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On the irreducibility of neighbouring polynomials
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To Professor W. M. Schmidt on his 60th birthday

1. Introduction. Denote by |P | the length of a polynomial P ∈ Z[x],
i.e. the sum of the absolute values of the coefficients of P . The purpose of
this paper is to investigate the irreducibility of non-constant neighbouring
polynomials over Q. Here we say that two polynomials with integer coeffi-
cients are neighbouring if their difference is of relatively small length and
small degree. By means of Eisenstein’s irreducibility theorem it is easy to
show that for given P ∈ Z[x] of degree m, there is an irreducible polynomial
Q ∈ Z[x] with degree m such that |P −Q| ≤ m+ 2. The following problem
was proposed by P. Turán in 1962 (cf. [12]):

Does there exist an absolute constant c1 such that for every P ∈ Z[x] of
degree m, there is a polynomial Q ∈ Z[x] irreducible over Q and satisfying
deg(Q) ≤ m and |P −Q| ≤ c1?

This seems to be a very difficult problem. It becomes simpler if one
removes the condition deg(Q) ≤ m. It was proved by A. Schinzel [13] that
for every P ∈ Z[x] of degree m there are infinitely many irreducible Q ∈ Z[x]
such that

|P −Q| ≤
{

2 if P (0) 6= 0,
3 always.

Further, one of them, say Q0, satisfies

deg(Q0) ≤ exp{(5m+ 7)(|P |2 + 3)}.
This nice result gives a partial answer to Turán’s problem. The complete
answer would require deg(Q0) ≤ m.

In what follows, ci(·) (i = 2, 3, . . .) will denote constants which depend
only on the parameters occurring in parentheses.
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The next problem is concerned with the irreducibility of neighbouring
polynomials of a special form. There exist several irreducibility theorems (for
references see e.g. [7], [9] and [1]) for polynomials of the form P (x) + b ∈
Z[x], where P has more than deg(P )/2 distinct integer zeros and b ∈ Z
has relatively small absolute value. It follows from Hilbert’s irreducibility
theorem (see e.g. [14]) that for any given P ∈ Z[x], there are infinitely
many b ∈ Z for which P (x) + b is irreducible over Q. For these polynomials,
M. Szegedy proposed in 1984 the following problem:

Does there exist a constant c2 = c2(m) such that for any P ∈ Z[x] of
degree m, P (x) + b is irreducible over Q for some b ∈ Z with |b| ≤ c2?

For m = 2, such a bound c2(2) does exist and an appropriate choice is
c2(2) = 2. This follows from the fact that four square numbers cannot form
an arithmetic progression. For m > 2, the problem is much more difficult.
Denote by ω(a) the number of distinct prime factors of a non-zero integer a.

Theorem 1. Let P ∈ Z[x] be a polynomial of degree m with leading co-
efficient a0. There exist an effectively computable number c3 = c3(m,ω(a0))
and a b ∈ Z with |b| ≤ c3 for which P (x) + b is irreducible over Q.

If P is monic, i.e. if a0 = 1 then ω(a0) = 0. Thus, for monic polynomi-
als P , Theorem 1 gives an affirmative answer to the problem of Szegedy.

We shall prove Theorem 1 with the explicit value

(1) c3 = exp exp{(ω + 1)6219(m+1)!}
where ω = ω(a0). The proof depends on our explicit upper bound for the
number of solutions of decomposable form equations (cf. [4] and Theorem 6
of the present paper). This bound has recently been improved by J. H. Ev-
ertse (private communication). Using this improvement, the above value of
c3 can be replaced by

(2) c3 = exp{(ω + 1) log(ω + 2)(217m)m
3}.

The example xm + bxk shows that Theorem 1 cannot be extended to
polynomials of the form P (x) + bxk where k ≥ 1.

When I obtained Theorem 1 I did not know about Szegedy’s problem.
I am grateful to Professor Schinzel for calling my attention to this problem
and for his helpful remarks.

Several people, including I. Schur, A. and R. Brauer, G. Pólya, I. Seres
and the author (for references see [2], [3] and [9]) investigated the reducibility
of polynomials of the form Q(P (x)) over Q, where Q ∈ Z[x] is a fixed
irreducible monic polynomial and the P ∈ Z[x] are monic polynomials with
a given splitting field. As a generalization of the situation considered in
Theorem 1, we deal now with the case when P ∈ Z[x] is an arbitrary but
fixed non-constant polynomial of degree m with leading coefficient a0, and
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the Q ∈ Z[x] are irreducible monic polynomials with a given splitting field,
say K, over Q. Let n denote the degree, and DK the discriminant of K
over Q.

Theorem 2. Let P and K be as above. There exist an effectively com-
putable number c4 = c4(m,ω(a0), n, |DK |) and an irreducible monic polyno-
mial Q ∈ Z[x] with splitting field K and height ≤ c4 such that Q(P (x)) is
irreducible over Q.

By the height of Q we mean the maximum absolute value of the coeffi-
cients of Q.

In the particular case K = Q the polynomials Q(x) under consideration
are of the form x+ b, hence Theorem 1 is a special case of Theorem 2.

It is easy to verify that the constant c4 must depend on |DK |.
Let {p1, . . . , pt} be a finite (possibly empty) set of primes, and T the

set of non-zero integers not divisible by primes different from p1, . . . , pt.
Further, let P ∈ Z[x] be a non-constant polynomial of degree m with leading
coefficient a0 and constant term am. Let k be an integer with 0 ≤ k ≤ m,
and put

a =

{
a0 if k = 0,
a0am if 0 < k < m,
am if k = m.

Assume that P has distinct zeros and that am 6= 0 if k > 0. Denote by ωT (a)
the number of distinct prime factors of a different from p1, . . . , pt.

Theorem 3. Let P , T and k be as above. The number of reducible poly-
nomials of the form P (x)+bxk with b ∈ T is bounded above by an effectively
computable number c5 = c5(m, t+ ωT (a) + 1).

For k > 0, it is necessary to assume that am 6= 0. The assumption that
P has distinct zeros is also necessary as is shown by the following example.
If P (x) = Q(x)2 for some Q ∈ Z[x], then P (x) − b2 is reducible over Q for
every b ∈ T .

For explicit values of c5, we refer to Remark 2 in Section 3.
Denote by |a|T the T -free part of a non-zero rational integer a, i.e. the

greatest positive divisor of a which is relatively prime to p1, . . . , pt. Put
|0|T = 0. Let |P |T denote the sum of the T -free parts of the coefficients of
P ∈ Z[x]. For t = 0, we have |a|T = |a| and |P |T = |P |.

We consider now an analogue of Turán’s problem for t > 0. In contrast
with the case t = 0, for t > 0 there are infinitely many Q ∈ Z[x] with
deg(Q) ≤ deg(P ) and |P −Q|T ≤ 1. Further, if P satisfies the assumptions
of Theorem 3 then, by Theorem 3, almost all of these Q are irreducible
over Q. The following more precise result is an immediate consequence of
Theorem 3.
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Theorem 4. Let t > 0 and let P (x) = a0x
m + . . . + am ∈ Z[x]

with a0am 6= 0 and with distinct zeros. There are at most (m + 2)
× c5(m, t+ωT (a0am) + 1) reducible polynomials Q ∈ Z[x] with deg(Q) ≤ m
and |P −Q|T ≤ 1.

Here c5 denotes the same constant as in Theorem 3.
In Theorem 4 it is also necessary to assume that the zeros of P are

distinct. Further, the upper bound 1 for |P −Q|T cannot be replaced by 2.
Indeed, for P (x) = xm − 1 and Q(x) = xm − bx we get |P −Q|T = 2 for all
b ∈ T .

Theorems 1 to 3 will be proved in Section 3. We shall deduce Theorem 1
from Theorem 3. Further, we shall prove Theorems 3 and 2 by means of a
more general irreducibility result (cf. Theorem 7 in Section 3), established
over number fields.

Theorem 7 will be deduced from a general finiteness result (cf. Theorem 5
in Section 2) on resultant equations. Over number fields, Theorem 5 gives
a quantitative version of Theorem 2 of [5]. Our Theorem 5 is a consequence
of Theorem 6 which is concerned with decomposable form equations. Over
number fields, it is a quantitative version of Theorem 3 of [5]. Theorem 6
follows from some results of the author [4] and [5] on decomposable form
equations. We note that the proofs in [4] depend, among other things, on
Schlickewei’s p-adic quantitative version (cf. [16]) of Schmidt’s Subspace
Theorem [17]. It is interesting to observe that, in our Theorems 1 and 2, the
use of an ineffective method leads to effective results.

2. Bound for the numbers of solutions of resultant equations.
Let K be an algebraic number field with ring of integers OK , and let MK

denote the set of places (equivalence classes of multiplicative valuations)
of K. In every place v of MK we choose a fixed valuation | · |v. Let S be
a finite subset of MK with cardinality s which contains all infinite places.
Then

OS = {α ∈ K : |α|v ≤ 1 for all v ∈MK \ S}
is called the ring of S-integers and the units of OS are called S-units. They
form a multiplicative group which is denoted by O∗S .

Let P ∈ OS [x] be a polynomial of degree m ≥ 2 without multiple zeros
and with splitting field G over K. Denote by D the degree of the normal
closure of G over Q. Consider the solutions of the resultant equation

(3) Res(P,Q) ∈ O∗S in Q ∈ OS [x].

If Q is a solution of (3) then so is λQ for every λ ∈ O∗S . Such solutions of
(3) are called proportional . Equations of this type were studied by several
authors; for references we refer to [5]. In [5], a general finiteness theorem has
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been established for (3) in the more general situation when OS is replaced
by an arbitrary finitely generated integral domain over Z. The next theorem
is a quantitative version of this result in the case considered above.

Theorem 5. Let n be a positive integer with 2n < m. Then up to a
proportional factor from O∗S , the number of solutions Q(x) of (3) with degree
n is at most c6 = c6(n,D, s), where c6 can be given explicitly. Further ,
in case of solutions Q(x) with leading coefficients in O∗S , the assumption
2n < m can be replaced by 2n ≤ m.

We prove Theorem 5 with the value

(4) c6 = (5sD)237nDs6 .

It is easy to show that D ≤ (dm)!, where d denotes the degree of K over Q.
We note that Evertse’s recent result mentioned in Section 1 enables one to
prove Theorem 5 with

(5) c6 = (234m2)n
3s.

In Theorem 5, it is necessary to assume that P has distinct zeros. Indeed,
for P (x) = xm, equation (3) takes the form

Res(xm, Q) = Q(0)m ∈ O∗S ,
hence, if s > 1, it has infinitely many pairwise non-proportional solutions Q
with deg(Q) = n. Further, in the general case, 2n < m cannot be replaced
by 2n ≤ m (see [5]).

Let F (x0, x1, . . . , xn) (n ≥ 1) be a decomposable form of degree m with
coefficients in OS , i.e. a homogeneous polynomial which factorizes into linear
factors over a finite extension G of K. Two solutions x, x′ of the decompos-
able form equation

(6) F (x0, x1, . . . , xn) ∈ O∗S in x = (x0, . . . , xn) ∈ On+1
S

are called proportional if x′ = εx for some ε ∈ O∗S . Let D have the same
meaning as in Theorem 5. Theorem 5 will be deduced from the following

Theorem 6. Suppose that there is an integer k with n ≤ k − 1 and
m > 2(k − 1) such that any k linear factors in the factorization of F have
rank n + 1. Then equation (6) has at most c6 = c6(n,D, s) pairwise non-
proportional solutions, where c6 denotes the same bound as in Theorem 5.

A more general but qualitative version was proved in [5] over an arbitrary
finitely generated integral domain over Z. Our Theorem 6 is an immediate
consequence of Theorem 3 of [5] and of Corollary 2 of [4] concerning de-
composable form equations. We note that the proof of Corollary 2 in [4]
involves, among other things, an estimate of Schlickewei [15] for the number
of solutions of S-unit equations. On combining the above-mentioned result



288 K. Győry

of Evertse with the proof of Theorem 3 of [5], Theorem 6 can be proved with
the bound c6 specified in (5).

Finally, we remark that a further application of Theorem 6 will be pub-
lished in our paper [6].

P r o o f o f T h e o r e m 5. We shall follow the proof of Theorem 1 of [5].
Let P ∈ OS [x] be a polynomial of degree m ≥ 2 without multiple zeros
and with splitting field G over K. Further, let n be a positive integer with
2n ≤ m. We can write

P (x) = a0(x− α1) . . . (x− αm),

where a0 ∈ OS and α1, . . . , αm are distinct elements of G.
First assume that 2n < m. Consider an arbitrary polynomial

Q(x) = x0x
n + x1x

n−1 + . . .+ xn

with degree n and coefficients in OS which satisfies (3). Then (3) can be
written in the form (6) where

F (x0, x1, . . . , xn) = an0

m∏

i=1

(x0α
n
i + x1α

n−1
i + . . .+ xn)

is a decomposable form of degree m with coefficients in OS . This form F
satisfies the conditions of our Theorem 6 with k = n+1. Hence the assertion
of Theorem 5 follows from Theorem 6.

Next suppose that 2n = m, and consider only those solutions Q(x) =
x0x

n + x1x
n−1 + . . . + xn of (3) in OS [x] for which x0 ∈ O∗S . Then we can

write (3) in the form (6) with

F ∗(x0, . . . , xn) = x0F (x0, . . . , xn)

instead of F , and the assertion follows again from Theorem 6.

3. Applications to irreducible polynomials. In this section, we
prove our irreducibility theorems. In the proofs, our Theorem 5 will be the
main tool.

We keep the notation of Section 2. For α ∈ K\{0}, there are only finitely
many v ∈ MK \ S for which |α|v 6= 1. In the sequel the number of these v
will be denoted by ωS(α). If in particular α ∈ O∗S , then ωS(α) = 0.

Let P,Q ∈ OS [x] be relatively prime polynomials over K such that P
has distinct zeros and that m = deg(P ) > deg(Q). Let a0 denote the leading
coefficient of P , and put ωS = ωS(a0 Res(P,Q)). Further, denote by D the
degree of the normal closure over Q of the splitting field of P over K.

The next theorem will be deduced from Theorem 5.
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Theorem 7. The number of ε ∈ O∗S for which P (x)+εQ(x) is reducible
over K is at most c7 = c7(m,D, s+ ωS), where c7 can be given explicitly.

We shall prove Theorem 7 with the value

(7) c7 = (5(s+ ωS)D)219mD(s+ωS)6
.

We note that using Theorem 5 with the value c6 occurring in (5), we may
take here

(8) c7 = m(217m)m
3(s+ωS)/4.

It is easy to see that Theorem 7 does not remain valid in general if P
and Q are not relatively prime or if the zeros of P are not distinct.

We remark that using Theorem 2 of [5] instead of our Theorem 5, a
qualitative version of Theorem 7 can be proved in a more general form, over
an arbitrary finitely generated and integrally closed integral domain over Z.

Finally, we mention a reducibility result of K. Langmann [8] on polyno-
mials of the form considered above. Let P and Q be as in Theorem 7, and
suppose that Q also has distinct zeros. In [8] it is proved that if

(2 + s)n ≤ deg(P ) + deg(Q)

then there are only finitely many ε ∈ Z with at most s prime divisors such
that P (x) + εQ(x) has a polynomial divisor of degree ≤ n in K[x].

P r o o f o f T h e o r e m 7. Suppose that P , Q satisfy the assumptions of
Theorem 7. Let n be a positive integer with n ≤ m/2, and consider those
ε ∈ O∗S for which

Fε(x) := P (x) + εQ(x)

has a polynomial divisor of degree n over K. Then for each of these ε, Fε(x)
can be factorized over K in the form

(9) Fε(x) = Q1(x)Q2(x),

where Q1 is a polynomial of degree n. Denote by S′ the set of places of
K which consists of the elements of S and those v ∈ MK \ S for which
|a0 Res(P,Q)|v 6= 1. Then S′ is finite and OS′ , the ring of S′-integers in K,
is integrally closed in K. Further, by the choice of S′ the leading coefficient of
Fε is an S′-unit. Hence we may assume that Q1 and Q2 have their coefficients
in OS′ . This implies that the leading coefficient of Q1 is an S′-unit.

Using some well-known properties of resultants (see e.g. [19]), from (9)
we get

(10) Res(Fε, P ) = Res(Q1, P ) Res(Q2, P )



290 K. Győry

where both Res(Q1, P ) and Res(Q2, P ) are elements of OS′ . On the other
hand, we have

(11) Res(Fε, P ) = am−n0 Res(εQ, P ) = am−n0 εm Res(Q,P ).

But a0, ε and Res(P,Q) are elements of O∗S′ , the group of S′-units. Thus
(10) and (11) give

(12) Res(P,Q1) ∈ O∗S′ .
If, for some ε′ ∈ O∗S with ε′ 6= ε, Fε′(x) := P (x)+ε′Q(x) has a polynomial

divisor, say Q′1, over K with degree n, then Q′1 cannot be of the form λQ1

with λ ∈ O∗S′ . Indeed, for Q′1(x) = λQ1(x), λ ∈ O∗S′ , we would deduce from
(9) that Q1(x) divides (ε−ε′)P (x) over K, contrary to the assumption that
P and Q are relatively prime over K. Thus, to derive an upper bound for
the number of ε under consideration, it is enough to give an upper bound
for the number of pairwise non-proportional solutions Q1(x) of degree n of
equation (12). However, it follows from Theorem 5 that the latter number is
at most c6(n,D, s+ωS) where c6 denotes the same bound as in Theorem 5.
Consequently, the total number of ε ∈ O∗S for which Fε(x) is reducible over
K is at most

(m/2)c6(m/2, D, s+ ωS).

This completes the proof of Theorem 7.

R e m a r k 1. It is clear from the above proof that using Theorem 5 with
c6 specified in (4), the expression given in (7) is an appropriate choice for
c7 in Theorem 7. Similarly, by applying Theorem 5 with c6 specified in (5)
we may take for c7 the expression in (8).

P r o o f o f T h e o r e m 3. To prove Theorem 3, we apply Theorem 7
with K = Q, Q(x) = xk. Let S denote the set of places of Q consisting of
the ordinary absolute value and of the finite places determined by p1, . . . , pt.
Then S is of cardinality t+ 1. Denote by D the degree of the splitting field
of P over Q, and by ωT the number of distinct prime factors of a different
from p1, . . . , pt. Then ωS(a) = ωT .

First assume that 0 < k < m. Then Res(P, xk) = akm. It follows from
Theorem 7 that the number of reducible polynomials of the form P (x) +
bxk with b ∈ T is at most c7(m,D, (t + 1) + ωT ) with the c7 occurring in
Theorem 7. Since D ≤ m!, c7(m,m!, (t + 1) + ωT ) is an appropriate choice
for c5(m, t+ ωT (a) + 1).

Next assume that k = 0. Then, by definition, a = a0 and Res(P, 1) = 1.
Thus Theorem 3 follows from Theorem 7 in the same way as above.

Finally, assume that k = m. Then we can apply Theorem 7 to the poly-
nomials xmP (1/x) + b instead of P (x) + bxk, and the assertion follows.
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R e m a r k 2. On using the explicit values of c7 given in (7) or (8), the
above proof provides immediately explicit values for c5.

P r o o f o f T h e o r e m 1. Let P ∈ Z[x] be a polynomial of degree m
with leading coefficient a0. First we show that there exists a b0 ∈ Z with
0 < b0 ≤ m such that P (x)+b0 has no multiple zeros. Indeed, if P (x)+b0 has
a multiple zero then P (α) + b0 = 0 for some zero α of P ′(x). But P ′(x) has
at most m− 1 zeros. Hence for at least one of the numbers b0 = 1, 2, . . . ,m,
P (x) + b0 has no multiple zeros.

In what follows, we fix a b0 ∈ Z with 0 < b0 ≤ m such that P0(x) :=
P (x)+b0 has no multiple zeros. We shall deduce Theorem 1 from Theorem 3
with k = 0. Let ω denote the number of distinct prime factors of a0, and
let t = ω + 1. Denote by pi the ith prime number, and by T the set of
non-zero integers not divisible by primes different from p1, . . . , pt. Clearly
ωT (a0) ≤ ω. Set

c8 = c5(m, t+ ω + 1) = c5(m, 2(ω + 1))

and
C = [4 log(t+ 1)c1/t8 ] + 1,

where c5 denotes the number occurring in Theorem 3.
Consider in T the numbers of the form

b1 = pa1
1 . . . patt

where ai runs through the numbers 0, 1, . . . , [C/ log pi], i = 1, . . . , t. The
number of these b1’s is

t∏

i=1

([C/ log pi] + 1).

We have (cf. [11])
t∑

i=1

log pi < pt log 4 < 4t log(t+ 1).

Thus we infer that

log p1 . . . log pt <
(

log p1 + . . .+ log pt
t

)t
< (4 log(t+ 1))t.

Hence, for the number of b1’s under consideration we get the following lower
estimates:

t∏

i=1

([C/ log pi] + 1) >
Ct

log p1 . . . log pt
>

(
C

4 log(t+ 1)

)t
> c8.

By Theorem 3, for at least one of the numbers b1 under consideration,
P0(x) + b1 is irreducible over Q. Considering this b1 in the form pa1

1 . . . patt ,



292 K. Győry

we infer that

log b1 =
t∑

i=1

ai log pi ≤
t∑

i=1

[C/ log pi] log pi ≤ tC

= t([4 log(t+ 1)c1/t8 ] + 1).

Now the assertion follows with

(13) c3 = m+ exp{5(ω + 1) log(ω + 2)c1/(ω+1)
8 }.

R e m a r k 3. Using Remark 2 and (13), it is easy to derive the explicit
values of c3 given in (1) and (2).

To prove Theorem 2, we need the following.

Lemma (Capelli). Let P,Q ∈ Z[x] be non-constant polynomials, and
suppose that Q is monic and irreducible over Q. Further , let β be one of the
zeros of Q. Then Q(P (x)) is irreducible over Q if and only if P (x) − β is
irreducible over Q(β).

P r o o f. See [20] or [10]. We remark that Capelli proved this theorem in
a less general form (cf. [20]).

P r o o f o f T h e o r e m 2. Let P ∈ Z[x] be a polynomial of degree m ≥ 1
with leading coefficient a0, and let K/Q be a finite normal extension. As was
shown in the proof of Theorem 1, there is an integer b0 with 1 ≤ b0 ≤ m
such that P0(x) := P (x) + b0 has distinct zeros. Denote by OK the ring of
integers of K, and by n and DK the degree and discriminant of K, respec-
tively. By the above lemma, it suffices to prove that there are an effectively
computable c9 = c9(m,ω(a0), n, |DK |) and a primitive integral element β in
K with height at most c9 such that the polynomial P0(x)− β is irreducible
over K.

There is a primitive integral element α in K with α ≤ |DK |1/2 (see
e.g. [18]), where α denotes the maximum absolute value of the conjugates
of α. This implies that

|NK/Q(α)| ≤ |DK |n/2.
Denote by S the subset of MK (the set of places of K) which consists
of all infinite places and of the finite places determined by the prime ide-
als in OK with norms not exceeding (2|DK |1/2)n. The cardinality of S is
at most n((2|DK |1/2)n + 1). The numbers 2aα are S-units in K for all
non-negative rational integers a. We now apply Theorem 7 over Q with
Q(x) ≡ 1 and we use the fact that here D, the degree of the splitting
field of P , is at most m! and ωS(a0 Res(P, 1)) ≤ ω(a0). By Theorem 7,
there exists an effectively computable number c10 = c10(m,ω(a0), n, |DK |)
such that the number of non-negative integers a for which P0(x) − 2aα



Irreducibility of neighbouring polynomials 293

is reducible over K is at most c10. Consequently, there is a non-negative
integer a with a ≤ c10 such that P0(x) − 2aα is irreducible over K. Put
β = 2aα. Then β is a primitive integral element in K and has height at
most c11 = c11(m,ω(a0), n, |DK |), where c11 is effectively computable. This
completes the proof of Theorem 2.
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Noordhoff, Groningen/Djakarta, 1950.

MATHEMATICAL INSTITUTE

KOSSUTH LAJOS UNIVERSITY

H-4010 DEBRECEN, HUNGARY

Received on 24.4.1994 (2607)


