Rational quartic reciprocity

by

FRANZ LEMMERMEYER (Heidelberg)

In 1985, K. S. Williams, K. Hardy and C. Friesen [11] published a reciprocity formula that comprised all known rational quartic reciprocity laws. Their proof consisted in a long and complicated manipulation of Jacobi symbols and was subsequently simplified (and generalized) by R. Evans [3]. In this note we give a proof of their reciprocity law which is not only considerably shorter but also sheds some light on the raison d’être of rational quartic reciprocity laws. For a survey on rational reciprocity laws, see E. Lehmer [7].

We want to prove the following

Theorem. Let \(m \equiv 1 \mod 4 \) be a prime, and let \(A, B, C \) be integers such that

\[
A^2 = m(B^2 + C^2), \quad 2 \mid B,
\]

\((A, B) = (B, C) = (C, A) = 1, \quad A + B \equiv 1 \mod 4.\]

Then, for every odd prime \(p > 0 \) such that \((m/p) = +1\),

\[
\left(\frac{A + B\sqrt{m}}{p} \right) = \left(\frac{p}{m} \right)_4.
\]

Proof. Let \(k = \mathbb{Q}(\sqrt{m}) \); then \(K = \mathbb{Q}(\sqrt{m}, \sqrt{A + B\sqrt{m}}) \) is a quartic cyclic extension of \(\mathbb{Q} \) containing \(k \), as can be verified quickly by noting that \(A^2 - mB^2 = mC^2 = (\sqrt{mC})^2 \) and \(\sqrt{mC} \in k \setminus \mathbb{Q} \). We claim that \(K \) is the quartic subfield of \(\mathbb{Q}(\zeta_m) \), the field of \(m \)th roots of unity. This will follow from the theorem of Kronecker and Weber once we have seen that no prime \(\neq m \) is ramified in \(K/\mathbb{Q} \). But the identity

\[
2(A + B\sqrt{m})(A + C\sqrt{m}) = (A + B\sqrt{m} + C\sqrt{m})^2
\]

shows \(K = k(\sqrt{2(A + C\sqrt{m})}) \), and so the only odd primes that are possibly ramified in \(K/k \) are common divisors of \(A^2 - mB^2 = mC^2 \) and \(A^2 - mC^2 = mB^2. \) Since \(B \) and \(C \) are assumed to be prime to each other, only 2 and \(m \) can ramify. Now \(\sqrt{m} \equiv 1 \mod 2 \) (since \(m \equiv 1 \mod 4 \)) implies \(B\sqrt{m} \equiv B \mod 4 \), and we see \(A + B\sqrt{m} \equiv A + B \equiv 1 \mod 4 \), which shows that 2 is not ramified in \(K/k \) (and therefore not ramified in \(K/\mathbb{Q} \)).
The reciprocity formula will follow by comparing the decomposition laws in \(K/Q \) and \(Q(\zeta_m)/Q \): if \((m/p) = +1 \), then \(p \) splits in \(k/Q \); if \(f > 0 \) is the smallest natural number such that \(p^f \equiv 1 \mod m \) (here we have to assume \(p > 0 \)), then \(p \) splits into exactly \(g = (m - 1)/f \) prime ideals in \(Q(\zeta_m) \), and

\[
\left(\frac{p}{m} \right)_4 = 1 \iff p^{(m-1)/4} \equiv 1 \mod m \iff f \text{ divides } \frac{1}{4}(m - 1) = \frac{1}{4}fg
\]

\(\iff g \equiv 0 \mod 4 \)

\(\iff \) the degree of the decomposition field \(Z \) of \(p \)

is divisible by 4

\(\iff Z \) contains \(K \) (because \(\text{Gal}(Q(\zeta_m))/Q \) is cyclic)

\(\iff p \) splits completely in \(K/Q \)

\(\iff p \) splits completely in \(K/k \) (since \(p \) splits in \(k/Q \))

\(\iff \left(\frac{A + B\sqrt{m}}{p} \right) = 1. \)

This completes the proof of the theorem.

Letting \(m = 2 \) and replacing the quartic subfield of \(Q(\zeta_m) \) used above by the cyclic extension \(Q(\sqrt{2 + \sqrt{2}}) \) contained in \(Q(\zeta_{16}) \) yields the equivalence

\[
(3) \quad \left(\frac{A + B\sqrt{2}}{p} \right) = 1 \iff p \text{ splits in } Q(\sqrt{2 + \sqrt{2}}) \iff p \equiv \pm 1 \mod 16,
\]

stated in a slightly different way in [11].

Formula (1) differs from the one given in [11], which reads

\[
(4) \quad \left(\frac{A + B\sqrt{m}}{p} \right) = (-1)^{\frac{p-1}{2}}\left(\frac{2}{p} \right)\left(\frac{p}{m} \right)_4,
\]

where \(A, B, C > 0, B \) is odd and \(C \) is even. Formula (2) shows that

\[
\left(\frac{A + B\sqrt{m}}{p} \right) = \left(\frac{2}{p} \right)\left(\frac{A + C\sqrt{m}}{p} \right),
\]

and so, for \(B \) even and \(C \) odd, (4) is equivalent to

\[
(5) \quad \left(\frac{A + B\sqrt{m}}{p} \right) = (-1)^{\frac{p-1}{2}}\left(\frac{m}{p} \right)_4\left(\frac{p}{m} \right).
\]

Now \(A \equiv 1 \mod 4 \) since \(A^2 = m(B^2 + C^2) \) is the product of \(m \equiv 1 \mod 4 \) and of a sum of two relatively prime squares, and we have \(A + B \equiv 1 \mod 4 \iff 4 \mid B \iff m \equiv 1 \mod 8 \). The sign of \(B \) is irrelevant, therefore

\[
\left(\frac{-1}{p} \right)^{B/2} = (-1)^{\frac{p-1}{2}}\left(\frac{m}{p} \right)_4.
\]

This finally shows that (1) is in fact equivalent to (4).
Another version of (1) which follows directly from (5) is
\[
\left(\frac{A + B\sqrt{m}}{p} \right) = \left(\frac{p^*}{m} \right)_4,
\]
where \(A, B > 0 \) and \(p^* = (-1)^{(p-1)/2} p \).

Formula (1) can be extended to composite values of \(m \) (where the prime factors of \(m \) satisfy certain conditions given in [11]) in very much the same way as Jacobi extended the quadratic reciprocity law of Gauss; this extension, however, is not needed in deriving the known rational quartic reciprocity laws of K. Burde [1], E. Lehmer [6, 7] and A. Scholz [9]. These follow from (1) by assigning special values to \(A \) and \(B \), in other words: they all stem from the observation that the quartic subfield \(K \) of \(\mathbb{Q}(\zeta_m) \) can be generated by different square roots over \(k = \mathbb{Q}(\sqrt{m}) \).

The fact that (1) is valid for primes \(p | ABC \) (which has not been proved in [11]) shows that we no longer have to exclude the primes \(q | ab \) in Lehmer’s criterion (as was necessary in [11]), and it allows us to derive Burde’s reciprocity law in a more direct way: let \(p \) and \(q \) be primes \(\equiv 1 \mod 4 \) such that
\[
p = a^2 + b^2, \quad q = c^2 + d^2, \quad 2 | b, 2 | d, \quad (p/q) = +1,
\]
and define
\[
A = pq, \quad B = b(c^2 - d^2) + 2acd, \quad C = a(c^2 - d^2) - 2bcd, \quad m = q.
\]
Then \(2 | B, \ B \equiv 2d(ac + bd) \mod q \) (since \(c^2 \equiv -d^2 \mod q \)), the sign of \(A \) does not matter (since \(q \equiv 1 \mod 4 \)), and so formula (1) yields
\[
\left(\frac{q}{p} \right)_4 = \left(\frac{A + B\sqrt{p}}{q} \right) = \left(\frac{B}{q} \right) \left(\frac{p}{q} \right)_4,
\]
and the well-known \(\left(\frac{2d}{q} \right) = +1 \) implies Burde’s law
\[
\left(\frac{p}{q} \right)_4 \left(\frac{q}{p} \right)_4 = \left(\frac{ac - bd}{q} \right).
\]

A rational reciprocity law equivalent to Burde’s has already been found by T. Gosset [5], who showed that, for primes \(p \) and \(q \) as above,
\[
\left(\frac{q}{p} \right)_4 = \left(\frac{a/b - c/d}{a/b + c/d} \right)^{(q-1)/4} \mod q.
\]

Multiplying the numerator and denominator of the term on the right side of (8) by \(a/b + c/d \) and observing that \(c^2/d^2 \equiv -1 \mod q \) yields
\[
\left(\frac{q}{p} \right)_4 = \left(\frac{a^2/b^2 + 1}{q} \right)_4 \left(\frac{a/b + c/d}{q} \right) = \left(\frac{p}{q} \right)_4 \left(\frac{b}{q} \right) \left(\frac{a/b + c/d}{q} \right) = \left(\frac{p}{q} \right)_4 \left(\frac{a + bc/d}{q} \right) = \left(\frac{p}{q} \right)_4 \left(\frac{d}{q} \right) \left(\frac{ad + bc}{q} \right),
\]
which is Burde’s reciprocity law since \(\left(\frac{2d}{q} \right) = +1 \).
A more explicit form of Burde’s reciprocity law for composite values of \(p \) and \(q \) has been given by L. Rédei [8]; letting \(n = pq = A^2 + B^2 \) in [8, §5, (17), (19)], we find \(A = ac - bd \), \(B = ad + bc \), and his reciprocity formula [8, (23)] gives our formula (7).

Yet another version of Burde’s law is due to A. Fröhlich [4]; he showed

\[
\left(\frac{p}{q} \right)_4 \left(\frac{q}{p} \right)_4 = \left(\frac{a + bj}{q} \right) = \left(\frac{c + di}{p} \right),
\]

where \(i \) and \(j \) denote rational numbers such that \(i^2 \equiv -1 \mod p \), \(j^2 \equiv -1 \mod q \). Letting \(i = b/a \) and \(j = d/c \) and observing that \(\left(\frac{a}{p} \right) = \left(\frac{c}{q} \right) = +1 \) we find that (9) is equivalent to (7).

The reciprocity law of Lehmer [6, 7] is even older; it can be found in Dirichlet’s paper [2] as Théorème I and II; Dirichlet’s ideas are reproduced in the charming book of Venkov [10] and may be used to give proofs for other rational reciprocity laws using nothing beyond quadratic reciprocity.

References