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On CM-fields with the same maximal real subfield

by

Kuniaki Horie (Hiratsuka)

We shall mean by a number field a finite extension over the rational field
Q contained in the complex field C, and by a CM-field a totally imaginary
quadratic extension in C over a totally real number field. Let k be a totally
real number field. Let Γ denote the set of all CM-fields that are quadratic
extensions over k, so that Γ is an infinite set. In this paper, giving a charac-
terization of CM-fields with odd relative class number, we shall prove that
there exist infinitely many CM-fields in Γ with odd relative class number if
and only if the class number of k in the narrow sense is odd. We shall also
find out, by virtue of formulae of Kida [7], when Γ contains infinitely many
CM-fields K such that µ−K = λ−K = 0. Here, for each CM-field K, µ−K and
λ−K denote respectively the Iwasawa µ−- and λ−-invariants associated with
the basic Z2-extension over K, Z2 being of course the additive group of the
2-adic integer ring. An additional remark will be made in the last section.

Part of the notation used in the paper is as follows. For any number field
F , we let CF denote the ideal class group of F , AF the Sylow 2-subgroup of
CF , and hF the class number of F ; hF = |CF |. Moreover, h∗F will denote the
class number of F in the narrow sense, F+ the maximal real subfield of F , IF
the ideal group of F , EF the unit group of F , E∗F the subgroup of EF consist-
ing of all totally positive elements of F in EF , and NF/H , for each subfield
H of F , the norm map from the multiplicative group F× = F \ {0} to the
multiplicative group H×. Given arbitrary algebraic numbers α1, . . . , αn in
C, we write (α1, . . . , αn) for the fractional ideal of Q(α1, . . . , αn) generated
by α1, . . . , αn. It is therefore understood that (α1, . . . , αn) lies in IF when-
ever the number field F contains α1, . . . , αn. Now, let K be any CM-field.
We then denote by A−K the Sylow 2-subgroup of the kernel of the norm map
CK → CK+ and by h−K the relative class number of K; h−K = hK/hK+ . As
is well known, the norm map CK → CK+ is surjective so that h−K equals
the order of the kernel of this norm map. We let tK denote the number of
prime ideals of K ramified for K/K+. The rank of each finite abelian group
G will be denoted by r(G).
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1. We first give a brief proof of the following fact which might be essen-
tially well known.

Lemma 1. Let K be a CM-field such that 2 -hK+ . Then

(i) tK − 1 ≤ r(AK) ≤ tK − 1 + [K+ : Q]− r(EK+/E∗K+),
(ii) r(AK) = tK − 1 + [K+ : Q]− r(EK+/E∗K+) if tK = 0 or 1.

P r o o f. By 2 -hK+ , the ambiguous ideal classes forK/K+ in AK coincide
with the ideal classes in AK of order at most 2. The ambiguous class number
formula (cf. Satz 13 in Ia of [4]) therefore implies

(1.1) r(AK) = tK − 1 + [K+ : Q]− r(EK+/(NK/K+(K×) ∩ EK+)).

Thus (i) follows from

E∗K+ ⊇ NK/K+(K×) ∩ EK+ ⊇ E2
K+ = {ε2 | ε ∈ EK+}.

Next assume tK = 1. The product formula for the Hasse norm residue
symbol then shows that every element of E∗K+ is a norm residue for K/K+

modulo the conductor of K/K+, whence, by the Hasse norm theorem for
K/K+,

E∗K+ ⊆ NK/K+(K×), namely E∗K+ = NK/K+(K×) ∩ EK+ .

Therefore from (1.1) we obtain

r(AK) = [K+ : Q]− r(EK+/E∗K+)

as stated in (ii).
In the case tK = 0, the assertion (ii) is an immediate consequence of

(1.1) and the Hasse norm theorem for K/K+.

By the Hilbert 2-class field over a number field F , we shall mean as usual
the maximal unramified abelian 2-extension over F in C.

Theorem 1. Let K be a CM-field. Let M denote the Hilbert 2-class
field over K+. Then h−K is odd if and only if the following conditions are
satisfied :

(1-i) M is cyclic over K+, i.e., AK+ is cyclic,
(1-ii) tK = 0 or 1 and , in the case tK = 1, the prime ideal of K+

ramified in K remains prime in M ,
(1-iii) r(EM/E∗M ) = [M : Q] + tK − 1.

P r o o f. We note first of all that the inequality r(A−K) + 1 ≥ r(AK+)
holds in general (cf. Proposition 10.12 of [12]).

Now, assume that h−K is odd, so that (1-i) certainly holds by the above
inequality. Obviously the composite KM is a CM-field whose maximal real
subfield is M . Since hM is odd by (1-i), we see from Lemma 1 that 1 ≥
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tKM = tK , which implies (1-ii). Lemma 1 further shows us that

tK − 1 + [M : Q]− r(EM/E∗M ) = r(AKM ).

However, the right hand side here equals 0 by A−K = {1} or equivalently by
[KM : K] = |AK |, because KM is the Hilbert 2-class field over K as well
as a cyclic extension over K. Thus we also have (1-iii).

Let us next assume (1-i)–(1-iii). As hM is odd by (1-i) and as tK =
tKM ≤ 1 by (1-ii), it follows from Lemma 1 and (1-iii) that

r(AKM ) = tK − 1 + [M : Q]− r(EM/E∗M ) = 0.

Hence we have r(A−K) = 0, i.e., 2 -h−K . Theorem 1 is therefore proved.

Example. Let p be a prime number ≡ 5 (mod 8). Then Q(
√

2,
√
p) is

the Hilbert 2-class field over Q(
√

2p) (cf. [11]) and Q(
√

2p) is the maximal
real subfield of the CM-field Q(

√−1,
√

2p); so we let

K = Q(
√−1,

√
2p), M = Q(

√
2,
√
p).

The only prime ideal (2,
√

2p) of K+ = Q(
√

2p) ramified in K remains prime
in M . Take any a ∈ IM satisfying a2 ∈ IQ. Clearly, a is an ambiguous ideal
for the quadratic extension M/Q(

√
2p). As M is unramified over Q(

√
2p),

a has generators in Q(
√

2p): a ∈ IQ(
√

2p). Therefore, in IM ,

a = (α) or (
√

2)(α) for some α ∈ Q(
√

2p).

Let ε1, ε2 and ε3 denote respectively the fundamental units > 1 of Q(
√

2),
Q(
√
p) and Q(

√
2p) (so that ε1 = 1 +

√
2). Since

NQ(
√

2)/Q(ε1) = NQ(
√
p)/Q(ε2) = NQ(

√
2p)/Q(ε3) = −1,

it now follows from Hilfssatz 6 of [8] that the three numbers
√
ε1ε2ε3, ε2, ε3

form a system of fundamental units of M . Hence, by Hilfssatz 3 of [8], we
easily have

r(EM/E∗M ) = 4 = [M : Q].
The CM-field K = Q(

√−1,
√

2p) thus satisfies the conditions (1-i)–(1-iii) of
Theorem 1. Hence, by Theorem 1, h−K is odd, the Hilbert 2-class field over
K being KM = Q(

√−1,
√

2,
√
p).

The next lemma supplements Theorem 1 and will be useful to prove
Theorem 2.

Lemma 2. Let K be a CM-field and M the Hilbert 2-class field over K+.
Assume that 2 |hK+ , tKM = 1, and hence tK = 1. Then the prime ideal of
K+ ramified in K divides 2.

P r o o f. We take an algebraic integer α in K+ with K = K+(
√
α). Let

p be the unique prime ideal of K+ ramified in K, so that

(α) = pna2
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for some integer n ≥ 0 and for some integral ideal a in IK+ prime to p.
It follows from tKM = 1 that p remains prime in M . Hence, by class field
theory, AK+ is a cyclic group which is generated by the ideal class in AK+

containing the (hK+/|AK+ |)-th power of p. Therefore n is even. This con-
clusion shows that p divides 2, because p must be unramified in K if p is
prime to 2.

As in the introduction, let k be a totally real number field and let Γ
denote the set of all CM-fields K with K+ = k. We fix k from now on.

Theorem 2. The following three statements are equivalent :

(2-i) 2 -hk and r(Ek/E∗k) = [k : Q],
(2-ii) there exist infinitely many CM-fields in Γ of odd relative class

number ,
(2-iii) there exist infinitely many CM-fields in Γ of odd class number.

P r o o f. Clearly, (2-i) and (2-ii) imply (2-iii) while (2-iii) implies (2-ii).
It therefore suffices to prove that (2-i) is equivalent with (2-ii). Now, as-
suming (2-i), we let r denote the product of distinct infinite primes of k.
Let c be the ideal class containing the principal ideal (3) in the ray class
group of k modulo (4)r. Let ξ be any algebraic integer in k such that (ξ)
is a prime ideal of k in c. It follows that, for some ε ∈ Ek, εξ is totally
positive in k and congruent to 3 modulo (4). Let K = k(

√−εξ). Then K is
a CM-field contained in Γ and (ξ) is the unique prime ideal ramified in K.
Hence Theorem 1 shows that (2-i) implies 2 -h−K . Since there exist infinitely
many prime ideals of k in c, we can take infinitely many such CM-fields
as K.

We next assume (2-ii), so that, by class field theory, there exists a CM-
field in Γ with odd relative class number in which a prime ideal of k dividing
an odd prime is ramified. We then have 2 -hk by Theorem 1 and Lemma 2.
Furthermore, by Theorem 1, we also have r(Ek/E∗k) = [k : Q]. Thus (2-i)
follows from (2-ii).

R e m a r k. As readily seen, (2-i) of Theorem 2 is equivalent to the con-
dition that h∗k is odd.

For instance, suppose k to be a real quadratic number field. Then, by
Theorem 2, there exist infinitely many CM-fields in Γ with odd relative class
number if and only if k = Q(

√
p) for some prime number p 6≡ −1 (mod 4).

The following is an immediate consequence of Theorem 1.

Proposition 1. Let L be the Hilbert 2-class field over k. Assume that
L is not cyclic over k or r(EL/E∗L) ≤ [L : Q]− 2. Then any CM-field in Γ
has even relative class number.
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2. Let F be any number field. Then we denote by F∞ the basic Z2-
extension over F ; namely, we denote by Q∞ the unique Z2-extension over
Q in C and let F∞ = FQ∞ unless F = Q. We write µF and λF respectively
for the Iwasawa µ-invariant and the Iwasawa λ-invariant associated with
the Z2-extension F∞/F . We further let τ(F ) = 1 or 0 according as the
ramification indices for F∞/Q∞ of all primes of F∞ lying above 2 are even
or not. Note that a prime of F∞ is ramified for F∞/F if and only if the
prime lies above 2. By the Hilbert 2-class field over F in the narrow sense,
we mean the maximal unramified abelian 2-extension over F in which no
prime ideal of F is ramified. Now, for any CM-field K, let

µ−K = µK − µK+ , λ−K = λK − λK+ ,

and denote by sK the number of finite primes of K+
∞ = K+Q∞ ramified

in K∞ but not lying above 2. It is easy to see sK <∞.
In this section, we shall prove:

Theorem 3. Let k = k0 ⊆ . . . ⊆ kn ⊆ kn+1 ⊆ . . . ⊆ k∞ be the tower of
intermediate fields of k∞/k such that [kn : k] = 2n for each integer n ≥ 0,
let m denote the maximal integer ≥ 0 such that km/k is unramified , and let
L∗ denote the Hilbert 2-class field over k in the narrow sense. Then there
exist infinitely many CM-fields K in Γ with µ−K = λ−K = 0 if and only if
the following conditions are satisfied :

(3-i) hkm is odd ,
(3-ii) r(Ekm/E

∗
km

) = [km : Q]− τ(k), i.e., h∗km = 2τ(k)hkm ,
(3-iii) just one prime ideal of L∗ divides 2.

For the proof, we prepare two lemmas.

Lemma 3. Let F ′/F be a cyclic extension of number fields with 2-power
degree such that just one prime ideal of F is ramified in F ′. If h∗F is odd ,
then so is h∗F ′ .

P r o o f. Modifying the proof of II in [6], one can get a simple proof of
this fact.

Lemma 4 (Corollary of Theorems 1 and 4 of [7]). Let K be a CM-field
such that µ−K = λ−K = 0. Then sK = 1 or 0 and , in the case sK = 1, just
one prime of K+

∞ lies above 2.

P r o o f. Let n be any integer ≥ 0. Writing K+
n for the intermediate field

of K+
∞/K

+ with degree 2n over K+, let A∗n denote the Sylow 2-subgroup
of the ideal class group of K+

n in the narrow sense. Let % be the number
of primes of K+

∞ lying above 2. As µ−K = 0 implies µK = 0 (see, e.g.,
Proposition 13.24 of [12]), it then follows from Theorem 4 of [7] that

r(A∗n) ≥ %− 1 + τ(K+) if n is sufficiently large.
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Furthermore, by Theorem 1 of [7],

r(A∗n)− τ(K+)− 1 + sK ≤ λ−K = 0 if n is sufficiently large.

Hence we have % − 1 ≤ 1 − sK , so that sK equals 1 or 0 and, in the case
sK = 1, % equals 1.

Proof of Theorem 3. We denote by Ω the set of CM-fields K in Γ
satisfying µ−K = λ−K = 0.

Let us first assume (3-i)–(3-iii). Since L∗ ⊇ km = k∞ ∩ L∗, we see from
(3-iii) that only a prime of k∞L∗ is ramified for k∞L∗/L∗ and it is totally
ramified for k∞L∗/L∗. Furthermore, by (3-iii), L∗ is cyclic over k so that
h∗L∗ is odd. Therefore, for any integer n ≥ m, h∗knL∗ is odd by Lemma 3 and
hence knL∗ is the Hilbert 2-class field over kn in the narrow sense. We then
also have

(2.1) [knL∗ : kn] = 2τ(k)

because (3-i) and (3-ii) imply [L∗ : km] = 2τ(k) by class field theory. Let p
be any prime ideal of k which does not divide 2 but remains prime in k1.
It follows that p remains prime in kn for every integer n ≥ 0. Let l be the
prime ideal of k dividing 2. As l remains prime in L∗, we deduce from class
field theory that palb = (ω) holds with an odd integer a, an integer b, and a
totally positive element ω of k. Let

J = k(
√−ω).

Obviously, J is a CM-field in Γ such that sJ = 1 and hence J∞ 63
√−1.

Therefore, by Theorem 1 of [7] and by (2.1),

λ−J = τ(k)− τ(k) = 0.

Thus J belongs to Ω. It is now clear that Ω is an infinite set.
Assume next that Ω is infinite. Then Ω contains a CM-field K in which

a prime ideal of k not dividing 2 is ramified, so that, by Lemma 4,

(2.2) sK = 1, K∞ 63
√−1.

Let j be any integer ≥ 0, and let Lj denote the Hilbert 2-class field over
kj . Note not only that Lj is totally real but also that LjK is a CM-field.
We find sLjK = [Ljk∞ : k∞] since the unique finite prime of k∞ ramified
in K∞ and not lying above 2 is completely decomposed in Ljk∞. However,
by Theorem 3 of [7], we have µ−LjK = λ−LjK = 0. Hence Ljk∞ = k∞ follows
from Lemma 4. Consequently,

(2.3) Lj = kj whenever j ≥ m.
In particular, hkm is odd. As just one prime of k∞ lies above 2 by Lemma 4,
there always exists a unique prime ideal of Lj dividing 2. Now, for each
integer n ≥ 0, let L∗n denote the Hilbert 2-class field over kn in the narrow
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sense. As the restriction map Gal(L∗j+1/kj+1)→ Gal(L∗j/kj) is surjective in
case j ≥ m, we see from µK = 0 that

r(Gal(L∗j+1/kj+1)) = r(Gal(L∗j/kj)) if j is sufficiently large.

Furthermore, by Theorem 1 of [7] and (2.2), we have

r(Gal(L∗j/kj)) = τ(k) if j is sufficiently large.

It therefore follows from (2.3) and Lemma 3 that

[L∗j : kj ] = 2τ(k) whenever j ≥ m.
In particular, h∗km = 2τ(k)hkm . On the other hand, by Theorem 4 of [7], the
unique prime ideal of Lj dividing 2 remains prime in L∗j if τ(k) = 1 and
j is sufficiently large. Hence the prime ideal of k dividing 2 remains prime
in L∗ = L∗m. The conditions (3-i)–(3-iii) are thus satisfied and the proof is
completed.

Corollary. There exist infinitely many CM-fields K in Γ with µ−K =
λ−K = 0 if and only if there exist infinitely many CM-fields K in Γ with
µK = λK = 0.

P r o o f. In fact, if there exist infinitely many CM-fields K in Γ with
µ−K = λ−K = 0, then we have µk = λk = 0 by Theorem 3 (cf. [6]).

Suppose [k : Q] = 2 in Theorem 3. Then m = 0 or 1 by genus theory.
Furthermore, by Theorem 3, infinitely many CM-fields K with K+ = k
satisfy µ−K = λ−K = 0 if and only if either k = Q(

√
p) for some prime number

p 6≡ 1 (mod 8) or k = Q(
√

2p) for some prime number p ≡ 5 (mod 8) (cf.
Example after Theorem 1). Here, in the first case, m = 0 and

τ(k) =
{

0 if p = 2 or p ≡ 5 (mod 8),
1 if p ≡ 3 (mod 4);

in the second case, m = 1 and τ(k) = 0.
The following are almost immediate consequences of Theorem 1 of [7].

Proposition 2. Let K be a CM-field. For each integer n ≥ 0, let K+
n

denote the intermediate field of K+
∞/K

+ with degree 2n over K+ and let
M∗n denote the Hilbert 2-class field over K+

n in the narrow sense. Then
µ−K = λ−K = 0 if and only if

r(Gal(M∗n/K
+
n )) + sK + δ = τ(K+) + 1

for every sufficiently large integer n ≥ 0, where δ = 1 or 0 according as K∞
contains

√−1 or not.

Proposition 3. Let m and km be the same as in Theorem 3. Assume
that r(Akm) ≥ τ(k) + 2 or r(Ekm/E

∗
km

) ≤ [km : Q]− τ(k)− 2. Then either
µ−K > 0 or λ−K > 0 for any CM-field K with K+ = k.
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3. We shall finally make a simple remark, omitting the details. Let l be
any odd prime and let Zl denote the additive group of the l-adic integer
ring. For each number field F , let µl(F ) and λl(F ) denote respectively the
Iwasawa µ- and λ-invariants associated with the basic Zl-extension over F .
Let, for any CM-field K,

µ−l (K) = µl(K)− µl(K+), λ−l (K) = λl(K)− λl(K+).

Then, as is well known, K satisfies µ−l (K) = λ−l (K) = 0 if and only if l
neither divides h−K nor is divisible by any prime ideal of K+ decomposed in
K (see, e.g., Criterion 1.0 of [3]). We denote by Ωl the set of CM-fields K ′

in Γ for which µ−l (K ′) = λ−l (K ′) = 0.
Now, it seems quite likely that Ωl is always an infinite set and hence

there exist infinitely many CM-fields in Γ with relative class number prime
to l. This certainly holds in the case l = 3; indeed, as Theorem 3 of [2] is
refined by Theorem 1 of [10], so Theorem I.3 of [1] can be refined enough
to show that a subset of Ω3 has a positive “density” in Γ (cf. Proposition
2 and Theorem 3 of [10]). On the other hand, the main result of [9] states
that Ωl is an infinite set unless l divides the non-zero integer wζk(−1). Here
ζk denotes the Dedekind zeta function of k and

w = 2
∏
p

pn(p),

with p ranging over the prime numbers ramified in k(
√−1,

√−3) and n(p)
denoting for each p the maximal integer ≥ 0 such that the pn(p)-th roots
of unity are contained in some quadratic extension over k. (For the special
case where k = Q, see also [5].)
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