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1. Introduction. Throughout this paper we shall suppose that s is
an integer ≥ 5. Then order of magnitude considerations show that every
sufficiently large integer is expressible as a sum of s distinct non-zero squares.
In fact, E. M. Wright [Wr] proved that, if s ≥ 5, then for large n we can
essentially prescribe the ratios of the squares in expressing n as a sum of s
squares. Thus, for each s ≥ 5 there exists a largest integer N(s) which is not
expressible as a sum of s distinct non-zero squares. In this paper we shall
obtain asymptotic estimates for N(s).

In a recent paper [HK], Halter-Koch considered representations of inte-
gers as sums of s distinct non-zero coprime squares, and he proved among
other things the following results.

Theorem 0 (Halter-Koch). The largest odd integer not expressible as a
sum of 4 distinct non-zero squares with greatest common divisor 1 is 157.
Moreover , if N∗(s) denotes the largest integer not expressible as a sum of s
distinct non-zero squares with greatest common divisor 1, then N∗(5) = 245,
N∗(6) = 333, N∗(7) = 330, N∗(8) = 462, N∗(9) = 539, N∗(10) = 647,
N∗(11) = 888, and N∗(12) = 1036.

Halter-Koch also proved a number of related results. For example, he
showed that for s ≥ 5,

N∗(s+ 1) ≤ 2(
√
N∗(s) + 2)2,

which enables one to derive an explicit (but rather crude) bound for N∗(s).
Of the two quantities N(s) and N∗(s), the former is the more natural

one, and we shall express our results in terms of N(s). Trivially, we have
N∗(s) ≥ N(s) for all s ≥ 5, and we shall show in Theorem 5 that the
two functions are in fact identical. Thus, the coprimality condition in the
definition of N∗(s) does not affect the results in any way.
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Since any sum of s distinct positive squares must be greater than or
equal to the sum of the first s positive squares, namely

P (s) =
s∑

i=1

i2 = s(s+ 1)(2s+ 1)/6,

we have the trivial lower bound N(s) ≥ P (s) − 1. In fact, N(s) must be
strictly larger than P (s) since, for example, P (s) + 1 is not expressible as
a sum of s distinct squares. Our principal result (Theorem 1) shows among
other things that N(s) is asymptotically equal to this lower bound P (s) and
gives a fairly precise estimate for the difference

R(s) = N(s)− P (s).

In order to state this main theorem, we define λs ≥ 0 by

λ2
s = 2 max(‖

√
2s‖, ‖

√
2s− 1/2‖),

where ‖ · ‖ denotes the distance to the nearest integer. It is easy to see that

(1.1) λ2
s = 1/2 + ‖

√
8s− 1/2‖.

We further set, for any non-negative real number x,

Lx = log log max(x, ee), tx = bLx/ log 2c, f(x) =
tx∑

i=0

x2−i .

Theorem 1. (i) We have the asymptotic formula

(1.2) R(s) = 2s{
√

2s+ λs(2s)1/4 +O(s1/8)}.
(ii) We have the upper estimate

(1.3) R(s) ≤ 2s{f(
√

2s) +O(L2
s)}.

(iii) The bound (1.3) is best possible in the sense that there exists an
increasing sequence {sk} of positive integers such that

(1.4) R(sk) ≥ 2sk{f(
√

2sk) +O(Lsk)}.
An example of such a sequence is given by taking s1 = 1 and sk = 2s2

k−1 +
sk−1 for k ≥ 2.

The estimate (1.2) shows in particular that R(s)�
√
P (s). The second

main term on the right-hand side of (1.2) involves the oscillatory quantity
λs, which depends on how 8s is situated relative to the sequence of squares.
From the representation (1.1) of λs it is clear that 1/

√
2 ≤ λs ≤ 1 and that

these bounds are best possible. Specifically, λs will be near its maximal value
1 if 8s is close to a square; and λs will be near its minimal value 1/

√
2 when

8s is roughly midway between two consecutive squares, for example, when
s has the form m(8m ± 1). Thus, R(s) = N(s) − P (s) oscillates between



Sums of distinct squares 351

the limits (2s)3/2 + (2s)5/4/
√

2 and (2s)3/2 + (2s)5/4, up to an error term
O(s9/8).

The inequality (1.3) gives a universal upper bound for R(s) which sharp-
ens that of (1.2) when 8s is close to a square and which by (1.4) is best
possible.

The remainder of this paper is organized as follows. In Section 2 we
give an explicit polynomial upper bound for N(s), namely N(s) < (s− 1)5

for s ≥ 5 (Theorem 2), which will be needed as a basis for the subsequent
arguments. In Section 3 we reformulate the problem of determiningN(s) and
state a result (Theorem 3) about a related extremal problem. This problem
concerns the minimum Q(m) of

∑t
i=1 ai for all representations of the integer

m in the form m =
∑t
i=1 εia

2
i , where εi = ±1 for all i and a1, . . . , at are

distinct positive integers. Theorem 3 gives estimates for Q(m) parallel to
those of Theorem 1 and forms the principal ingredient in the proof of that
theorem, but is also of some interest for its own sake. In Sections 4 and 5 we
prove Theorem 3, and in Sections 6 and 7 we prove Theorem 1. In Section 8,
we give the explicit upper bound (Theorem 4)

(1.5) N(s) < P (s) + 2s
√

2s+ 44s5/4 + 108s (s ≥ 166),

which is useful for various purposes. In particular, we use (1.5) to show that
the function N(s) is monotonic for s ≥ 7; this answers a question of Erdős.
(Note, however, that the function R(s) = N(s) − P (s) is not monotonic,
since (1.2) gives R(8m2) > R(8m2 + m) for all large m.) In Section 9, we
prove the above remark that N(s) = N∗(s) for every s ≥ 5; in fact, we show
(Theorem 5) that if a positive integer is expressible as a sum of s ≥ 5 distinct
non-zero squares then it is also expressible as a sum of s distinct non-zero
squares with greatest common divisor 1. In Section 10 we make some remarks
on the more general problem of expressing an integer as a sum of s distinct
positive kth powers. Using the results of Hardy and Littlewood on Waring’s
problem, we show (Theorem 6) that if Nk(s) denotes the largest integer not
expressible in this form, then

Nk(s) =
sk+1

k + 1
+O(sk).

In the final section, we discuss the computation of N(s) and we give two
tables of numerical data.

2. An initial upper bound. Using the result of Halter-Koch on four
squares mentioned in the preceding section, we obtain the rough bound
N(s) < (s− 1)5, which will be needed later on.

Theorem 2. If s ≥ 5 and if n ≥ (s − 1)5, then n is expressible as a
sum of s distinct non-zero squares.
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P r o o f. It is convenient to prove the assertion of the theorem under the
slightly weaker assumption n ≥ (s−1)4(s−3). For i = 1, 2, . . . , s−5 we put
ai = b

√
n/(s− 3)c+ i; we also put as−4 = b

√
n/(s− 3)c+ s− 4 + δ, where

δ ∈ {0, 1} is chosen so that r = n−a2
1−a2

2− . . .−a2
s−4 is odd. (When s = 5,

only as−4 is needed.) Then a2
i > n/(s−3) for each i and thus r < n/(s−3).

Moreover,

r ≥ n−
s−5∑

i=1

(√
n

s− 3
+ i

)2

−
(√

n

s− 3
+ s− 3

)2

= fs(n),

say. A simple calculation gives

fs(n) =
n

s− 3
− (s2 − 7s+ 14)

√
n

s− 3
− (2s3 − 21s2 + 85s− 126)/6.

Clearly fs(n) is an increasing function of n provided
√
n/(s− 3) > (s2 −

7s+ 14)/2. This condition is satisfied if s ≥ 5 and n ≥ (s−1)4(s−3). Thus,
if n ≥ (s− 1)4(s− 3), we have

r ≥ fs(n) ≥ fs((s− 1)4(s− 3)) =
14
3
s3 − 39

2
s2 +

101
6
s+ 8.

The polynomial on the right-hand side here is an increasing function of s
for s ≥ 5 and hence

r ≥ 14
3

53 − 39
2

52 +
101
6

5 + 8 = 188.

Since r is odd and greater than 157, Theorem 0 shows that r is expressible
as a sum of four distinct non-zero squares. Since each of these four squares
is less than

r < n/(s− 3) < a2
1 < a2

2 < . . . < a2
s−4

and since n = r+ a2
1 + a2

2 + . . .+ a2
s−4, the assertion of the theorem follows.

3. An extremal problem. In this section we rephrase the problem of
estimating N(s) in a form which is more suitable when dealing with integers
that are close to P (s), and we state a result (Theorem 3), which will form
the principal ingredient in the proof of Theorem 1. The underlying idea is
that if n is an integer close to P (s) =

∑s
i=1 i

2 which has a representation
n =

∑s
i=1 a

2
i as a sum of s distinct squares, then the set {ai : i ≤ s} can be

expected to be “close” to the set {i : i ≤ s}.
To make this idea precise, we note that any set {ai : i ≤ s} of distinct

positive integers can be obtained from the set {i : i ≤ s} by replacing some
of the integers i ≤ s, say s − hi, i ≤ t, by distinct integers > s, say s + ki,
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i ≤ t. The associated representation n =
∑s
i=1 a

2
i can then be written as

n =
s∑

i=1

i2 −
t∑

i=1

(s− hi)2 +
t∑

i=1

(s+ ki)2(3.1)

= P (s) + 2s
t∑

i=1

(hi + ki) +
t∑

i=1

(k2
i − h2

i ),

where the numbers hi and ki satisfy

hi distinct, 0 ≤ hi < s,(3.2)

ki distinct, ki ≥ 1.(3.3)

Conversely, any integer n expressible in the form (3.1) with the conditions
(3.2) and (3.3) is a sum of s distinct positive squares. Therefore, R(s) =
N(s)− P (s) is the largest integer r not expressible in the form

(3.4) r = 2s
t∑

i=1

(hi + ki) +
t∑

i=1

(k2
i − h2

i )

with integers hi and ki satisfying (3.2) and (3.3).

The above formulation leads naturally to the problem of minimizing the
sum

∑t
i=1(hi + ki), subject to the conditions (3.2) and (3.3), while holding

the sum
∑t
i=1(k2

i − h2
i ) fixed. However, this extremal problem is somewhat

awkward to deal with directly, as the conditions (3.2) and (3.3) are not
symmetrical and depend on the parameter s. We therefore consider the
following related, but simpler and more natural problem, which is sufficient
for the application to the proof of Theorem 1 and also is of some intrinsic
interest. For m 6= 0 set

(3.5) Q(m) = min
{ t∑

i=1

ai :
t∑

i=1

εia
2
i = m

}
,

where the minimum is taken over all sets {ai : i ≤ t} of distinct positive
integers satisfying

∑t
i=1 εia

2
i = m with suitable numbers εi ∈ {±1}, and

define Q(0) = 0. The quantity Q(m) may be viewed as a measure for how
“economically” m can be represented as a difference of sums of distinct
squares. The following result gives precise upper and lower bounds for Q(m)
that are largely parallel to those of Theorem 1. Since m = ((m+ 10)/2)2 −
((m + 8)/2)2 − 32 for even positive integers m and m = ((m + 17)/2)2 −
((m+15)/2)2−42 for odd positive integers m, every non-zero integer m has
indeed a representation m =

∑t
i=1 εia

2
i of the above form, so that Q(m) is

well-defined. Halter-Koch’s result that N∗(5) = 245, along with Schwarz’s
inequality, shows that trivially Q(m) ≤ √5m for m ≥ 246.



354 P. T. Bateman et al.

Theorem 3. (i) We have the asymptotic formula

(3.6) Q(m) =
√
|m|+

√
2θ|m| |m|1/4 +O(|m|1/8),

where θx = ‖√x‖.
(ii) We have the upper estimate

(3.7) Q(m) ≤ f(
√
|m| ) +O(L|m|),

where f(x) and Lx are defined as in Theorem 1.
(iii) The inequality (3.7) is best possible in the sense that if the sequence

{mk} is defined by m0 = 1 and mk = m2
k−1 +mk−1 for k ≥ 1, then we have

(3.8) Q(mk) ≥ f(
√
mk ) +O(Lmk).

(iv) The upper bounds in (3.6) and (3.7) remain valid if in the definition
(3.5) of Q(m), t is restricted by the condition

(3.9) t ≤ CL|m|,
where C is a suitable absolute constant.

4. Proof of Theorem 3; upper bounds. Call a representation m =∑t
i=1 εia

2
i admissible if εi ∈ {±1} and the numbers ai are distinct positive

integers. To obtain the upper bounds of Theorem 3 (in the stronger form
claimed in the last part of Theorem 3), we need to construct an admissible
representation with t ≤ CL|m| for which the sum

∑t
i=1 ai is bounded by

the right-hand sides of (3.6) and (3.7). Our construction is essentially that
obtained by the greedy algorithm, supplemented by a direct argument for
the first few values of m. We first dispose of the case of small m with the
following lemma.

Lemma 4.1. If 0 < |m| ≤ 37, then m has an admissible representation
m =

∑t
i=1 εia

2
i such that ai ≤ 5 for all i.

P r o o f. The identities 1 = 12, 2 = 42− 32− 22− 12, 3 = 22− 12, 4 = 22,
5 = 22 + 12, 6 = 32− 22 + 12, 7 = 42− 32, 8 = 32− 12, 9 = 32, 10 = 32 + 12,
11 = 42 − 22 − 12, 12 = 42 − 22, and 13 = 32 + 22 show that every m with
0 < m ≤ 13 has a representation of the required form with ai ≤ 4. Replacing
εi by −εi in each of these representations, we see that the same is true for
−13 ≤ m < 0. In the remaining range 13 < |m| ≤ 37 the result follows by
writing m = ε52 +m′ with ε ∈ {±1} and |m′| ≤ 12 and representing m′ in
the above form using squares a2

i with ai ≤ 4.

The lemma shows that for 0 < |m| ≤ 37, Q(m) is well-defined and
satisfies the bounds (3.6) and (3.7) trivially, provided the O-constants are
suitably chosen. The same is true for m = 0, since by definition Q(0) = 0. To
deal with the general case, we begin with the following observation. Given
an arbitrary integer m, let q = b

√
|m|c, so that q2 ≤ |m| ≤ q2 + 2q, and
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set a = 〈
√
|m|〉, where 〈x〉 denotes the nearest integer to x. (Note that,

since
√
|m| cannot be half an odd integer, there is no ambiguity in the

definition of 〈
√
|m|〉.) Then a = q if q2 ≤ |m| ≤ q2 + q, a = q + 1 if

q2 + q + 1 ≤ |m| ≤ q2 + 2q, and in either case we have m = εa2 + r with
ε = sign(m) (with the convention sign(0) = 1) and |r| ≤ q = b

√
|m|c.

Iterating this procedure, we obtain, for any given integer m, sequences
of integers {ai} and {ri} defined by

(4.1) r0 = m, ai = 〈
√
|ri−1|〉, εi = sign(ri−1), ri−1 = εia

2
i +ri (i ≥ 1),

such that

(4.2) |ri| ≤ b
√
|ri−1|c (i ≥ 1).

We then have for any k ≥ 1 the representation

(4.3) m =
k∑

i=1

εia
2
i + rk.

In fact, for sufficiently large k we have the exact representation m =∑k
i=1 εia

2
i , since it is easily seen that the sequence {ri} must be eventu-

ally zero; however, in order to ensure that the numbers ai are distinct, we
need to work with the truncated version (4.3) in which the term rk is not
necessarily 0.

Assume now that |m| = |r0| > 37. Then

a1 = 〈
√
|m|〉 ≥ 〈

√
37〉 ≥ 6.

Moreover, if i ≥ 2 and ai ≥ 3 then (4.2) and (4.1) imply that

3 ≤ ai = 〈
√
|ri−1|〉 ≤ 〈|ri−2|1/4〉 < 〈

√
|ri−2|〉 = ai−1,

since any real number x with 〈x〉 ≥ 3 must be at least equal to 5/2 and
hence satisfies x < x2 − 1 and 〈x〉 < 〈x2〉. Therefore, defining k to be the
maximal index such that ak ≥ 6, we have

a1 > a2 > . . . > ak ≥ 6 > ak+1.

Furthermore, by (4.1) we have 〈
√
|rk|〉 = ak+1 ≤ 5, so that |rk| ≤ (5 +

1/2)2 < 36. If rk = 0, then (4.3) gives an admissible representation of m.
Otherwise we have 0 < |rk| < 36 and we can therefore apply Lemma 4.1 to
represent rk in the form

rk =
t∑

i=k+1

εia
2
i , 5 ≥ ak+1 > . . . > at ≥ 1.

Combining this representation with (4.3) we obtain again an admissible
representation of m involving t ≤ k + 5 squares. In either case we obtain
the inequality
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(4.4) Q(m) ≤
t∑

i=1

ai ≤
k∑

i=1

ai +
5∑

i=1

i =
k∑

i=1

ai + 15.

To bound the sum
∑k
i=1 ai, we first observe that by (4.2) and induction

we have for each i ≥ 1,

|ri| ≤ |r0|2
−i

= |m|2−i .
Together with (4.1), this implies

(4.5) ai = 〈
√
|ri−1|〉 ≤ |m|2

−i
+ 1/2

and, in particular,

6 ≤ ak ≤ |m|2
−k

+ 1/2.

The last estimate implies

(4.6) k ≤ 1
log 2

L|m|,

which in view of the inequality t ≤ k + 5 shows that the representation
constructed above satisfies the additional restriction (3.9) stated in part
(iv) of the theorem. Moreover, (4.5) and (4.6) yield

k∑

i=1

ai ≤
k∑

i=1

(|m|2−i + 1/2) ≤ f(
√
|m|) +O(L|m|).

In view of (4.4) this establishes the bound (3.7).
To prove the upper bound in (3.6), we observe that if

√
|m| = a+ϑ with

|ϑ| ≤ 1/2, then we have a = 〈
√
|m|〉, |ϑ| = θ|m| and

|r1| = ||m| − a2| = |(a+ ϑ)2 − a2| = 2a|ϑ|+O(1) = 2θ|m|
√
|m|+O(1).

Using this estimate together with (4.4), (4.5), and (4.6), we obtain

Q(m) ≤
k∑

i=1

ai +O(1) ≤
√
|r0|+

√
|r1|+

k∑

i=3

(|m|2−i + 1/2) +O(1)

=
√
|m|+

√
2θ|m||m|1/4 +O(|m|1/8),

which is the desired estimate.

5. Proof of Theorem 3; lower bounds. We begin with a lemma which
supplies the key step in the proof.

Lemma 5.1. (i) For any integer m, we have Q(m) = Q(|m|) ≥
√
|m|.

(ii) If m is a sufficiently large positive integer , then we have

(5.1) Q(m) = min
{
q +Q(m− q2), q + 1 +Q(m− (q + 1)2)

}
,

where q = b
√
|m|c.
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P r o o f. (i) The identity Q(m) = Q(|m|) follows immediately from the
definition of Q(m). The bound Q(m) ≥

√
|m| holds trivially for m = 0,

since Q(0) = 0. If m 6= 0, then any representation of the form

(5.2) m =
t∑

i=1

εia
2
i , εi ∈ {±1}, a1 > a2 > . . . > at ≥ 1,

satisfies
t∑

i=1

ai ≥
( t∑

i=1

a2
i

)1/2
≥
∣∣∣

t∑

i=1

εia
2
i

∣∣∣
1/2

=
√
|m|.

By the definition of Q(m) this implies Q(m) ≥
√
|m|.

(ii) We first show that Q(m) is bounded from below by the right-hand
side of (5.1). Suppose that m is a positive integer and fix a representation
of the form (5.2) such that Q(m) =

∑t
i=1 ai. If t = 1 in (5.2), then |m| =

a2
1 = q2, and (5.1) holds trivially. Assume therefore that t ≥ 2. By (5.2),∑t
i=2 εia

2
i is an admissible representation for the number m− ε1a

2
1, and we

therefore have Q(m− ε1a
2
1) ≤∑t

i=2 ai. It follows that

(5.3) Q(m) = a1 +
t∑

i=2

ai ≥ a1 +Q(m− ε1a
2
1).

Thus, to obtain the lower bound in (5.1), it suffices to show that ε1 = 1 and
a1 = q or a1 = q + 1 whenever m is sufficiently large.

Suppose first that a1 ≤
√
m/2. Then (5.2) implies

Q(m) =
t∑

i=1

ai ≥ 1
a1

t∑

i=1

a2
i ≥

1
a1

∣∣∣
t∑

i=1

εia
2
i

∣∣∣ =
m

a1
≥
√

2m,

which contradicts the upper bound of (3.6) if m is sufficiently large. If a1 >√
m/2 and ε1 = −1, then (5.3) and part (i) of the lemma give

Q(m) ≥ a1 +
√
m+ a2

1 ≥
√
m/2 +

√
3m/2,

which again yields a contradiction to the upper bound of (3.6).
Finally, suppose that a1 >

√
m/2, ε1 = 1, but a1 6∈ {q, q + 1}. In this

case we obtain from (5.3) and part (i) of the lemma the bound

(5.4) Q(m) ≥ a1 +
√
|m− a2

1|.
Now, note that the function x +

√
|m− x2| is decreasing for

√
m/2 < x

<
√
m and increasing for x >

√
m. Since q ≤ √m < q + 1, it follows that

over the ranges
√
m/2 < a1 ≤ q − 1 and a1 ≥ q + 2 the right-hand side of

(5.4) is minimal when a1 = q−1 or a1 = q+2, and in either case is bounded
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from below by

q − 1 + min(
√
m− (q − 1)2,

√
(q + 2)2 −m)

≥ q − 1 +
√
m− (

√
m− 1)2 =

√
m+

√
2m1/4 +O(1).

Since this bound exceeds the upper bound (3.6) for large enough m, we
conclude that for sufficiently large m, a1 must be equal to either q or q+ 1,
as we wanted to show.

To obtain the reverse inequality, it suffices to note that under the con-
ditions Q(m − q2) < q and Q(m − (q + 1)2) < q + 1 we obtain admissible
representations of m by adding q2 to any admissible representation of m−q2

or by adding (q + 1)2 to any admissible representation of m− (q + 1)2 and
therefore have Q(m) ≤ min(q + Q(m − q2), q + 1 + Q(m − (q + 1)2)). In
view of the inequalities 0 ≤ m − q2 ≤ 2q and 0 ≤ (q + 1)2 − m ≤ 2q + 1
and the bound Q(m)�

√
|m|, the two conditions are satisfied provided m

is sufficiently large.

R e m a r k. The recurrence formula (5.1) could be used in principle to
evaluate Q(m) for any m to within an error term O(1), but it is unlikely
that it would lead to a simple explicit expression for Q(m) or provide a
simple algorithm for computing Q(m) for any particular value of m without
the knowledge of the prior values of the function Q. The reason for this
is that it seems hard to decide a priori, which of the two terms on the
right of the formula achieves the minimum; in particular, since the function
Q(m) is not monotonic, the minimum is not necessarily attained (or even
approximately attained) at the term in which the argument of Q (i.e., m−q2

or m− (q + 1)2) has smaller absolute value.

P r o o f o f (3.6), l o w e r b o u n d. In view of part (i) of Lemma 5.1
we may assume that m is sufficiently large and positive. Writing θ = θm =
‖√m‖ and q = b√mc, we have

√
m = q+θ if q2 ≤ m ≤ q2+q,

√
m = q+1−θ

if q2 + q + 1 ≤ m < (q + 1)2, and in any case

min(|m− q2|, |m− (q + 1)2|) ≥ 2qθ +O(1).

Applying Lemma 5.1, we therefore obtain

Q(m) ≥ q + min(
√
|m− q2|,

√
|m− (q + 1)2|)

≥ q +
√

2qθ +O(1) ≥ √m+
√

2θm1/4 +O(1),

which proves the lower bound of (3.6).

P r o o f o f (3.8). We first note that the recurrence relation mk =
m2
k−1 + mk−1 implies b√mkc = b√mk + 1c = mk−1. Thus, if m = mk

or m = mk + 1, then we have, in the notation of Lemma 5.1, q = mk−1.
Moreover, the numbers m − q2 and m − (q + 1)2 are equal to mk−1 and
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−(mk−1 + 1), respectively, if m = mk, and to mk−1 + 1 and −mk−1 if
m = mk + 1. Setting

Qk = min(Q(mk), Q(mk + 1))

and noting that Q(m) = Q(−m) we therefore obtain from (5.1) the inequal-
ity

Qk ≥ mk−1 +Qk−1

for all sufficiently large k, say k ≥ k0. Iterating this inequality, we deduce

(5.5) Q(mk) ≥ Qk ≥
k−1∑

i=k0−1

mi +Qk0−1 =
k−1∑

i=1

mk−i +O(1)

for k ≥ k0.
To estimate the sum on the right of (5.5), we show by induction that for

0 ≤ i ≤ k
(5.6) mk−i ≤ m2−i

k ≤ mk−i + 1− 2−i.

For i = 0, (5.6) holds trivially. Assuming (5.6) holds for some i ≤ k − 1, we
deduce

mk ≥ m2i
k−i ≥ (m2

k−i−1)2i = m2i+1

k−i−1

and

mk ≤ (mk−i + 1− 2−i)2i = (m2
k−i−1 +mk−i−1 + 1− 2−i)2i

≤ (m2
k−i−1 + 2(1− 2−i−1)mk−i−1)2i < (mk−i−1 + 1− 2−i−1)2i+1

,

which implies (5.6) for i+ 1 and completes the induction.
Applying first (5.6) with i = k − 1 we obtain

2 = m1 ≤ m2−k+1

k ≤ m1 + 1− 2−k+1 = 3− 2−k+1,

which implies k = Lmk/ log 2 + O(1) = tmk + O(1). Using this inequality
and the upper bound of (5.6) we get

k∑

i=1

mk−i ≥
k∑

i=1

(m2−i
k − 1) =

tmk∑

i=0

√
mk

2−i − k +O(1)

= f(
√
mk)− 1

log 2
Lmk +O(1),

since by (5.6) the terms m2−i
k with i = k+O(1) are of order O(1). Combined

with (5.5), this gives the desired estimate.

6. Proof of Theorem 1; lower bounds. Recall that R(s) is the largest
integer r not expressible in the form (3.4) with integers hi and ki satisfying
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(3.2) and (3.3). For 0 ≤ r0 < 4s let R(s, r0) denote the largest such integer
r that lies in the residue class r0 modulo 4s. Then clearly

(6.1) R(s) = max
0≤r0<4s

R(s, r0).

We shall obtain the lower bounds of Theorem 1 by considering R(s, r0) for
suitable choices of r0.

We begin with a lemma which gives a bound for R(s, r0) in terms of the
function Q(m) defined in Theorem 3.

Lemma 6.1. We have

(6.2) R(s, r0) ≥ 2smin {Q(2s− d), Q(2s+ d)}+O(s),

where |d| ≤ 2s is chosen so that

(6.3) d ≡
{
r0 mod 4s if r0 is odd,
2s− r0 mod 4s if r0 is even.

P r o o f. It suffices to show that any integer r ≡ r0 mod 4s which has a
representation of the form

(6.4) r = 2s
t∑

i=1

(hi + ki) +
t∑

i=1

(k2
i − h2

i ) = 2sΣ1 +Σ2,

say, with integers hi and ki satisfying (3.2) and (3.3), is bounded from below
by the right-hand side of (6.2).

We first observe that, by the upper bound Q(m) ≤
√
|m|+O(|m|1/4) of

Theorem 3, the right-hand side of (6.2) is bounded from above by

2smin(
√

2s− d,
√

2s+ d) +O(s5/4) ≤ 2s
√

2s+O(s5/4).

Thus, if

(6.5) r ≥ 4s3/2 +O(s),

then r is bounded from below by the right-hand side of (6.2).
Next, note that under the conditions 0 ≤ hi < s and ki > 0, which

are implied by (3.2) and (3.3), the right-hand side of (6.4) is an increasing
function of each of the variables hi and ki. Hence, for any λ with 0 < λ ≤ 1,
(6.4) implies

r ≥ 2s
t∑

i=1

(λhi + λki) +
t∑

i=1

((λki)2 − (λhi)2)

≥ 2sλΣ1 + λ2Σ2 ≥ 2sλ
√
|Σ2|+ λ2Σ2,

since trivially

Σ2
1 ≥

t∑

i=1

(h2
i + k2

i ) ≥ |Σ2|.
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If now |Σ2| ≥ 4s, then choosing λ =
√

4s/|Σ2| we obtain r ≥ 4s3/2−4s and
hence (6.5). Thus, it remains to consider the case when

(6.6) |Σ2| < 4s.

Observe that the sums Σ1 and Σ2 in (6.4) have the same parity, since
x ≡ ±x2 mod 2 for any integer x. Hence, if r ≡ r0 mod 4s with r0 even,
(6.4) implies that both sums are even and that r0 ≡ Σ2 mod 4s. If r0 is odd,
both sums are odd, and in this case (6.4) yields r0 ≡ Σ2 − 2s mod 4s. In
either case we have |Σ2| ≡ 2s+ d or |Σ2| ≡ 2s− d with d given by (6.3). In
view of (6.6), this implies

(6.7) |Σ2| ∈ {2s± d}.
The conditions (3.2) and (3.3) imply that in the representation Σ2 =∑t
i=1(k2

i − h2
i ) the numbers hi are mutually distinct and non-negative and

the numbers ki are mutually distinct and positive, although the two sets of
numbers are not necessarily disjoint. However, by dropping any pairs (hi, kj)
with hi = kj as well as 0 if it occurs among the numbers hi and relabeling
the remaining numbers hi and ki we obtain a representation of the form

Σ2 =
t1∑

i=1

k2
i −

t2∑

i=1

h2
i

in which the integers hi and kj are mutually distinct and strictly positive.
The latter representation is an admissible representation in the definition of
Q(Σ2), and we therefore have

Q(|Σ2|) = Q(Σ2) ≤
t1∑

i=1

ki +
t2∑

i=1

hi ≤ Σ1.

Combining this inequality with (6.7) and (6.4) yields the desired lower bound
for r.

This completes the proof of the lemma.

P r o o f o f (1.2), l o w e r b o u n d. By (6.1) and Lemma 6.1 we have

(6.8) R(s) ≥ 2s max
|d|≤√2s

min {Q(2s− d), Q(2s+ d)}+O(s).

To bound the right-hand side, we use the bound of (3.6) of Theorem 3
together with the estimates

√
2s± d =

√
2s± d

2
√

2s
+O(s−1/2) (|d| ≤

√
2s),(6.9)

(2s± d)1/4 = (2s)1/4 +O(s−1/4) (|d| ≤
√

2s).

We thus obtain for |d| ≤ √2s,

(6.10) min(Q(2s− d), Q(2s+ d)) ≥
√

2s+
√

2µ(2s)1/4 +O(s1/8),
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where

µ = µ(s, d) = min(‖
√

2s+ d‖, ‖
√

2s− d‖).
By (6.9) we have

‖
√

2s± d‖ =
∥∥∥∥
√

2s± d

2
√

2s

∥∥∥∥+O(s−1/2)

and therefore

(6.11) max
|d|≤√2s

µ(s, d) = max
|δ|≤1/2

min{‖δ +
√

2s‖, ‖δ −
√

2s‖}+O(s−1/2).

It is easy to see that the maximum on δ is attained either at δ = 0 or at δ =
1/2 and thus is equal to max(‖√2s‖, ‖√2s− 1/2‖) = λ2

s/2 by the definition
of λs. It follows that the left-hand side of (6.11) is equal to λ2

s/2+O(s−1/2),
which combined with (6.10) and (6.8) proves the lower bound of (1.2).

P r o o f o f (1.4). We set sk = mk/2 for k ≥ 1 with mk defined as in
part (iii) of Theorem 3. Clearly s1 = 1 and sk = 2s2

k−1 + 1 for k ≥ 2, so
that sk is an odd integer. Applying the bound of Lemma 6.1 with r0 = 2sk
(so that d = 0), together with the estimate (3.8) of Theorem 3, we obtain

R(sk) ≥ R(sk, 2sk) ≥ 2skQ(2sk) +O(sk)

≥ 2sk{f(
√
mk ) +O(Lmk)}+O(sk) = 2sk{f(

√
2sk ) +O(Lsk)},

which proves (1.4).

7. Proof of Theorem 1; upper bounds. To obtain the upper bounds
(1.2) and (1.3) for R(s), we need to show that if r is greater than the
right-hand side of (1.2) or (1.3) then r is expressible in the form (3.4), i.e.,

(7.1) r = 2s
t∑

i=1

(hi + ki) +
t∑

i=1

(k2
i − h2

i ),

with integers hi and ki satisfying (3.2) and (3.3). In fact, it will be convenient
to also consider such representations with (3.2) and (3.3) replaced by the
slightly stronger conditions

1 ≤ hi ≤ s− 1, hi distinct,(7.2)

1 ≤ ki ≤ s− 1, ki distinct,(7.3)

which have the advantage of being symmetric in hi and ki. We denote by
Rt(s) the set of integers r expressible in the form (3.2)–(3.4), and by R∗t (s)
the set of integers expressible in the form (7.1)–(7.3). Needless to say, empty
sums are to be interpreted as zero, so that R0(s) = R∗0(s) = {0}. We
further set R(s) =

⋃
t≥0Rt(s), R∗(s) =

⋃
t≥0R∗t (s), and for any residue
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class r0 mod 4s we put

Rt(s, r0) = {r ∈ Rt(s) : r ≡ r0 mod 4s},
and define R∗t (s, r0), R(s, r0), and R∗(s, r0) analogously. Note that R∗(s) ⊂
R(s).

The following three propositions contain the key steps of the proof and
will be proved in turn in the remainder of this section. The second and third
of these propositions will be used again in Section 9 to obtain an explicit
numerical bound.

Proposition 7.1. For any residue class r0 mod 4s there exists a non-
negative integer r ∈ R∗t (s, r0) for some t� Ls satisfying

r ≤ 2s{
√

2s+ λs(2s)1/4 +O(s1/8)},(7.4)

r ≤ 2s{f(
√

2s) +O(L2
s)}.(7.5)

Proposition 7.2. If s ≥ 150 and r ∈ R∗t (s) for some t ≤ s/25, then
r + 4sq ∈ R∗(s) for every q satisfying

(7.6) 4t+ 3 ≤ q ≤ b(s+ 5)/6cs.
Proposition 7.3. Suppose that s ≥ 50 and that R∗(s − 1) contains

every integer in the interval [(s − 1)3/6, (s − 1)3/2]. Then R(s) contains
every integer ≥ 2s3/3.

P r o o f o f T h e o r e m 1; u p p e r b o u n d s. We may clearly assume
that s is sufficiently large. The first two propositions imply that R∗(s), and
hence also R(s), contains every integer r in the ranges

2s{
√

2s+ λs(2s)1/4 + c1s
1/8} ≤ r ≤ 4b(s+ 5)/6cs2,(7.7)

2s{f(
√

2s) + c2L2
s} ≤ r ≤ 4b(s+ 5)/6cs2,(7.8)

provided c1 and c2 are sufficiently large absolute constants. Since for large
s the ranges (7.7) and (7.8) contain the interval [s3/6, 2s3/3], it follows by
the third proposition that, if s is sufficiently large, then R(s) also contains
every integer ≥ 2s3/3. Therefore, R(s) = max{r : r 6∈ R(s)} is bounded by
the left-hand sides of (7.7) and (7.8), and we obtain the upper bounds of
(1.2) and (1.3).

P r o o f o f P r o p o s i t i o n 7.1. In the case r0 ≡ 0 mod 4s, r = 0 be-
longs to R∗0(s, 0) and (7.4) and (7.5) are trivially satisfied. We can therefore
assume that r0 6≡ 0 mod 4s.

As a first step, we show that for sufficiently large s and every integer m
with 0 < m < 4s there exist integers hi and ki (1 ≤ i ≤ t) satisfying (7.2)
and (7.3) with

(7.9) t� Lm,
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such that

(7.10) m =
t∑

i=1

(k2
i − h2

i )

and

(7.11)
t∑

i=1

(hi + ki) ≤
{√

m+
√

2θmm1/4 +O(m1/8),
f(
√
m) +O(L2

m),

where θm is defined as in Theorem 3.
An application of Theorem 3 yields a representation

(7.12) m =
t1∑

i=1

h2
i −

t2∑

i=1

k2
i

with distinct positive integers hi, 1 ≤ i ≤ t1, and ki, 1 ≤ i ≤ t2, whose sum
is bounded by the right-hand side of (7.11) and such that

(7.13) t1 + t2 ≤ CLm,
where C is the constant in (3.9). The bound (7.11) implies that the integers
hi and ki are bounded by � √m <

√
4s, and hence are ≤ s − 1 if s is

sufficiently large. The conditions (7.2) and (7.3) are therefore satisfied for
these integers, and if t1 = t2 then (7.9)–(7.11) follow immediately with
t = t1 = t2.

If t1 6= t2, we will obtain (7.9)–(7.11) by suitably enlarging the sets {hi}
and {ki} to two sets having the same cardinality t, while leaving the value
of
∑
i h

2
i −
∑
i k

2
i unchanged. Without loss of generality, assume that t1 > t2

and set

l = t1 − t2, t = t1 + l = t2 + 2l.

By (7.13) we have t ≤ t1 + l ≤ 2t1 ≤ 2CLm, so that (7.9) is satisfied. We
define additional integers hi and ki by setting

(7.14) ht1+i = 5ai, kt2+i = 3ai, kt2+l+i = 4ai (1 ≤ i ≤ l)
with distinct positive integers ai to be chosen later. This definition ensures
that

t∑

i=1

(k2
i − h2

i ) =
t1∑

i=1

k2
i −

t2∑

i=1

h2
i ,

which in view of (7.12) yields (7.10). Moreover, if we restrict the integers ai
to the residue class 1 modulo 3, then the sets {3ai}, {4ai}, and {5ai} are
pairwise disjoint, and the numbers defined in (7.14) are therefore mutually
distinct positive integers. Thus, in order to satisfy the conditions (7.2) and
(7.3), it remains to ensure that these numbers are distinct from the numbers
hi, 1 ≤ i ≤ t1, and ki, 1 ≤ i ≤ t2, and are bounded by s− 1.
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We consider the set of positive integers a ≤ 12CLm + 3, where C is
the constant in (7.13). Clearly, at least 4CLm of these integers satisfy the
congruence a ≡ 1 mod 3, and at most 3(t1 + t2) integers can be of the form
λhi, 1 ≤ i ≤ t1, or λki, 1 ≤ i ≤ t2, with λ = 1/3, 1/4, or 1/5. Since by
(7.13), 4CLm − 3(t1 + t2) ≥ t1 + t2 ≥ l, there exist l of these integers, say
a1, . . . , al, with ai ≡ 1 mod 3, such that none of the integers (7.14) is equal
to one of the numbers hi, 1 ≤ i ≤ t1, or ki, 1 ≤ i ≤ t2. Moreover, since
l ≤ t1 ≤ CLm and ai ≤ 12CLm + 3, the integers in (7.14) are bounded by
� Lm ≤ L4s (and thus are ≤ s− 1 for large enough s), and we have

t∑

i=t1+1

hi +
t∑

i=t2+1

ki �
l∑

i=1

ai � L2
m.

Thus, extending the summation in
∑t1
i=1 hi and

∑t2
i=1 ki to the full range

1 ≤ i ≤ t increases the two sums by at most O(L2
m), and therefore does not

affect the upper bound (7.11). Hence (7.9)–(7.11) hold in any case.
Now, let r0 mod 4s be a given non-zero residue class and define |d| < 2s

by the congruence

(7.15) d ≡
{
r0 mod 4s (r0 odd),
2s+ r0 (r0 even).

We apply the above construction with m = m± = 2s± d to obtain integers
h±i and k±i (1 ≤ i ≤ t±) satisfying (7.2), (7.3), and (7.9)–(7.11), and set for
ε = ±
(7.16) rε = 2sΣε + εmε,

where Σε =
∑tε
i=1(hεi + kεi ). We shall show that at least one of the integers

r± has the properties claimed in the proposition.
First note that the numbers r± are both non-negative, since 0 < m± < 4s

and Σ± ≥ 2. Also, both numbers lie in the residue class r0 mod 4s, since by
(7.10), Σε ≡ mε ≡ d mod 2 and therefore

rε ≡ 2sd+ ε(2s+ εd) ≡ 2s(d+ 1) + d ≡ r0 mod 4s.

Moreover, by (7.16) and (7.10), r+ has a representation of the required form
(7.1) with t+ � Ls terms, and interchanging the roles of h−i and k−i in
(7.16) shows that the same is true for r−. Therefore, we have rε ∈ R∗tε(s, r0)
with tε � Ls, and it remains to show that at least one of the integers r± is
bounded by the right-hand sides of (7.4) and (7.5).

By (7.11) and (7.16) we have

(7.17) rε ≤
{

2s{Mε(d) +O(s1/8)},
2s{f(

√
2s+ εd) +O(L2

s)},
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where

Mε(d) =
√

2s+ εd+
√

2θ2s+εd (2s+ εd)1/4.

The second estimate in (7.17) together with the monotonicity of the
function f(x) immediately gives the upper bound

min(r+, r−) ≤ 2s{f(
√

2s) +O(L2
s)},

and hence the estimate (7.5) for one of the integers r = r±.
The proof of (7.4) is more involved. By (7.17) it suffices to show that for

any d with |d| < 2s,

(7.18) min{M+(d),M−(d)} ≤
√

2s+ λs(2s)1/4 +O(s1/8).

To prove this estimate, we may clearly assume that d ≥ 0. If d > (2s)3/4,
then we have

√
2s− d ≤

√
2s− d

2
√

2s
≤
√

2s− 1
2 (2s)1/4,

and therefore

M−(d) ≤
√

2s+ 1
2 (2s)1/4,

which implies (7.18) since λs ≥ 1/
√

2 for all s. Thus it remains to consider
the case when 0 ≤ d ≤ (2s)3/4. Setting

δ = d(2s)−3/4, µ = δ(2s)1/4 = d(2s)−1/2,

we have 0 ≤ δ ≤ 1 and hence obtain by Taylor’s formula
√

2s+ εd =
√

2s+
εd

2
√

2s
− d2

8(2s)3/2
+O(s−1/4)

=
√

2s+ εµ/2− δ2/8 +O(s−1/4)

and

(2s+ εd)1/4 = (2s)1/4 +O(1).

Thus,

Mε(d) =
√

2s+ (2s)1/4{εδ/2 +
√

2‖√2s+ εµ/2− δ2/8‖}+O(s1/8),

and to prove (7.18) it suffices to show that the coefficient of (2s)1/4 here is
at most λs for at least one of the choices of ε = ± . This is a consequence
of the following lemma.

Lemma 7.4. For ε = ± and real numbers θ, δ, and µ, let

λε(θ, δ, µ) = εδ/2 +
√

2‖θ + εµ/2− δ2/8‖
and put

λ(θ, δ, µ) = min {λ+(θ, δ, µ), λ−(θ, δ, µ)} .
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Then

max
µ∈R,δ≥0

λ(θ, δ, µ) =
√

2 max(‖θ‖, ‖θ + 1/2‖).
P r o o f. Clearly

max
µ∈R,δ≥0

λ(θ, δ, µ) ≥ max(λ(θ, 0, 0), λ(θ, 0, 1)) =
√

2 max(‖θ‖, ‖θ + 1/2‖).

To obtain the inequality in the reverse direction, write

ηε = ηε(θ, δ, µ) =
√

2‖θ + εµ/2− δ2/8‖,
so that

λ(θ, δ, µ) = min{δ/2 + η+,−δ/2 + η−}.
We begin by considering η2

+ + η2
−. Clearly

η2
+ + η2

− = 2(‖θδ + µ/2‖+ ‖θδ − µ/2‖),
where θδ = θ− δ2/8. The right-hand expression is maximal as a function of
µ when the two terms ‖θδ + µ/2‖ and ‖θδ − µ/2‖ are equal, which is the
case if and only if µ is an integer. Thus, for all real µ we have

η2
+(θ, δ, µ) + η2

−(θ, δ, µ) ≤ 4 max(‖θδ‖, ‖θδ − 1/2‖) = %2,

say, where % = %(θ, δ) satisfies 0 ≤ % ≤ √2. It follows that η+ ≤
√
%2 − η2

−,
and taking the maximum over all values of η− in the range 0 ≤ η− ≤ %, we
see that

λ(θ, δ, µ) ≤ max
0≤v≤%

min(δ/2 +
√
%2 − v2,−δ/2 + v).

If δ ≥ %, then for any v in the interval [0, %] we have

v − δ/2 ≤ %− δ/2 ≤ δ/2 ≤ δ/2 +
√
%2 − v2,

so that the maximum over v occurs at v = % and

λ(θ, δ, µ) = %− δ/2 ≤ %/2 ≤ 1/
√

2 ≤
√

2 max(‖θ‖, ‖θ + 1/2‖).
If δ < %, the maximum occurs when

δ/2 +
√
%2 − v2 = −δ/2 + v,

i.e., when v = v± = δ/2 ±
√

(%2 − δ2/2)/2. Since v− < 0 < v+ ≤ % for
δ < %, the maximum over 0 ≤ v ≤ % is attained at v = v+ and is equal to
−δ/2 + v+ =

√
(%2 − δ2/2)/2. Since

%2/2 = 2 max(‖θ− δ2/8‖, ‖θ+ 1/2− δ2/8‖) ≤ 2 max(‖θ‖, ‖θ+ 1/2‖) + δ2/4,

we obtain

λ(θ, δ, µ) ≤
√
%2/2− δ2/4 ≤

√
2 max(‖θ‖, ‖θ + 1/2‖).

Thus Lemma 7.4 is proved, and the proof of Proposition 7.1 is complete.
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P r o o f o f P r o p o s i t i o n 7.2. Let u = dq/se so that (u−1)s < q ≤ us.
The bound 1 ≤ q ≤ b(s+ 5)/6cs implies 1 ≤ u ≤ (s+ 5)/6. We shall use the
identity (cf. [PS, Problem VIII.9])

q =
u∑

i=1

qi, qi = b(q + i− 1)/uc.

Since qu < q/u+ 1 ≤ s+ 1 and q1 ≥ q/u− 1 > (1− 1/u)s− 1, we have
(

1− 1
u

)
s− 1 < q1 ≤ q2 ≤ . . . ≤ qu ≤ s.

We seek to express r + 4sq in the form (7.1) with t replaced by t+ 2u. For
i = 1, . . . , u we take

ht+2i−1 = kt+2i−1 = mi, ht+2i = kt+2i = qi −mi

for some mi satisfying 1 ≤ mi ≤ qi − 1 and mi 6= qi/2. In order to ensure
that the numbers h1, . . . , ht+2u are distinct and the numbers k1, . . . , kt+2u

are distinct, we choose m1, . . . ,mu in succession so that 1 ≤ mi ≤ qi − 1,
mi 6= qi/2, and both mi and qi−mi are distinct from the 2t+2(i−1) values
h1, . . . , ht, k1, . . . , kt, m1, . . . ,mi−1, q1 − m1, . . . , qi−1 − mi−1. A suitable
choice of mi is possible, provided

(7.19) qi − 2 > 4t+ 4(i− 1) (1 ≤ i ≤ u).

We are going to show that, under the hypotheses of the proposition, this
condition is always satisfied.

Suppose first that u = 1, i.e., 4t + 3 ≤ q ≤ s. Then the assumption
q ≥ 4t+ 3 guarantees that q − 2 > 4t, so that (7.19) holds.

Next, suppose that 2 ≤ u < s/15. In view of the hypothesis t ≤ s/25 we
then have

4t+ 4(i− 1) ≤ 4t− 4 + 4u < 4s/25 + 4s/15 < 4s/9

and

qi − 2 > (1− 1/u)s− 3 ≥ s/2− 3 > 4s/9

for i = 1, . . . , u, which gives again (7.19).
Finally, suppose that s/15 ≤ u ≤ (s+5)/6. Since by hypothesis s ≥ 150,

we have u ≥ 10. Thus, in this case

qi − 2 > (1− 1/u)s− 3 ≥ 9s/10− 3 > 5s/6

and

4t+ 4(i− 1) ≤ 4t+ 4u− 4 < 4s/25 + 4s/6 < 5s/6,

and (7.19) follows.
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With m1, . . . ,mu chosen as above, we have

r + 4sq = 2s
t∑

i=1

(hi + ki) +
t∑

i=1

(k2
i − h2

i ) + 4s
u∑

i=1

qi

= 2s
t+2u∑

i=1

(hi + ki) +
t+2u∑

i=1

(k2
i − h2

i ),

so that r + 4sq ∈ R∗(s) as asserted.

P r o o f o f P r o p o s i t i o n 7.3. Suppose s ≥ 50 and that every integer
in the interval [(s − 1)3/6, (s − 1)3/2] belongs to R∗(s − 1). Let r ≥ 2s3/3
be given and set n = r + P (s). If n ≥ s5 then n > N(s) by Theorem 2
and therefore r > R(s), i.e., r ∈ R(s). We may therefore assume that
P (s) + 2s3/3 ≤ n < s5. Now choose a positive integer a so that n1 = n− a2

satisfies

(7.20) P (s− 1) + (s− 1)3/6 ≤ n1 ≤ P (s− 1) + (s− 1)3/2.

This is possible, since the maximum difference between consecutive squares
less than n is less than 2

√
n < 2s5/2 < (s− 1)3/3 for s ≥ 50. Moreover, the

bounds on n and n1 imply that

a2 = n− n1 ≥ P (s) + 2s3/3− (P (s− 1) + (s− 1)3/2) > s3/6 > (2s)2.

By (7.20) we have n1 − P (s − 1) ∈ [(s − 1)3/6, (s − 1)3/2] and hence
n1−P (s−1) ∈ R∗(s−1). By the definition ofR∗(s−1) (see (3.1), (3.4), (7.2)
and (7.3)) this means that n1 is expressible as a sum of s− 1 squares of dis-
tinct positive integers ai, i = 1, . . . , s−1, which satisfy either 1 ≤ ai ≤ s−1
or 1 ≤ ai−(s−1) ≤ s−1 and thus in any case are bounded by 2(s−1). Since
a > 2s, n = n1 +a2 is a sum of s distinct non-zero squares, i.e., r = n−P (s)
belongs to the set R(s). This proves Proposition 7.3.

8. An explicit upper bound for N(s). In this section we will prove the
following result, which gives an explicit upper bound for N(s) for s ≥ 166.
While this bound is weaker asymptotically than the bounds of Theorem
1, such a specific upper bound is needed in order to show that N(s) is
strictly increasing for s ≥ 7 and in proving the “redundancy of coprimality”
in the next section. It is also useful for computing the values of N(s), as
it substantially reduces the number of cases that have to be checked in
determining N(s).

Theorem 4. For s ≥ 166 we have

N(s) < P (s) + 2s
√

2s+ 44s5/4 + 108s.

Corollary 1. For s ≥ 166 we have N(s) < 1.033P (s).
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P r o o f. If s ≥ 166, then

2s
√

2s+ 44s5/4 + 108s ≤ s3{2
√

2 · 166−3/2 + 44 · 166−7/4 + 108 · 166−2}
< 0.011s3 < 0.033P (s).

The result now follows from Theorem 4.

Corollary 2. If s ≥ 7, then N(s) < N(s+ 1).

P r o o f. For s ≥ 360, Theorem 4 gives

N(s) ≤ P (s) + s2{2
√

2 · 360−1/2 + 44 · 360−3/4 + 108 · 360−1}
< P (s) + s2 < P (s+ 1) < N(s+ 1).

For the range 7 ≤ s ≤ 359, the monotonicity of N(s) follows from the table
in Section 11 (which also shows that the inequality N(s) < N(s + 1) fails
at s = 6).

To prove Theorem 4, we shall use Propositions 7.2 and 7.3, as well as
the following explicit version of Proposition 7.1.

Proposition 8.1. If s ≥ 165, then for any residue class r0 modulo 4s
there exists a positive integer r ∈ R∗t (s, r0) for some t ≤ 6 satisfying

(8.1) r ≤ 2s
√

2s+ 44s5/4.

P r o o f. We will show that for any integer m with |m| ≤ 2s there exist
positive integers hi and ki (1 ≤ i ≤ t) with t = 5 or t = 6 satisfying (7.2)
and (7.3), such that

(8.2)
t∑

i=1

(hi + ki) ≤
√

2s+ 21s1/4

and

(8.3)
t∑

i=1

(k2
i − h2

i ) = m.

The integer

r = 2s
t∑

i=1

(hi + ki) +
t∑

i=1

(k2
i − h2

i )

then belongs to R∗t (s) and satisfies (8.1). Moreover, if r0 mod 4s is a given
residue class, then choosing m so that m ≡ r0 mod 4s if r0 is even and
m ≡ r0 + 2s mod 4s if r0 is odd, we have r ≡ r0 mod 4s and therefore
r ∈ R∗t (s, r0). Thus it remains to prove the above claim.

By interchanging the roles of hi and ki, we see that it suffices to consider
the case when 0 ≤ m ≤ 2s.
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Suppose first that 0 ≤ m ≤ 25
√
s. We then take h1 = 4 and hi = i + 4

for i = 2, 3, 4, 5. The integers hi clearly satisfy (7.2) if s ≥ 10. Moreover,
since by Theorem 0

m+
5∑

i=1

h2
i ≥

5∑

i=1

h2
i = 246 > N∗(5),

we may choose distinct positive integers k1, . . . , k5 such that
5∑

i=1

k2
i = m+

5∑

i=1

h2
i .

Our assumptions m ≤ 25
√
s and s ≥ 165 imply

5∑

i=1

k2
i ≤ 25

√
s+ 246 ≤ √s{25 + 246 · 165−1/2} < 45

√
s,

so that k1, . . . , k5 are positive integers less than
√

45s1/4 < s and therefore
satisfy (7.3). Moreover,

5∑

i=1

(hi + ki) ≤ 4 +
5∑

i=2

(i+ 4) +

√√√√5
5∑

i=1

k2
i

≤ 34 +
√

5 · 45
√
s = 34 + 15s1/4,

which implies the bound (8.2) with t = 5.
Now suppose that 25

√
s < m ≤ 2s. In this case we take h1 = 1 and

k1 = b√mc, so that

(
√
m− 1)2 = m− 2

√
m+ 1 < k2

1 ≤ m ≤ 2s,

and, in particular, k1 ≤
√

2s < s. Setting d = m− (k2
1 − h2

1) = m+ 1− k2
1,

we have
1 ≤ d < 2

√
m ≤ 2

√
2s.

The assumptions m > 25
√
s and s ≥ 165 give

(8.4) k2
1 > m− 2

√
m = m

(
1− 2√

m

)
> 25

√
s

(
1− 2

5 · 1651/4

)
> 22

√
s.

Next, we take h2 = 4 and hi = 3 + i for 3 ≤ i ≤ 6, so that
6∑

i=2

hi = 34,
6∑

i=2

h2
i = 246.

Applying again Theorem 0, we obtain distinct positive integers k2, . . . , k6

such that
6∑

i=2

k2
i = d+

6∑

i=2

h2
i ,
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that is
6∑

i=1

k2
i = m+

6∑

i=1

h2
i .

Clearly,
6∑

i=2

k2
i ≤ 2

√
2s+ 246 ≤ √s{2

√
2 + 246 · 165−1/2} < 22

√
s,

which by (8.4) implies that the integers k2, . . . , k6 are less than k1 and
hence also less than s. The integers hi and ki therefore satisfy (7.2) and
(7.3). Moreover, we have

6∑

i=1

(hi + ki) = k1 +
6∑

i=2

ki + 35 ≤ k1 +

√√√√5
6∑

i=2

k2
i + 35

≤ √m+
√

5 · 22
√
s+ 35 ≤

√
2s+ s1/4{

√
110 + 35 · 165−1/4},

which again gives (8.2).
This completes the proof of Proposition 8.1.

P r o o f o f T h e o r e m 4. First suppose that s ≥ 165. By Proposition
8.1, for any residue class r0 mod 4s there exists an integer r ≤ 2s

√
2s+44s5/4

which belongs to R∗t (s, r0) for some t ≤ 6. By Proposition 7.2, it follows that
r + 4sq ∈ R∗(s) for any q satisfying

4 · 6 + 3 ≤ q ≤ b(s+ 5)/6cs.
Since r + 4b(s+ 5)/6cs2 ≥ 2s3/3 and

r + (4 · 6 + 3)4s ≤ 2s
√

2s+ 44s5/4 + 108s,

we conclude that every integer in the interval [2s
√

2s+44s5/4 +108s, 2s3/3]
belongs to R∗(s). Furthermore, since for s ≥ 165,

2s
√

2s+44s5/4+108s ≤ s3{2
√

2·165−3/2+44·165−7/4+108·165−2} < s3/6,

this interval contains the interval [s3/6, 2s3/3] and we can apply Proposition
7.3 to deduce that for s ≥ 165+1 = 166,R(s) contains every integer≥ 2s3/3.
Hence, for s ≥ 166, we have

R(s) = max{r : r 6∈ R(s)} < 2s
√

2s+ 44s5/4 + 108s,

as claimed.

9. Redundancy of coprimality. We have stated and proved our main
results in terms of the function N(s), whereas Halter-Koch stated his results
(as quoted in Theorem 0) in terms of the function N∗(s). (Recall that N∗(s)
is defined like N(s), except that only representations by sums of coprime
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squares are to be considered.) In this section we show that the two functions
are identical. In fact, we prove the following more precise result.

Theorem 5. If s ≥ 5 and if n is expressible as a sum of s distinct
non-zero squares, then n is also expressible as a sum of s distinct non-zero
squares having no non-trivial common factor.

R e m a r k. The same result holds for s = 4 if we restrict attention to
the positive integers not divisible by 8. It also holds for s = 3 if we restrict
attention to the positive integers not divisible by 4 (cf. [Ka], Satz 9).

P r o o f o f T h e o r e m 5. For s = 5 the assertion of the theorem follows
easily from Halter-Koch’s result that N∗(5) = 245 (see Theorem 0). For,
since 22 +42 +62 +82 +122 > 245, the only integer not exceeding 245 which
is expressible as a sum of 5 distinct non-zero squares having a non-trivial
common factor is 220 = 22 + 42 + 62 + 82 + 102, which has also the coprime
representation 220 = 12 + 32 + 52 + 82 + 112.

Theorem 0 also shows that N∗(s) < 4P (s) for 6 ≤ s ≤ 12. Thus every
integer ≥ 4P (s) =

∑s
i=1(2i)2 is expressible as a sum of s distinct non-zero

squares having no non-trivial common factor. If an integer less than 4P (s) is
expressible as a sum of s distinct non-zero squares, these squares necessarily
have g.c.d. 1. Indeed, otherwise the common factor of these squares would be
at least 22, and dividing each term by this factor would yield a representation
of an integer less than P (s) =

∑s
i=1 i

2 as a sum of s distinct squares, which
is impossible. Thus the assertion of the theorem holds for 6 ≤ s ≤ 12.

Now suppose that s > 12. As before, if n < 4P (s) and if n is expressible
as a sum of s distinct non-zero squares, then these squares necessarily have
g.c.d. 1. On the other hand, if n > 3(3 +

√
N(s− 2) + 14)2, we claim that

n is always expressible as a sum of s distinct non-zero squares having no
non-trivial common factor. For if a = b

√
n/3+1c and if n1 = n−a2−(a+1)2,

then

n1 ≥ n− (
√
n/3 + 1)2 − (

√
n/3 + 2)2 = (

√
n/3− 3)2 − 14 > N(s− 2),

and so n1 is expressible as a sum of s− 2 distinct non-zero squares. Since a
and a+ 1 are coprime and a >

√
n/3 >

√
n1, it follows that n is expressible

as a sum of s distinct non-zero squares having no non-trivial common factor.
To complete the proof it suffices to observe that

3(3 +
√
N(s− 2) + 14)2 < 4P (s)

for s > 12. For 12 < s ≤ 168 this follows from the computed values of N(s)
(see Section 11). For s ≥ 168 we have by the first corollary to Theorem 4

N(s− 2) < 1.033P (s− 2) < 0.35(s− 1)3,
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and hence

3(3 +
√
N(s− 2) + 14)2 = 3N(s− 2) + 69 + 18

√
N(s− 2) + 14

< 4P (s− 2) + 4(s− 1)2 + 18
√

4(s− 1)3/9

< 4P (s− 2) + 4(s− 1)2 + 4s2 = 4P (s).

Thus the theorem is proved.

10. A result for kth powers. Throughout this section, k will be a fixed
positive integer greater than 1. Let Rs(n) denote the number of solutions
to xk1 + xk2 + . . . + xks = n in non-negative integers x1, . . . , xk. Hardy and
Littlewood proved that there is a positive integer s0 = s0(k) depending only
on k such that if s ≥ s0 and n is any positive integer, then

bsn
s/k−1 < Rs(n) < Bsn

s/k−1,

where bs and Bs are positive numbers depending only on s and k (see, e.g.,
Chapter 2 in [Va]).

Lemma 10.1. There exist positive constants C and D (depending on k)
such that if m is a given positive integer and n is a positive integer greater
than (Cm + D)k, then n is expressible as a sum of s0(k) + 2 distinct k-th
powers each of which is ≥ mk.

P r o o f. Let F (n) denote the number of solutions of xk1 + . . .+xks0+2 = n
in integers x1, . . . , xs0+2 such that xi ≥ m for each i and xi 6= xj for i 6= j.
Then

F (n) ≥ Rs0+2(n)− (s0 + 2)
m−1∑

i=0

Rs0+1(n− ik)

−
(
s0 + 2

2

) b(n/2)1/kc∑

i=m

Rs0(n− 2ik)

> bs0+2n
(s0+2)/k−1 − (s0 + 2)mBs0+1n

(s0+1)/k−1

−
(
s0 + 2

2

)(
n

2

)1/k

Bs0n
s0/k−1 > 0,

provided

bs0+2n
1/k > (s0 + 2)Bs0+1m+ (s0 + 2)(s0 + 1)2−1−1/kBs0 .

Since the latter condition holds if n1/k > Cm + D with suitable constants
C and D depending on k, the assertion of the lemma follows.

Let Nk(s) denote the largest positive integer not expressible as a sum
of s distinct kth powers of positive integers. The preceding lemma (with
m = 1) shows that Nk(s) exists for s ≥ s0(k) + 2.
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Theorem 6. Nk(s) = sk+1/(k + 1) +O(sk) for s ≥ s0(k) + 2.

P r o o f. First we note that 1 +
∑s
i=1 i

k cannot be expressed as a sum of
s distinct positive kth powers, so that

Nk(s) >
s∑

i=1

ik =
sk+1

k + 1
+O(sk).

On the other hand, we show that if s ≥ s0(k) + 2 and if

n > (s− s0 − 1)k+1/(k + 1) + (C(s− s0 − 1) +D)k,

where C and D are as in the lemma, then n is expressible as a sum of s
distinct positive kth powers. For then

n >

s−s0−2∑

i=1

ik + (C(s− s0 − 1) +D)k

and so by the lemma with m = s− s0 − 1 we obtain that n−∑s−s0−2
i=1 ik is

expressible as a sum of s0(k) + 2 distinct positive kth powers each of which
is greater than (s− s0 − 2)k.

11. Numerical data. We have calculated N(s) for 5 ≤ s ≤ 400 and
for some isolated values greater than 400. In order to carry out these com-
putations we needed some a priori bound L(s) for N(s), so that it suffices
to test the integers in the interval [P (s), L(s)] for expressibility as a sum
of s distinct non-zero squares. (Recall that P (s) = 12 + 22 + . . . + s2 is
the smallest integer expressible as a sum of s distinct non-zero squares.)
Given such a bound L(s), we used the following algorithm: First, an array
a[P (s)], a[P (s) + 1], . . . , a[L(s)] is initialized to zero and a variable L is set
to L(s). Then s-tuples (x1, . . . , xs) of integers such that 0 < x1 < . . . < xs
and x2

1 + . . .+ x2
s ≤ L are generated, and the value of a[x2

1 + . . .+ x2
s] is set

to 1. Whenever it occurs that x2
1 + . . . + x2

s = L exactly, then we replace
L by the largest integer L′ such that a[L′] = 0. This device results in a
dramatic reduction of the number of cases to be investigated compared to
a brute force approach. The algorithm terminates when there is no tuple
(x1, . . . , xs) left satisfying 0 < x1 < . . . < xs and x2

1 + . . . + x2
s ≤ L. The

number N(s) is then equal to the current value of L.
The efficiency of this algorithm clearly depends on the length of the array

a[n] and it is therefore desirable to have a numerical bound L(s) which is
as close to P (s) as possible. For our computations of N(s) for 5 ≤ s ≤ 400
we used the bound given by the following proposition. While this bound
is inferior asymptotically to the bound given by Theorem 4, it is better
numerically for values of s less than 8000, say, as a result of the large size
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of the coefficients on the right-hand side of the inequality of Theorem 4.
The inequality of Proposition 11.1 has the disadvantage that it requires a
knowledge of N(s− 1) and so is useful primarily for calculating a complete
table of values of N(s) up to some point. For calculating an isolated value
of N(s) we must use the bound of either Theorem 4 or Corollary 1.

Proposition 11.1. For s ≥ 6, we have N(s) ≤ L(s), where

L(s) = 2N(s− 1)− P (s− 2) + 6 + 4
√
N(s− 1)− P (s− 2) + 2.

R e m a r k. From (1.2) it follows that

L(s) = 2P (s− 1)− P (s− 2) + 2(2(s− 1))3/2 +O(s5/4)

+ 4
√
P (s− 1)− P (s− 2) +O(s3/2)

= P (s) + 2(2s)3/2 +O(s5/4).

On the other hand, we have

N(s) = P (s) + (2s)3/2 +O(s5/4).

Thus, N(s) lies near the midpoint of the interval [P (s), L(s)] for large s.

P r o o f o f P r o p o s i t i o n 11.1. Replacing s by s + 1, we see that it
suffices to show that if s ≥ 5 and

(11.1) n > 2N(s)− P (s− 1) + 6 + 4
√
N(s)− P (s− 1) + 2,

then n is a sum of s+ 1 distinct positive squares. We first note that (11.1)
implies

n > 2N(s)− P (s− 1) > 2P (s)− P (s− 1) > P (s− 1)

and so n−P (s−1) > 0. Let gs(n) denote the smallest integer strictly greater
than

√
(n− P (s− 1))/2. To prove that n is a sum of s+1 distinct non-zero

squares it suffices to show that

(11.2) n− g2
s(n) > N(s).

For if (11.2) holds, then

n− g2
s(n) = x2

1 + . . .+ x2
s,

for integers 0 < x1 < . . . < xs and further

x2
s = n− g2

s(n)− x2
1 − . . .− x2

s−1 ≤ n− g2
s(n)− P (s− 1) < g2

s(n),

the last step resulting from the definition of gs(n). Now
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gs(n) ≤ 1 +
√

(n− P (s− 1))/2,

and so to prove (11.2) it suffices to show that (11.1) implies

n− {1 +
√

(n− P (s− 1))/2}2 > N(s),

that is,

n

2
+
P (s− 1)

2
− 1−N(s) > 2

√
(n− P (s− 1))/2

or

(11.3) t > 2
√
t− P (s− 1) + 1 +N(s),

where

(11.4) t =
n

2
+
P (s− 1)

2
− 1−N(s).

Now (11.1) implies that certainly t > 2. Hence (11.3) is equivalent to

t2 > 4(t− P (s− 1) + 1 +N(s))

or to

t2 − 4t+ 4 > 4(N(s)− P (s− 1) + 2)

or to

(11.5) t− 2 > 2
√
N(s)− P (s− 1) + 2.

But, in view of (11.4), (11.5) is equivalent to (11.1), and hence (11.3) and
(11.2) hold. This completes the proof of Proposition 11.1.

We conclude with two tables of numerical values for N(s). Table I lists
all values of N(s) up to s = 400 and substantially extends the table given in
[HK]. Table II gives the values for N(s) for s = 20, 40, . . . , 1000, along with
the polynomial approximation P (s), the difference R(s) = N(s)−P (s), and
the approximation R0(s) = 2s(

√
2s + λs(2s)1/4) to R(s) given by formula

(1.2) of Theorem 1. It is apparent from this table that P (s) is very close to
N(s), the difference R(s) = N(s)−P (s) being roughly of size

√
N(s). On the

other hand, the agreement between R(s) and R0(s) is rather poor. The ratio
R(s)/R0(s) between the two quantities, which by (1.2) is asymptotically
equal to 1, falls roughly between 1.15 and 1.4 for the computed values with
180 ≤ s ≤ 1000. This, however, is not surprising, since the error term in (1.2)
is only by a factor O(s−1/8) smaller than the main term. In fact, a careful
analysis of the proof reveals that this error term oscillates in a manner
similar to the term λs(2s)1/4, with amplitudes of size O(s−1/8) relative to
the main term.
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Table I. Values of N(s) for 5 ≤ s ≤ 400

s N(s) N(s+ 50) N(s+100) N(s+150) N(s+200) N(s+250) N(s+300) N(s+350)

1 47668 353301 1167858 2739627 5319763 9157781 14503694
2 50373 364021 1191142 2780495 5384828 9249353 14629010
3 53097 374678 1214987 2821768 5447969 9342342 14752167
4 56253 385598 1238763 2864188 5512557 9433610 14877763
5 245 59522 396675 1261760 2906277 5577097 9527815 15003868
6 333 62502 407899 1286868 2948021 5643262 9620543 15130352
7 330 65842 419464 1311577 2990934 5709383 9714648 15258213
8 462 69203 431180 1336601 3035034 5776983 9809808 15386457
9 539 72944 443298 1362318 3078779 5843172 9905365 15516778

10 647 76356 455265 1387602 3122187 5910676 10001541 15646462
11 888 80337 467574 1413583 3167131 5979037 10098102 15776703
12 1036 84025 480234 1439887 3212141 6047753 10196742 15907827
13 1177 88073 492983 1466892 3257508 6116994 10294787 16038472
14 1445 92211 506103 1493472 3303853 6187750 10392475 16172428
15 1722 96663 519304 1521133 3350142 6257059 10491524 16305557
16 1990 101047 533848 1548373 3396371 6327887 10591708 16438389
17 2311 105604 546629 1576322 3444923 6398667 10693257 16573002
18 2672 110048 560553 1604486 3492519 6471144 10793473 16709866
19 3047 114876 574818 1633723 3539648 6543577 10895090 16844903
20 3492 120057 589270 1662187 3588112 6617561 11000162 16983287
21 4093 125146 604963 1691864 3636957 6690062 11100903 17119604
22 4613 130334 619907 1721508 3686305 6764463 11204407 17257940
23 5138 135755 634512 1751617 3735729 6840727 11310052 17397277
24 5718 141003 650532 1781833 3786418 6914895 11414120 17538653
25 6379 146872 665338 1812662 3837542 6989564 11519601 17679362
26 7123 152752 681113 1843178 3888183 7066848 11626173 17820822
27 7952 158753 697473 1874567 3939399 7142517 11734378 17961603
28 8676 164793 714162 1906687 3993688 7219969 11842042 18104567
29 9537 171150 730855 1938932 4044409 7298930 11950139 18249728
30 10393 177622 748447 1971412 4097381 7376258 12058131 18394212
31 11558 184231 765020 2004237 4150806 7455387 12167768 18538009
32 12602 190959 782064 2036877 4204630 7536043 12279288 18683837
33 13743 197940 800901 2070922 4258959 7616208 12390257 18832238
34 14863 205288 818048 2104898 4314847 7696940 12500665 18978927
35 16252 212317 836570 2139171 4370144 7777169 12614070 19128087
36 17528 219737 855758 2173283 4424940 7859037 12727174 19277167
37 18957 227354 874587 2208688 4481632 7942558 12840823 19426163
38 20481 235170 893691 2244272 4537885 8025578 12955147 19577648
39 22042 243139 913448 2280073 4596062 8108466 13069884 19728777
40 23678 251555 932732 2316237 4652746 8193351 13185828 19880957
41 25347 259616 952017 2352742 4711887 8278108 13301917 20032714
42 27207 268233 972897 2389498 4770523 8363192 13419077 20187950
43 29092 276777 993782 2427007 4828644 8449113 13536802 20342319
44 31228 285685 1014202 2464707 4889252 8535765 13654110 20497803
45 33297 295070 1034591 2502812 4949349 8622718 13774483 20653912
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Table I (cont.)

s N(s) N(s+ 50) N(s+100) N(s+150) N(s+200) N(s+250) N(s+300) N(s+350)

46 35289 304338 1056663 2541621 5009368 8710678 13894279 20810636
47 37653 313747 1078332 2579933 5070898 8798963 14014592 20968325
48 40042 323272 1099592 2619433 5132474 8887116 14135652 21126114
49 42487 333123 1122933 2659421 5194122 8977320 14256960 21284758
50 45023 343296 1145117 2699146 5256211 9067396 14379001 21446362

Table II. Comparison between R(s) = N(s)− P (s)
and R0(s) = 2s(

√
2s+ λs(2s)1/4)

s N(s) P (s) R(s) R0(s) R(s)/R0(s)

20 3492 2870 622 334.029 1.86212
40 23678 22140 1538 941.071 1.63431
60 76356 73810 2546 1693.18 1.50368
80 177622 173880 3742 2500.56 1.49646

100 343296 338350 4946 3464.73 1.42753
120 589270 583220 6050 4655.05 1.29966
140 932732 924490 8242 5521.97 1.49258
160 1387602 1378160 9442 6917.42 1.36496
180 1971412 1960230 11182 8356.78 1.33807
200 2699146 2686700 12446 9788.85 1.27145
220 3588112 3573570 14542 11196.1 1.29884
240 4652746 4636840 15906 12548.1 1.26761
260 5910676 5892510 18166 13792.5 1.31709
280 7376258 7356580 19678 15484.1 1.27085
300 9067396 9045050 22346 17651.3 1.26597
320 11000162 10973920 26242 18676.9 1.40505
340 13185828 13159190 26638 20926.8 1.27291
360 15646462 15616860 29602 22362.5 1.32373
380 18394212 18362930 31282 24660.5 1.26851
400 21446362 21413400 32962 25835.5 1.27584
420 24820272 24784270 36002 28789 1.25055
440 28527862 28491540 36322 30029.4 1.20955
460 32590736 32551210 39526 32030.6 1.23401
480 37020622 36979280 41342 35001.3 1.18116
500 41836864 41791750 45114 36507.2 1.23576
520 47051574 47004620 46954 37723.2 1.24470
540 52686788 52633890 52898 40770.3 1.29746
560 58748358 58695560 52798 43740.1 1.20708
580 65260300 65205630 54670 45867.6 1.19191
600 72238998 72180100 58898 47553.7 1.23856
620 79695548 79634970 60578 49233.6 1.23042
640 87651558 87586240 65318 51494.2 1.26845
660 96114808 96049910 64898 54439.4 1.19211
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Table II (cont.)

s N(s) P (s) R(s) R0(s) R(s)/R0(s)

680 105111458 105041980 69478 57337 1.21175
700 114650008 114578450 71558 60199.9 1.18867
720 124748958 124675320 73638 63034.6 1.16822
740 135427128 135348590 78538 65844 1.19279
760 146694958 146614260 80698 68628.9 1.17586
780 158574168 158488330 85838 71388 1.20241
800 171074942 170986800 88142 74119.3 1.18919
820 184215972 184125670 90302 76819.2 1.17551
840 198016654 197920940 95714 79483.2 1.20420
860 212483472 212388610 94862 82105.5 1.15537
880 227644810 227544680 100130 84679 1.18247
900 243507824 243405150 102674 87194.8 1.17752
920 260091014 259986020 104994 89641.3 1.17127
940 277414216 277303290 110926 92004 1.20567
960 295486262 295372960 113302 94262.8 1.20198
980 314326668 314211030 115638 96389.7 1.19969
1000 333951594 333833500 118094 99427.2 1.18774
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