α1 to α2. Applying this to (1) gives an equation of the
form α2

2 = αiαj where αi and αj are roots of f(x). Since α2 is of maximal
modulus, neither αi nor αj can have smaller modulus so they must in fact
be α1 and α3, i.e.

(2) α2
2 = α1α3.

Combining (1) and (2), we find that α3
2 = α3

1 and by complex conjugation
that α3

3 = α3
1 so that α1, α2 and α3 are the three cube roots of α3

1 and hence
f(x) = g(x3) where g is the minimal polynomial of α3

1. (For more details,
see the argument below.)

Now we treat the general case of m odd. Number the roots so that α2i

and α2i+1 are complex conjugates. As in (1) we have

(3) α2
1 = α2α3 = . . . = αm−1αm.

Given i = 2, . . . ,m, there is a Galois automorphism taking α1 to αi, and
from (3) we obtain [m/2] equations of the form

(4) α2
i = αjαk,

where j, k ≤ m by the observation made in the case m = 3. The subscripts
appearing in these equations are a permutation of {1, . . . ,m} so each j 6= i
with j ≤ m appears in the right member of exactly one of these equations.
So, for each 1 ≤ i, j ≤ m, there is a k with 1 ≤ k ≤ m such that α2

iα
−1
j = αk.

In other words, the set S = {α1, . . . , αm} is closed under the operation

(5) (a, b)→ a2b−1.



Irreducible polynomials 87

Define ωi = αi/α1 for i = 1, . . . ,m, so |ωi| = 1, and let W = {1, ω2, . . .
. . . , ωm}. Then W is also closed under the operation (5). Clearly W is also
closed under a→ a−1. We will show that W is the set of mth roots of 1.

Let ω ∈ W , ω 6= 1. Then one may build up all powers of ω by repeated
squaring and multiplication by ω (as is familiar to computational number
theorists). That is, if we know that ωk ∈ W then taking a = ωk and b = 1
or b = ω−1 in (5), we see that ω2k and ω2k+1 are in W . Hence all powers
of ω lie in W . Since W is finite, two of these powers must be equal so ω
must be a root of unity, say of order s. Thus α1ω

k are roots of f(x) for
k = 0, . . . , s− 1 and hence f(x) = h(xs) for some polynomial h with integer
coefficients. Explicitly, (f(x) + f(ωx) + . . . + f(ωs−1x))/s is a polynomial
with zeros α1ω

k for k = 0, . . . , s−1 which is of the form h(xs) by the familiar
orthogonality relations involving roots of unity. Here h is of degree n/s and
has m/s roots of largest modulus. If s = m, we are finished. Otherwise apply
induction as in the case of even m.

R e m a r k s. 1. The proof goes through without change if “maximal mod-
ulus” is replaced by “minimal modulus”. Or one may simply apply the the-
orem to the reciprocal polynomial of f(x).

2. If all conditions of the theorem hold except that α1 > 0 is replaced by
α1 < 0 then one obtains f(x) = g(−xm).

3. The assumption that there be a real root of maximal modulus is
necessary. This is clear if m = 2 since a pair of complex conjugate roots will
rarely have their ratio a root of unity. It is also easy to construct examples
with larger m. For example, let f(x) = x6 +x5 +x4 + 2x3 +x2 + 1 the roots
of which are the products of the roots of x3 + x2 − 1 and the primitive 6th
roots of unity. This has m = 4. The ratios of certain, but not all, pairs of
roots of maximal modulus are roots of unity.

4. The referee has observed that the final induction step in the proof can
be avoided by observing that −1 6∈ W so s is odd and hence we can write
ωζ−1 = (ω(s+1)/2)2ζ−1. Thus W is closed under (ω, ζ) → ωζ−1. Hence W
is a finite subgroup of the unit circle and thus is the set of mth roots of
unity.
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