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1. Introduction. The problem we address here arises in the study of the
error function in the shifted circle problem (see [BCDL]). Let α = (α1, α2) ∈
R2 be a fixed point in a plane. Define

N(R;α) = #{m ∈ Z2 : |m− α| ≤ R}
and

F (R;α) =
N(R;α)− πR2

R1/2
.

A long-standing famous conjecture of Hardy (see [H]) is to prove that when
R→∞,

F (R;α) = O(Rε), ∀ε > 0

(Hardy considered α = 0). In [BCDL] and [B] it was proved that the mean
square limit

D(α) = lim
T→∞

1
T

T∫
1

|F (R;α)|2 dR

exists and is equal to

D(α) = (2π2)−1
∞∑
n=1

n−3/2|rα(n)|2,

where

rα(n) =
∑

k2+l2=n

e(α1k + α2l), e(t) = exp(2πit)

(for α = 0 this reduces to a classical result of Cramér [C]). The existence of
a limit distribution pα(t)dt of F (R;α) was shown in [BCDL] as well:

lim
t→∞

1
T

∫
{R:1≤R≤T,a≤F (R;α)≤b}

dR =
b∫

a

pα(t) dt

[71]
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for every a < b (for α = 0 this result is due to Heath-Brown, see [H-B]).
The density pα(t) was proved to be an analytic function in t which decays
at infinity, roughly speaking, as C exp(−λt4).

In [BCDL] one of the key points in the proof was to evaluate the asymp-
totics of the series

(1.1) Sα(b) =
∞∑
n=1

|rα(n)|2 exp(−n/b)

when b → ∞. This gives a mean square value of |rα(n)| as n → ∞. In the
present work we show that Sα(b) has an unexpected wild behavior. Namely,
Sα(b), as a function of α, has a “bumpy” shape when b → ∞, with a big
bump at every rational point α. This behavior of Sα(b) is closely related
to the fact, discovered in [BD], that the mean square limit D(α) has a
sharp local maximum at every rational point. We prove here the following
theorems:

Theorem 1.1. For any fixed α,

(1.2) lim inf
b→∞

(b−1Sα(b)) ≥ π.

Theorem 1.2. Except for an exceptional set of α of measure zero in R2,

(1.3) Sα(b) = πb+O(b3/4+ε) as b→∞.
R e m a r k. We prove in Theorem 1.5 that all rational α and all α suf-

ficiently rapidly approximable by rationals belong to the exceptional set.
Theorem 1.3 implies the weaker statement that

(1.4) lim
b→∞

(b−1Sα(b)) = π

for almost all α. The power 3/4 in Theorem 1.2 is best possible by virtue of
(3.13) below.

Theorem 1.3. Assume that α = (α1, α2) is Diophantine, i.e.,

(1.5) |α1k + α2l − n| > C(k2 + l2)−D

with some C,D > 0 for all integers k, l, n with k2 + l2 6= 0. Then (1.4) holds.

Theorem 1.4. Assume that

(1.6) α1p+ α2q − r = 0

for some integer p, q, r with coprime p, q 6= 0. Assume also that α1 is
Diophantine, i.e.,

(1.7) |kα1 − l| > C(k2)−D,

with some C,D > 0 for all integers k, l with k 6= 0. Then

(1.8) lim
b→∞

(b−1Sα(b)) = π(1 + ε(pq)(p2 + q2)−1),
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where

ε(n) =
{

1 if n is even,
2 if n is odd.

R e m a r k. Our proof shows that (1.6) without the assumption that either
α1 or α2 is Diophantine implies

(1.9) lim inf
b→∞

(b−1Sα(b)) ≥ π(1 + ε(pq)(p2 + q2)−1).

Theorem 1.5. Suppose the vector α is rational , i.e., there exists an
integer Q such that
(1.10) 2Qα1 = n1, 2Qα2 = n2

are integers and gcd(Q,n1, n2) = 1. Then

(1.11) (b log b)−1Sα(b) = C(Qr(Q))−1 +O(log−1 b) as b→∞,
where
(1.12) r(Q) =

∏

p|Q
(1 + p−1),

with the product taken over primes p dividing Q, and

(1.13)
C = 3 (Q even), C = 4 (Q odd , n1 + n2 even),

C = 2 (Q odd , n1 + n2 odd).

R e m a r k. We have Q < Qr(Q) ≤ σ(Q), where σ(Q) is the sum of the
divisors of Q. According to Theorem 323 in [HW],

σ(n) = O(n log log n).

Corollary 1. For fixed rational α, the mean-square value of rα(n) for
n of the order of magnitude N is at least 2(σ(Q))−1log(N/Q).

Corollary 2. If α is an almost-rational vector , i.e., if an infinite se-
quence {Q1, Q2, . . .} of integers exists such that

(1.14) 2Qjα = Pj + εj ,

with Pj integral vectors and
(1.15) (σ(Qj))−1 log (|εj |−1)→∞ as j →∞,
then
(1.16) lim sup

b→∞
(b−1Sα(b)) =∞.

The Tauberian theorem of Hardy and Littlewood (see [HL]) enables us
to derive from Theorems 1.2–1.5 the asymptotics of

σα(n) = n−1
n∑

k=1

|rα(k)|2

as n→∞. The theorem of Hardy and Littlewood is the following:
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Theorem HL. If f(x) =
∑
anx

n is a power series with positive coeffi-
cients, and

f(x) ∼ A(1− x)−1|log(1− x)|α (x→ 1),

where A > 0 and α ≥ 0, then

a1 + . . .+ an ∼ An logα n.

Define an = |rα(n)|2, 1 − x = exp(−b). Then we see from Theorems
1.2–1.5 and HL that for all Diophantine α,

(1.17) lim
n→∞

σα(n) = π;

for all α satisfying (1.6), (1.7),

(1.18) lim
n→∞

σα(n) = π(1 + ε(pq)(p2 + q2)−1);

and finally for all rational α,

(1.19) lim
n→∞

(log n)−1σα(n) = C(Qr(Q))−1,

with r(Q) and C defined in (1.12) and (1.13), respectively.
Theorems 1.1 and 1.5 were proved in [BCDL]. Here we prove Theo-

rems 1.2–1.4 and Corollary 2 of Theorem 1.5.

2. Preliminaries from [BCDL]. Here we recall some results from
[BCDL]. The sum (1.1) may be written

(2.1) Sα(b) =
∑

m,m′
e(α(m−m′)) exp(−m2/b),

summed over integer vectors m,m′ ∈ Z2\{0} with m2 = m′2. As was shown
in [BCDL], the sum (2.1) can be converted into an unrestricted sum,

(2.2) Sα(b) =
1
2

∑

k,l,j,h

e(h(lα1 − kα2)) exp(−(k2 + l2)(j2 + h2)/(4b)),

summed over all (j, k, l, h) ∈ Z4 satisfying

h2 + j2 6= 0, k2 + l2 6= 0,(2.3)

either j ≡ h ≡ 0, or j ≡ h ≡ k ≡ l ≡ 1 (mod 2),(2.4)

and

(2.5) k, l are relatively prime,

which means that either |k|+ |l| = 1, or gcd(|k|, |l|) = 1.
According to the two possibilities in (2.4) we divide Sα(b) into even and

odd parts,

(2.6) Sα(b) = Se + So,
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where the terms with j and h even are

(2.7) Se =
1
2

∑

k,l

[F (w)F (0)− 1],

summed over integers (k, l) satisfying (2.5), and

(2.8) So =
1
2

∑

k,l

G(w)G(0),

summed over odd integers k and l satisfying (2.5). The functions (F,G) are
defined by

(2.9)
∑
x

exp(−x2/a)e(xt) = F (t) or G(t),

where the sum is over integer x for F and over half-odd-integer x for G. In
(2.7)–(2.9) we have used the abbreviations w = 2(lα1 − kα2), a = b(k2 +
l2)−1. By the Poisson summation formula, (2.9) gives

F (t) = (πa)1/2
∑
p

exp(−π2a(p+ t)2),(2.10)

G(t) = (πa)1/2
∑
p

(−1)p exp(−π2a(p+ t)2).(2.11)

According to (2.9), the functions F and G are periodic with periods 1
and 2 respectively,

(2.12) F (w + 1) = F (w), G(w + 1) = −G(w).

For a ≤ 1, (2.9) gives

(2.13) F (w) = 1 +O(exp(−a−1)), G(w) = O(exp(−(4a)−1)).

For a ≥ 1, (2.10) gives

F (w) = (πa)1/2[exp(−π2aŵ2) +O(exp(−(π/2)2a))],(2.14)

G(w) = (−1)w(πa)1/2[exp(−π2aŵ2) +O(exp(−(π/2)2a))],(2.15)

where ŵ is the distance of w from the nearest integer.

3. Proof of Theorem 1.2. For Theorem 1.2 we divide the sum (2.1)
into two parts

(3.1) Sα(b) = I(b) +Rα(b),

where I(b) consists of the terms with

(3.2) m = m′,
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which are equal to the terms in (2.2) with h = 0. By (2.9) and (2.10),

(3.3) I(b) =
(∑

x

exp(−x2/b)
)2

= πb+O(b exp(−π2b)).

By (3.1) and (3.3), Theorem 1.2 states that

(3.4) Rα(b) = O(b3/4+ε)

except for a set of α of measure zero.
Consider the integral

(3.5) J(b) =
∫
|Rα(b)|2 dα,

integrated over the square

(3.6) 0 < α1 < 1, 0 < α2 < 1.

We represent Rα(b) by the sum (2.2) with the condition (h 6= 0) replacing
(2.3). It is convenient to restrict the sum to positive h and drop the factor
1/2. When (2.2) is inserted into (3.5), the result is an eight-fold sum over
the integers (k, l, j, h, k′, l′, j′, h′). The integration over (3.6) eliminates all
terms except those with

(3.7) hl = h′l′, hk = h′k′.

Since h and h′ are positive and the fractions k/l and k′/l′ are reduced to
their lowest terms by (2.5), (3.7) implies

(3.8) h = h′, k = k′, l = l′.

The eight-fold sum collapses to a five-fold sum

(3.9) J(b) =
∑

k,l,h,j,j′
exp[−(k2 + l2)(2h2 + j2 + j′2)/(4b)],

with summations restricted only by

(3.10) (k, l) = 1, h > 0, either (j, j′, h) all even or (j, j′, h, k, l) all odd.

When b is large, each of the sums over j and j′ gives

(3.11) [πb/(k2 + l2)]1/2 +O(1),

and the sum over h gives the same result multiplied by 2−3/2. Therefore
(3.9) becomes

(3.12) J(b) = 2−3/2
∑

k,l

(ck + cl)[πb/(k2 + l2)]3/2 +O(b),

where ck = 0 for k even and ck = 1 for k odd. The sum over (k, l) is
convergent, so that

(3.13) J(b) = Bb3/2 +O(b),
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where B is a calculable constant, namely

(3.14) B = (2π)3/2((3 +
√

2)/7)ζ(3/2)L(3/2)/ζ(3),

where ζ and L are the Riemann and Dirichlet functions,

(3.15) ζ(s) =
∑
n

n−s, L(s) =
∑
n

(−1)n−1(2n− 1)−s.

We need to prove from (3.5) and (3.13) that (3.4) holds except for a set
of α of measure zero. But (3.4) does not follow from (3.13) alone. We need
in addition the fact that Rα(b) is a smoothly-varying function of b, so that
it cannot become large at isolated peaks without violating (3.13). To prove
(3.4) we require bounds on all the derivatives of Rα(b). It is convenient to
use the notations

D = b−2(d/db),(3.16)

Jp(b) =
∫
|DpRα(b)|2 dα,(3.17)

integrated over (3.6). The same analysis that led to (3.9) now gives

(3.18) Jp(b) = 4−2p
∑

k,l,h,j,j′
exp[−(k2 + l2)(2h2 + j2 + j′2)/(4b)]

×(h2 + j2)p(h2 + j′2)p(k2 + l2)2p.

The sums over (h, j, j′) give

(3.19) Ap(b/(k2 + l2))2p+3/2,

plus terms of lower order in b, with a numerical constant Ap. Inserting (3.19)
into (3.18) gives

(3.20) Jp(b) = Apb
2p+3/2

∑

k,l

(k2 + l2)−3/2 = Bpb
2p+3/2 +O(b2p+1).

Thus DpRα(b) has the root-mean-square order of magnitude

(3.21) bp+3/4.

We have to prove that this same order of magnitude estimate holds point-
wise, for almost all α, as b→∞ for fixed α.

We use an induction on p, working downward from p + 1 to p. Our
inductive hypothesis says that

(3.22) |DpRα(b)| < Abp+3/4+f(p),

with some positive f(p) depending only on p, with A depending on p and α
but not on b, except for a set of α of measure zero. We assume that (3.22)
holds for p+ 1 and find for which f(p) it will hold for p. Let (b1, b2, . . .) be
a sequence of numbers tending to infinity, for example

(3.23) bj = jm,
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with an exponent m to be chosen later, such that

(3.24) |bj+1 − bj | < Ab
1−1/m
j .

The inductive hypothesis together with (3.24) implies that for every b in the
range

(3.25) bj ≤ b < bj+1,

we have

(3.26) |DpRα(b)−DpRα(bj)| < Abp+3/4+f(p+1)−1/m.

Comparing (3.26) with (3.22), we see that if

(3.27) f(p+ 1) < f(p) + 1/m,

then (3.22) holds for all b if and only if

(3.28) |DpRα(bj)| < Ab
p+3/4+f(p)
j

holds for all j and some A depending on α, with the usual exception of a
set of α of measure zero. Therefore, to complete the induction it is only
necessary to prove (3.28).

Let mjp(A) be the measure of the set of α for which (3.28) is false for a
particular j. Comparing (3.28) with (3.17) and (3.20), we see that

(3.29) mjp(A) < BpA
−2b
−2f(p)
j (1 +O(b−1/2

j )).

Therefore

(3.30)
∑

j

mjp(A) < CpA
−2,

where Cp is the sum of the coefficients on the right of (3.29). The series
(3.30) converges and the sum is finite by (3.23) if

(3.31) 1/m < 2f(p).

The left side of (3.30) is an upper bound to the measure of the set of α for
which (3.28) is false for a given A and at least one j. The set of α for which
(3.28) is false for every A and some j has measure less than (3.30) for every
A, i.e. has measure zero. So we have proved that (3.28) holds for almost all
α if (3.31) holds. We proved before that (3.22) follows from (3.28) if (3.27)
holds. Thus the induction of the hypothesis (3.22) from p+ 1 to p succeeds,
provided that we can satisfy both (3.27) and (3.31) with the same m. This
will be possible if and only if

(3.32) f(p+ 1) < 3f(p).

To start the induction we use the estimate

(3.33) |DpRα(b)| <
∑
n

np|r0(n)|2 exp(−n/b) = O(bp+1+ε),
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which follows from

(3.34) |rα(n)| ≤ r0(n) = O(nε).

Choose any integer P . The inductive hypothesis (3.22) holds for p = P by
(3.33) if

(3.35) f(P ) > 1/4.

The induction requires only that (3.32) hold for p < P , which is true if we
take

(3.36) f(p) = Kp−P ,

with any constant K < 3. So the induction is complete and proves (3.22)
with f(p) given by (3.36), for any value of P . But the choice of P is arbitrary.
We can let P →∞ in (3.36) and deduce that (3.22) holds for any p provided
that

(3.37) f(p) > 0.

In particular, when p = 0, (3.22) with (3.37) implies (3.4), and Theorem 1.2
is proved.

4. Proof of Theorems 1.3 and 1.4

P r o o f o f T h e o r e m 1.3. By (2.6), Sα(b) = Se + So. Following
[BCDL] we divide Se into two parts, Se1 +Se2, with ŵ > δ and with ŵ ≤ δ,
respectively, where δ > 0 is an arbitrary small number. Similar division is
defined for So. (B.75), (B.77) in [BCDL] prove

(4.1) lim
δ→0

lim sup
b→∞

b−1|S1 − π| = 0,

where S1 = Se1 +So1. Therefore Theorem 1.3 will be proved if we prove for
S2 = Se2 + So2 the following result:

Lemma 4.1. Assume that α = (α1, α2) is Diophantine, i.e., (1.5) holds.
Then

(4.2) lim
δ→0

lim sup
b→∞

b−1|S2| = 0.

P r o o f. We shall estimate Se2; So2 can be estimated in the same way.
We start with the definition of Se2:

Se2 =
1
2

∑

k,l

[F (w)F (0)− 1]

with the summation over k, l with (k, l) = 1 and ŵ ≤ δ. Let us divide Se2

into four parts, Se2 = S3 + S4 + S5 + S6, where

Sj =
1
2

∑

Mj

[F (w)F (0)− 1]
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with

M3 = {k, l : (k, l) = 1; ŵ ≤ δ; a ≤ |log δ|−2};
M4 = {k, l : (k, l) = 1; ŵ ≤ δ; |log δ|−2 < a ≤ δ−1/3};
M5 = {k, l : (k, l) = 1; ŵ ≤ δ; δ−1/3 < a; exp(−π2aŵ2) ≤ a−1};
M6 = {k, l : (k, l) = 1; ŵ ≤ δ; δ−1/3 < a; exp(−π2aŵ2) > a−1}.

Now we shall estimate in turn S3, . . . , S6. Without loss of generality we
may assume that the summation in k, l goes over the region |l| ≥ |k|, because
the sum over the complementary set |l| < |k| can be estimated in the same
way.

In M3, a is small, so by (2.13),

|F (w)F (0)− 1| ≤ C exp(−a−1) = C exp(−(k2 + l2)/b),

hence

|S3| ≤ C
∑

k2+l2≥b|log δ|2
exp(−(k2 + l2)/b) ≤ C0b exp(−|log δ|2),

which satisfies (4.2).
From (2.13), (2.14), |F (w)F (0)− 1| ≤ Ca, hence

|S4| ≤ Cδ−1/3
∑

M4

1.

By (B.48), (B.49) in [BCDL], for every fixed k the fraction of l with ŵ < δ
does not exceed 2δ + 4/N , hence

∑

M4

1 ≤ (2δ + 4/N)
∑

a≤δ−1/3

1 = (2δ + 4/N)
∑

k2+l2≤bδ−1/3

1

≤ C(2δ + 4/N)bδ−1/3.

Hence

|S4| ≤ C0b(2δ + 4/N)δ−2/3.

Since we can take N →∞ as b→∞, S4 also satisfies (4.2).
In M5, by (2.14), |F (w)| ≤ Ca1/2 exp(−π2aŵ2) ≤ C0a

−1/2, hence

|F (w)F (0)− 1| ≤ C1,

and

|S5| ≤ C1

∑

a≥δ−1/3

1 = C1

∑

k2+l2≤bδ1/3

1 ≤ C2bδ
1/3.

Thus S5 satisfies (4.2).
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In M6, exp(−π2aŵ2) > a−1, hence π2aŵ2 < log a, and

(4.3) ŵ < π−1(a−1 log a)1/2.

Therefore ŵ small for large a. Due to the Diophantine condition this implies
that for some ζ > 0 in the circle

(4.4) k2 + l2 ≤ bζ

there is no point from M6. Indeed, in M6, due to (1.5) and (4.3),

(4.5) C(k2 + l2)−D ≤ ŵ ≤ π−1((k2 + l2)/b)1/2|log((k2 + l2)/b)|1/2.
This implies that for large b,

(4.6) k2 + l2 > bζ

with ζ = (2D + 1)−1 + ε, ε > 0, hence in the circle (4.4) there is no point
from M6.

Let us divide M6 into annular parts M6j = M6 ∩Aj with

Aj = {2j−1δ−1/3 < a ≤ 2jδ−1/3} = {2−jδ1/3b ≤ k2 + l2 < 2−j+1δ1/3b},
j = 1, . . . , J , where J is the least integer number with 2−Jδ1/3b < bζ . Let
us fix some j, 1 ≤ j ≤ J , and estimate

S6j =
∑

M6j

|F (w)F (0)− 1| ≤ Ca|M6j |

where a = b/(k2 + l2) refers to an arbitrary point inside M6j .
Let s be the width of the annulus Aj . For (k, l) ∈ Aj ,

C0s < (k2 + l2)1/2 < C1s.

For a fixed k, the number of l with ŵ < λ = π−1(a−1 log a)1/2 is estimated
by (see (B.47) of [BCDL])

(s/N + 1)(λN + 2) = λs+ λN + s/N + 2,

where N < s is the denominator of an approximant M/N of 2α2. So

|M6j |/|Aj | ≤ C(λ+ 1/N),

and

(4.7) |S6j | ≤ C
∑

Aj

a(λ+ 1/N).

Let Ni ≤ s < Ni+1, where Ni are the denominators of subsequent approxi-
mants. The Diophantine condition implies

CN−Di ≤ |Mi/Ni − α2| ≤ |Mi/Ni −Mi+1/Ni+1| = (NiNi+1)−1,
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hence Ni ≥ (CNi+1)(D−1)−1 ≥ (Cs)(D−1)−1
and N−1

i ≤ C0s
−(D−1)−1

.
Therefore from (4.7),

|S6j | ≤ C
∑

Aj

a(λ+ s−γ)

with γ = (D − 1)−1. Hence

|S6j | ≤ C0

∑

Aj

a((a−1 log a)1/2 + (k2 + l2)−γ/2)

or

|S6| ≤ C0

∑

(1/2)b−ζ≤k2+l2≤bδ1/3

a((a−1 log a)1/2 + (k2 + l2)−γ/2).

Now,
∑

k2+l2≤bδ1/3

(a log a)1/2 =
∑

k2+l2≤bδ1/3

(b/(k2 + l2))1/2 log1/2(b/(k2 + l2))

≤ Cδ−1/6 log1/2 δ−1/3bδ1/3 = (C/3)bδ1/6|log δ|1/2,
and ∑

(1/2)b−ζ≤k2+l2

a(k2 + l2)−γ/2 =
∑

(1/2)b−ζ≤k2+l2

b(k2 + l2)−1−γ/2 ≤ Cb1−ζγ ,

which implies

|S6| ≤ Cb(δ1/6|log δ|1/2 + b−ζγ).

Therefore S6 satisfies (4.2), and Lemma 4.1 is proved.

P r o o f o f T h e o r e m 1.4. In virtue of (4.1), Theorem 1.4 will be
proved if we prove the following lemma:

Lemma 4.2. Assume that α = (α1, α2) satisfies (1.6), (1.7). Then

(4.8) lim
δ→0

lim sup
b→∞

|b−1S2 − ε(pq)(p2 + q2)| = 0,

with ε(n) = (n mod 2) + 1.

P r o o f. The proof of Lemma 4.2 repeats word for word the one of
Lemma 4.1 excepting one point: we proved in Lemma 4.1 that if α is Dio-
phantine then in the circle (4.4) there is no point from M6; now we state
that if α satisfies (1.6), (1.7) then in the circle (4.4) there are exactly two
points from M6,

(4.9) (k, l) = ±(−q, p).
Notice that due to (1.6), if (4.9) holds then

w = 2(lα1 − kα2) = ±2(pα1 + qα2) = ±2r,
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hence ŵ = 0, so that these two points contribute to Se the term

F 2(0)− 1 = πb(k2 + l2)−1 +O(1) = πb(p2 + q2)−1 +O(1).

If pq is odd, then these two points contribute a similar term to So. Therefore
totally they contribute to Sα(b) the term πbε(pq)(p2 + q2)−1 +O(1).

These considerations show that (4.8) will be proved if we prove that (4.9)
are the only points from M6 in the circle (4.4). Without loss of generality
we may assume p 6= 0. Assume

(4.10) (k, l) 6= ±(−q, p).
We have

(4.11) lα1−kα2 = (l/p)(α1p+α2q)−α2(k+ lq/p) = (l/p)r−α2(k+ lq/p).

Note that

(4.12) k + lq/p 6= 0.

Indeed, otherwise lq = −kp, and since the pairs (k, l) and (p, q) are coprime,
(k, l) = ±(−q, p), which contradicts (4.10).

(4.11), (4.12) and (1.7) imply that for every integer n,

|2p(lα1 − kα2)− n| = |−2α2(kp+ lq) + 2lr − n| ≥ C(2|kp+ lq|)−2D,

hence if m is the closest integer to w, then

pŵ = p|2(lα1 − kα2)−m| ≥ C(2|kp+ lq|)−2D.

Hence

(4.13) ŵ ≥ Cpq(k2 + l2)−D.

This proves that (1.6), (1.7) and (4.10) imply (4.13). If we assume in addition
that (k, l) ∈ M6, then (4.5) holds. Since (4.5) implies (4.6), the point (k, l)
lies outside of the circle (4.4). This means that (4.9) are the only points
from M6 in this circle. Lemma 4.2 is proved.

Appendix. Proof of Corollary 2 of Theorem 1.5. The proof of
Corollary 2 is the same as the proof of Theorem 1.5 = Theorem B.3 in
[BCDL], except that w = 2(lα1−kα2) is now an approximate integer instead
of an exact integer when

(A.1) lPj1 − kPj2 ≡ 0 mod Qj .

From (2.14),

(A.2) F (w)F (0)− 1 > πa exp(−1),

with the particular choice of b given by

(A.3) b = bj = π|εj |−2(Qj)2.
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Instead of (1.11) we now have

(A.4) Sα(bj) > C exp(−1)bj(Qjr(Qj))−1 log(bj/Qj) +O(bj).

From (1.15), (A.3) and (A.4), (1.16) follows immediately.
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