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On CM-fields with the same maximal real subfield
by

KunNiakl Horie (Hiratsuka)

We shall mean by a number field a finite extension over the rational field
Q contained in the complex field C, and by a CM-field a totally imaginary
quadratic extension in C over a totally real number field. Let k be a totally
real number field. Let I'" denote the set of all CM-fields that are quadratic
extensions over k, so that I" is an infinite set. In this paper, giving a charac-
terization of CM-fields with odd relative class number, we shall prove that
there exist infinitely many CM-fields in I" with odd relative class number if
and only if the class number of k in the narrow sense is odd. We shall also
find out, by virtue of formulae of Kida [7], when I" contains infinitely many
CM-fields K such that p,; = A = 0. Here, for each CM-field K, ;15 and
A denote respectively the Iwasawa ;1 ~- and A™-invariants associated with
the basic Zs-extension over K, Zy being of course the additive group of the
2-adic integer ring. An additional remark will be made in the last section.

Part of the notation used in the paper is as follows. For any number field
F, we let Cr denote the ideal class group of F', Ar the Sylow 2-subgroup of
Cr, and hp the class number of F'; hp = |Cp|. Moreover, h}. will denote the
class number of F' in the narrow sense, F'* the maximal real subfield of F', I
the ideal group of F', Ef the unit group of F', E'}, the subgroup of E'r consist-
ing of all totally positive elements of F'in Er, and Np,p, for each subfield
H of F, the norm map from the multiplicative group F* = F'\ {0} to the
multiplicative group H*. Given arbitrary algebraic numbers ag,...,a, in
C, we write (aq,...,a,) for the fractional ideal of Q(ay, ..., a,) generated
by ai,...,a,. It is therefore understood that (aq,...,a,) lies in Ir when-
ever the number field F' contains aq, ..., a,. Now, let K be any CM-field.
We then denote by Ay the Sylow 2-subgroup of the kernel of the norm map
Ck — Ck+ and by hy the relative class number of K; hj = hx/hy+. As
is well known, the norm map Cx — Ck+ is surjective so that hy equals
the order of the kernel of this norm map. We let tx denote the number of
prime ideals of K ramified for K/K ™. The rank of each finite abelian group
G will be denoted by r(G).
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1. We first give a brief proof of the following fact which might be essen-
tially well known.

LEMMA 1. Let K be a CM-field such that 2thy+. Then

(i) tx =1 <r(Ax) <tg — 1+ [KT: Q] = r(Eg+ /Eys),
(ii) r(Ag) =tx =1+ [K1 : Q] —r(Eg+/Ej.) if tg =0 or 1.
Proof. By 24 hg+, the ambiguous ideal classes for K/K™ in Ak coincide

with the ideal classes in Ak of order at most 2. The ambiguous class number
formula (cf. Satz 13 in Ia of [4]) therefore implies

(1.1) r(Ag) =tk =1+ [K": Q] —r(Ex+/(Ng e+ (K*) N Ege+)).
Thus (i) follows from
Ejes D Ngjg+(K*)NEg+ D Eyy ={e” | e € Ex+}.

Next assume tx = 1. The product formula for the Hasse norm residue
symbol then shows that every element of E., is a norm residue for K /K"
modulo the conductor of K/K™, whence, by the Hasse norm theorem for
K/KT,

E}‘}.,, QNK/K+(KX), namely E;{+:NK/K+(KX>OEK+
Therefore from (1.1) we obtain
r(Ag) =[KT: Q] —r(Eg+/Eje+)
as stated in (ii).

In the case tx = 0, the assertion (ii) is an immediate consequence of

(1.1) and the Hasse norm theorem for K/K™.

By the Hilbert 2-class field over a number field F', we shall mean as usual
the maximal unramified abelian 2-extension over F' in C.

THEOREM 1. Let K be a CM-field. Let M denote the Hilbert 2-class
field over K. Then hy is odd if and only if the following conditions are
satisfied:

(1-1) M s cyclic over KT, i.e., Ag+ is cyclic,
(1-ii) tx = 0 or 1 and, in the case tx = 1, the prime ideal of KT
ramified in K remains prime in M,

(1-iii) 7(Ep/EL) = [M : Q]+ tx — 1.

Proof. We note first of all that the inequality r(A;) +1 > r(Ag+)
holds in general (cf. Proposition 10.12 of [12]).

Now, assume that hy is odd, so that (1-i) certainly holds by the above
inequality. Obviously the composite KM is a CM-field whose maximal real
subfield is M. Since hjps is odd by (1-i), we see from Lemma 1 that 1 >
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txm = tx, which implies (1-ii). Lemma 1 further shows us that
tK -1+ [M : Q] - T(EM/E}\%) = ’I”(AKM).

However, the right hand side here equals 0 by A = {1} or equivalently by
[KM : K| = |Ak|, because KM is the Hilbert 2-class field over K as well
as a cyclic extension over K. Thus we also have (1-iii).

Let us next assume (1-i)—(1-iii). As hps is odd by (1-i) and as tx =
txam <1 by (1-i), it follows from Lemma 1 and (1-iii) that

’I“(AKM) =tg—1+ [M : Q] — ’I"(EM/EX/[) = 0.

Hence we have r(Ay) =0, i.e., 2{h}. Theorem 1 is therefore proved.

EXAMPLE. Let p be a prime number = 5 (mod 8). Then Q(v/2, /p) is

the Hilbert 2-class field over Q(v/2p) (cf. [11]) and Q(1/2p) is the maximal
real subfield of the CM-field Q(v/—1,+/2p); so we let

K=Q(W~-12), M=Q(V2 p).
The only prime ideal (2, v/2p) of KT = Q(1/2p) ramified in K remains prime
in M. Take any a € I}, satisfying a? € Ig. Clearly, a is an ambiguous ideal
for the quadratic extension M/Q(y/2p). As M is unramified over Q(1/2p),
a has generators in Q(y/2p): a € Ig(yap)- Therefore, in Iny,

a=(a) or (V2)(a) for some o € Q(~1/2p).
Let €1, £2 and 3 denote respectively the fundamental units > 1 of Q(v/2),
Q(/p) and Q(1/2p) (so that ey = 1+ v/2). Since

Ny (va)/0(€1) = No(ym)/oa(e2) = No(yzp oles) = —1,

it now follows from Hilfssatz 6 of [8] that the three numbers |/e1e2¢€3, €2, €3
form a system of fundamental units of M. Hence, by Hilfssatz 3 of [8], we
easily have

r(Ent/Ejy) = 4= [M: Q.
The CM-field K = Q(v/—1,/2p) thus satisfies the conditions (1-i)—(1-iii) of
Theorem 1. Hence, by Theorem 1, hj; is odd, the Hilbert 2-class field over
K being KM = Q(v/—1,v2, /p).
The next lemma supplements Theorem 1 and will be useful to prove
Theorem 2.

LEMMA 2. Let K be a CM-field and M the Hilbert 2-class field over K.
Assume that 2| hg+, tgyp = 1, and hence tig = 1. Then the prime ideal of
K™ ramified in K divides 2.

Proof. We take an algebraic integer a in Kt with K = K1 (\/a). Let
p be the unique prime ideal of KT ramified in K, so that

(a) =p"a®
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for some integer n > 0 and for some integral ideal a in [x+ prime to p.
It follows from txp; = 1 that p remains prime in M. Hence, by class field
theory, Ag+ is a cyclic group which is generated by the ideal class in A g+
containing the (hg+/|Ag+|)-th power of p. Therefore n is even. This con-
clusion shows that p divides 2, because p must be unramified in K if p is
prime to 2.

As in the introduction, let k£ be a totally real number field and let I"
denote the set of all CM-fields K with K™ = k. We fix k from now on.

THEOREM 2. The following three statements are equivalent:

(2-1) 21hi and r(E/E}) = [k : Q]
(2-ii) there exist infinitely many CM-fields in I' of odd relative class
number,
(2-iii) there exist infinitely many CM-fields in I' of odd class number.

Proof. Clearly, (2-i) and (2-ii) imply (2-iii) while (2-iii) implies (2-ii).
It therefore suffices to prove that (2-i) is equivalent with (2-ii). Now, as-
suming (2-i), we let v denote the product of distinct infinite primes of k.
Let ¢ be the ideal class containing the principal ideal (3) in the ray class
group of k modulo (4)r. Let £ be any algebraic integer in k such that (&)
is a prime ideal of k£ in ¢. It follows that, for some ¢ € Ej, £ is totally
positive in k and congruent to 3 modulo (4). Let K = k(y/—&€). Then K is
a CM-field contained in I" and () is the unique prime ideal ramified in K.
Hence Theorem 1 shows that (2-i) implies 21 hj. Since there exist infinitely
many prime ideals of k£ in ¢, we can take infinitely many such CM-fields
as K.

We next assume (2-ii), so that, by class field theory, there exists a CM-
field in I" with odd relative class number in which a prime ideal of £ dividing
an odd prime is ramified. We then have 2¢{hj by Theorem 1 and Lemma 2.
Furthermore, by Theorem 1, we also have r(Ey/E}) = [k : Q]. Thus (2-i)
follows from (2-ii).

Remark. As readily seen, (2-i) of Theorem 2 is equivalent to the con-
dition that hj is odd.

For instance, suppose k to be a real quadratic number field. Then, by
Theorem 2, there exist infinitely many CM-fields in I" with odd relative class
number if and only if k£ = Q(,/p) for some prime number p # —1 (mod 4).

The following is an immediate consequence of Theorem 1.

PROPOSITION 1. Let L be the Hilbert 2-class field over k. Assume that
L is not cyclic over k or r(Er/E}) < [L: Q] —2. Then any CM-field in I"
has even relative class number.
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2. Let F be any number field. Then we denote by F,, the basic Zs-
extension over F'; namely, we denote by Q. the unique Zs-extension over
Qin C and let Fy = FQu unless F' = Q. We write ur and Ag respectively
for the Iwasawa p-invariant and the Iwasawa A-invariant associated with
the Zs-extension F,/F. We further let 7(F) = 1 or 0 according as the
ramification indices for Fi,/Q of all primes of F, lying above 2 are even
or not. Note that a prime of F,, is ramified for F,,/F if and only if the
prime lies above 2. By the Hilbert 2-class field over F' in the narrow sense,
we mean the maximal unramified abelian 2-extension over F' in which no
prime ideal of F' is ramified. Now, for any CM-field K, let

M[_(:/’LK_MK+7 )\;(:)\K_)\Kﬁ-,
and denote by sx the number of finite primes of K = K1TQ, ramified
in K, but not lying above 2. It is easy to see sx < oo.
In this section, we shall prove:

THEOREM 3. Let k =ko C ... Ck, Ckpy1 C ... C koo be the tower of
intermediate fields of koo/k such that [k, : k] = 2™ for each integer n > 0,
let m denote the mazimal integer > 0 such that ky,/k is unramified, and let
L* denote the Hilbert 2-class field over k in the narrow sense. Then there
exist infinitely many CM-fields K in I" with p, = A = 0 if and only if
the following conditions are satisfied:

(3-1) hy,, is odd,
(3-ii) 7(E,, /Ef, ) = lkm : Q] — 7(k), i.e., b, =2"Why |
(3-iii) just one prime ideal of L* divides 2.

For the proof, we prepare two lemmas.

LEMMA 3. Let F'/F be a cyclic extension of number fields with 2-power
degree such that just one prime ideal of F is ramified in F'. If h}, is odd,
then so is hy.

Proof. Modifying the proof of II in [6], one can get a simple proof of
this fact.

LEMMA 4 (Corollary of Theorems 1 and 4 of [7]). Let K be a CM-field
such that pp = Ay = 0. Then sxg =1 or 0 and, in the case sxg = 1, just
one prime of K1 lies above 2.

Proof. Let n be any integer > 0. Writing K, for the intermediate field
of KI /K™ with degree 2" over K, let A denote the Sylow 2-subgroup
of the ideal class group of K" in the narrow sense. Let g be the number
of primes of K1 lying above 2. As p = 0 implies px = 0 (see, e.g.,
Proposition 13.24 of [12]), it then follows from Theorem 4 of [7] that

r(AX) > o0—1+7(KT) if nis sufficiently large.
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Furthermore, by Theorem 1 of [7],
r(AX) = 7(KT) =14 s <A =0 if nis sufficiently large.

Hence we have p — 1 < 1 — sk, so that sx equals 1 or 0 and, in the case
sk =1, p equals 1.

Proof of Theorem 3. We denote by {2 the set of CM-fields K in I"
satisfying p, = A = 0.

Let us first assume (3-1)—(3-iii). Since L* D k,,, = koo N L*, we see from
(3-iii) that only a prime of ko L* is ramified for ko L*/L* and it is totally
ramified for ko L*/L*. Furthermore, by (3-iii), L* is cyclic over k so that
hj. is odd. Therefore, for any integer n > m, hj, ;. is odd by Lemma 3 and
hence k,, L* is the Hilbert 2-class field over k,, in the narrow sense. We then
also have

(2.1) [knL* : kp] =270

because (3-i) and (3-ii) imply [L* : k,,] = 27() by class field theory. Let p
be any prime ideal of £ which does not divide 2 but remains prime in k;.
It follows that p remains prime in k,, for every integer n > 0. Let [ be the
prime ideal of k£ dividing 2. As [ remains prime in L*, we deduce from class
field theory that p®I’ = (w) holds with an odd integer a, an integer b, and a
totally positive element w of k. Let

T = k(v=a).

Obviously, J is a CM-field in I" such that s; = 1 and hence Jo, # v—1.
Therefore, by Theorem 1 of [7] and by (2.1),

; =7(k)—7(k)=0.

Thus J belongs to 2. It is now clear that {2 is an infinite set.
Assume next that {2 is infinite. Then {2 contains a CM-field K in which
a prime ideal of k£ not dividing 2 is ramified, so that, by Lemma 4,

(2.2) s =1, Ky FV-1.

Let j be any integer > 0, and let L; denote the Hilbert 2-class field over
k;. Note not only that L; is totally real but also that L;K is a CM-field.
We find sz, = [Ljkso @ koo] since the unique finite prime of ko, ramified
in K, and not lying above 2 is completely decomposed in L;k... However,
by Theorem 3 of [7], we have py ;- = A}, = 0. Hence Ljkoo = koo follows
from Lemma 4. Consequently,

(2.3) L; =k; whenever j > m.

In particular, by, is odd. As just one prime of k, lies above 2 by Lemma 4,
there always exists a unique prime ideal of L; dividing 2. Now, for each
integer n > 0, let L} denote the Hilbert 2-class field over k,, in the narrow
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sense. As the restriction map Gal(L}/kj11) — Gal(L]/k;) is surjective in
case j > m, we see from px = 0 that
r(Gal(Lj 1 /kj1)) = r(Gal(L}/k;))  if j is sufficiently large.
Furthermore, by Theorem 1 of [7] and (2.2), we have
r(Gal(L;/k;)) = 7(k)  if j is sufficiently large.
It therefore follows from (2.3) and Lemma 3 that
(L} : kj] = 27(*)  whenever j > m.
In particular, hy = 27(M) 1y, . On the other hand, by Theorem 4 of [7], the
unique prime ideal of L; dividing 2 remains prime in L3 if 7(k) = 1 and
7 is sufficiently large. Hence the prime ideal of £ dividing 2 remains prime

in L* = L . The conditions (3-1)—(3-iii) are thus satisfied and the proof is
completed.

COROLLARY. There exist infinitely many CM-fields K in I" with uy =
A = 0 if and only if there ewist infinitely many CM-fields K in I" with
MK = )\K =0.

Proof. In fact, if there exist infinitely many CM-fields K in I" with
L = Ax =0, then we have p, = A, = 0 by Theorem 3 (cf. [6]).

Suppose [k : Q] = 2 in Theorem 3. Then m = 0 or 1 by genus theory.
Furthermore, by Theorem 3, infinitely many CM-fields K with K+ = k
satisfy py = A = 0if and only if either k£ = Q(,/p) for some prime number
p #1 (mod 8) or k = Q(v/2p) for some prime number p = 5 (mod 8) (cf.
Example after Theorem 1). Here, in the first case, m = 0 and

O ifp=2orp=5 (mod ),
7(k) = { 1 ifp=3 (mod 4);
in the second case, m =1 and 7(k) = 0.
The following are almost immediate consequences of Theorem 1 of [7].

PROPOSITION 2. Let K be a CM-field. For each integer n > 0, let K,
denote the intermediate field of KL /Kt with degree 2™ over Kt and let
M denote the Hilbert 2-class field over Kt in the narrow sense. Then
i = A = 0 if and only if

r(Gal(M}/K) +sg +6=7(K")+1

for every sufficiently large integer n. > 0, where 6 = 1 or 0 according as Ko
contains \/—1 or not.

PROPOSITION 3. Let m and k,, be the same as in Theorem 3. Assume
that r(Ay,,) > 7(k) +2 or r(Ek,, /E}; ) < [kn : Q] — 7(k) — 2. Then either
pr >0 or A\ >0 for any CM-field K with KT = k.
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3. We shall finally make a simple remark, omitting the details. Let [ be
any odd prime and let Z; denote the additive group of the l-adic integer
ring. For each number field F', let u;(F') and \;(F') denote respectively the
Iwasawa p- and A-invariants associated with the basic Z;-extension over F'.
Let, for any CM-field K,

i (K) = m(K) = (K, A7 (K) = M(K) = M(K™).

Then, as is well known, K satisfies p; (K) = A, (K) = 0 if and only if
neither divides hz nor is divisible by any prime ideal of K decomposed in
K (see, e.g., Criterion 1.0 of [3]). We denote by §2; the set of CM-fields K’
in I" for which p; (K') = X\ (K') = 0.

Now, it seems quite likely that (2; is always an infinite set and hence
there exist infinitely many CM-fields in I" with relative class number prime
to [. This certainly holds in the case [ = 3; indeed, as Theorem 3 of [2] is
refined by Theorem 1 of [10], so Theorem 1.3 of [1] can be refined enough
to show that a subset of (23 has a positive “density” in I" (cf. Proposition
2 and Theorem 3 of [10]). On the other hand, the main result of [9] states
that (2; is an infinite set unless [ divides the non-zero integer w((—1). Here
(x denotes the Dedekind zeta function of k and

w = QHpn(p)’
P

with p ranging over the prime numbers ramified in k(v/—1,v/—3) and n(p)
denoting for each p the maximal integer > 0 such that the p™(®)-th roots
of unity are contained in some quadratic extension over k. (For the special
case where k = Q, see also [5].)
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