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Ken Ono (Athens, Ga.)

1. Introduction. A partition of a positive integer n is a nonincreasing
sequence of positive integers with sum n. Here we define a special class of
partitions.

Definition 1. Let t ≥ 1 be a positive integer. Any partition of n
whose Ferrers graph have no hook numbers divisible by t is known as a
t-core partition of n.

The hooks are important in the representation theory of finite symmetric
groups and the theory of cranks associated with Ramanujan’s congruences
for the ordinary partition function [3, 4, 6].

If t ≥ 1 and n ≥ 0, then we define ct(n) to be the number of partitions of
n that are t-core partitions. The arithmetic of ct(n) is studied in [3, 4]. The
power series generating function for ct(n) is given by the infinite product:

∞∑
n=0

ct(n)qn =
∞∏

n=1

(1− qtn)t

1− qn
.

Note that these generating functions are quotients of Dedekind η-functions.
The Dedekind η-function,

η(τ) = q1/24
∞∏

n=1

(1− qn) ,

is a modular form with weight 1/2. Here q = e2πiτ is the uniformizing
variable at i∞.

If p ≥ 5 is a prime, then let δp = (p2 − 1)/24. Let ap(n) be defined by

ηp(pτ)
η(τ)

=
∑
n≥δp

ap(n)qn .

The arithmetic behavior of ap(n) determines the number of p-core partitions
of n because cp(n − δp) = ap(n). Fortunately, this η-quotient is a modular
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form of weight (p−1)/2 on Γ0(p) with character ε(n) =
(

n
p

)
. Exact formulae

for c5(n) and c7(n) appear in [4].
Given a positive integer t, is ct(n) > 0 for all n ≥ 0? In other words, does

every positive integer n admit at least one t-core partition? The results in
[4] show that c5(n) and c7(n) are positive for all n ≥ 0. For t ≥ 5 prime,
Olsson has asked if ct(n) > 0 for all n. One easily verifies that c2(n) and
c3(n) are zero infinitely often. Here are the first few terms of the relevant
generating functions.

∞∏
n=1

(1− q2n)2

1− qn
=

∑
n≥0

c2(n)qn = 1 + q + q3 + q6 + q10 + q15 + q21 + . . . ,

∞∏
n=1

(1− q3n)3

1− qn
=

∑
n≥0

c3(n)qn

= 1 + q + 2q2 + 2q4 + q5 + 2q6 + q8 + 2q9 + 2q10 + 2q12 + . . .

In fact, it is a classical fact that
∞∏

n=1

(1− q2n)2

1− qn
=

∑
n≥0

qtn .

Here tn = n(n + 1)/2 are the usual triangular numbers.
It has been conjectured that if t ≥ 4, then ct(n) > 0 for all n ≥ 0 [3, 6].

We will prove that if t ≥ 4 and even, then ct(n) is always positive. Moreover,
we will see that for any fixed t ≥ 4, there are only finitely many n such that
ct(n) = 0.

The reader should note that ct(n) ≤ ctk(n) for all n. If a partition has no
hook numbers divisible by t, then it certainly has no hook numbers divisible
by any multiple of t. Hence the conjecture reduces to a study of cp(n) when
p is a prime. For t that are divisble by 2 and 3 we will use the theory of
quadratic forms, modular forms and Gauss’ Eureka theorem to prove the
positivity of ct(n). When p ≥ 5 is prime, we will apply Deligne’s theorem
on the estimates of Fourier coefficients of cusp forms.

2. An application of Deligne’s theorem. In this section we are
interested in the modular forms

ηp(pτ)
η(τ)

=
∑
n≥δp

a(n)qn

where p ≥ 5 is prime and δp = (p2 − 1)/24. This form is a modular form
on Γ0(p) of type ((p− 1)/2, ε) where ε(n) =

(
n
p

)
. Clearly, δp is the order of

this modular form at i∞. These forms do not vanish at τ = 0.
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Consequently, since Γ0(p) has only 2 cusps, at τ = i∞ and τ = 0, we get
the decomposition

ηp(pτ)
η(τ)

= αEE(τ) + fcusp

with αE 6= 0. E(τ) is the classical Eisenstein series centered at τ = 0 defined
by

E(τ) =
∑
n≥1

∑
d|n

ε

(
n

d

)
d(p−3)/2qn .

There are no cusp forms on Γ0(5) with character ε(n) =
(

n
5

)
. Consequently,

it is easy to see that the generating function η5(5τ)/η(τ) is exactly the
Eisenstein series.

In fact, we use these facts to show that if p ≥ 7, then there must be
a cusp form in the decomposition of ηp(pτ)/η(τ) into Eisenstein series and
cusp forms. This is true since

a(n) = 0 when 1 ≤ n ≤ δp − 1 .

If p ≥ 7, then δp ≥ 1. Since the Fourier coefficient of q in E(τ) is 1, we need
a cusp form to cancel it.

Now we return to the conjecture.

Theorem 1 (Deligne). Let f(τ) =
∑

n≥1 a(n)qn be a cusp form of weight
k for Γ , some congruence subgroup of SL2(Z). Then

a(n) = Oε(n(k−1)/2+ε) for all ε > 0 .

Using these estimates, it is clear that the Fourier coefficients of the Eisen-
stein series E(τ) dominate the Fourier coefficients of a cusp form of the same
weight beyond a certain point. Hence, since the Fourier coefficients a(n) of
ηp(pτ)/η(τ) are nonnegative, it is clear that αE > 0. Consequently, at most
finitely many Fourier coefficients a(n) are zero.

This proves the following theorem which is also contained in [6].

Theorem 2. If t is a positive integer with at least one prime factor
p ≥ 5, then

ct(n) = 0 for at most finitely many n ≥ 0 .

One can verify the positivity of cp(n) by explicitly calculating the de-
composition of ηp(pτ)/η(τ) into Eisenstein series and normalized eigenforms.
One can explicitly calculate the point in the Fourier expansion beyond which
the Eisenstein series dominates the cusp forms. Hence, for all primes p, the
above theorem is easily strengthened by a finite calculation. The author has
verified that c11(n) is always positive.
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3. Remaining cases. Deligne’s theorem provides a partial solution to
the positivity conjecture for all t ≥ 5 that have prime divisors other than 2
and 3. Here we settle the remaining cases.

In the next theorem we show that ct(n) is positive when t is a multiple
of 4. To do this, it suffices to show that c4(n) is always positive.

Theorem 3. If t is a multiple of 4, then ct(n) > 0 for all n ≥ 0.

P r o o f. Consider the η-quotient

η4(32τ)
η(8τ)

= q5
∞∑

n=0

c4(n)q8n =
∞∑

n=0

c4(n)q8n+5 .

The first few terms in its Fourier expansion are

η4(32τ)
η(8τ)

= q5 + q13 + 2q21 + 3q29 + q37 + . . .

This η-quotient is a modular form of weight 3/2 on Γ0(32). The Serre–Stark
basis theorem for modular forms of weight 1/2 states that all modular forms
with weight 1/2 on Γ0(4N) are linear combinations of theta series. In this
case, we find that this η-quotient is a product of theta series on Γ0(32). The
relevant theta series are

Θ1(τ) =
1
2

∑
n≡1 mod 2

qn2
= q + q9 + q25 + q49 + . . .

and

Θ2(τ) =
1
2

∑
n≡1 mod 2

q2n2
= q2 + q18 + q50 + q98 + . . .

We obtain the following identity:

η4(32τ)
η(8τ)

= Θ1(τ)Θ2
2(τ) .

Let Q be a ternary quadratic form and let r(Q,n) denote the number of
representations of n by the quadratic form Q by nonnegative integers. The
above identity implies that

c4(n) = r(x2 + 2y2 + 2z2, 8n + 5) .

This follows from the fact that if x2 + 2y2 + 2z2 represents an integer of the
form 8n + 5, then x, y and z are all odd. Consequently, we must show that
r(x2 + 2y2 + 2z2, 8n + 5) > 0 for all n ≥ 0.

The methods in [5] complete the proof. The genus of the ternary form
x2+2y2+2z2 consists of one equivalence class. By Corollary 44a of [5], every
integer n is represented by some form in the genus of a ternary quadratic
form Q if

Q ≡ n mod pr+1
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is solvable for every prime p | 2d where d is the discriminant of Q. If p is
odd, then pr is the highest power of p dividing n. If p = 2, then pr is the
highest power of 2 dividing 4n.

The discriminant of Q = x2 +2y2 +2z2 is 4. Consequently, every integer
of the form 8n + 5 is represented by Q since the relevant congruence

Q = x2 + 2y2 + 2z2 ≡ 8n + 5 ≡ 5 mod 8

is solvable and since the genus of Q is 1 (i.e. equivalent ternary quadratic
forms represent the same integers). This completes the proof.

Now we show that if t ≥ 4 is even, then ct(n) is always positive. As a
consequence of the last theorem, it suffices to assume that t = 4s + 2 where
s ≥ 1. This theorem is a corollary to Gauss’ famous Eureka theorem. This
theorem asserts that every nonnegative integer can be represented as a sum
of 3 triangular numbers. Recall that the nth triangular number is defined
by

tn =
n(n + 1)

2
.

Here are the first few triangular numbers:

t0 = 0, t1 = 1, t2 = 3, t3 = 6 and t4 = 10 .

Let ∆k(n) be the number of representations of n as a sum of k triangu-
lar numbers. Define the formal power series generating function for the
triangular number tn by

Ψ(q) =
∞∏

n=1

(1− q2n)2

1− qn
=

∞∑
n=0

qtn .

Consequently, we obtain the following identity of formal power series:

Ψk(q) =
∞∑

n=0

∆k(n)qn .

Now we state the famous Eureka theorem.

Theorem 4 (Gauss). If ∆k(n) denotes the number of representations
of n as a sum of k triangular numbers and k ≥ 3, then ∆k(n) > 0 for all
n ≥ 0.

Theorem 5. If s ≥ 1 and t = 4s + 2, then ct(n) > 0 for all n ≥ 0.

P r o o f. We simply manipulate the generating function for ct(n) by
splitting it into a product of two formal power series:
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∞∑
n=0

c4s+2(n)qn =
∞∏

n=1

(1− qn(4s+2))4s+2

1− qn

=
∞∏

n=1

(
(1− qn(4s+2))2

1− qn(2s+1)

)2s+1 ∞∏
n=1

(1− qn(2s+1))2s+1

1− qn

= Ψ2s+1((2s + 1)q)
∞∑

n=0

c2s+1(n)qn

=
∞∑

n=0

∆2s+1(n)qn(2s+1)
∞∑

n=0

c2s+1(n)qn .

Since s ≥ 1, we know that ∆2s+1(n) > 0 for all n ≥ 0. Furthermore, if
0 ≤ n ≤ 2s, then 0 < p(n) = c2s+1(n) where p(n) is the usual partition
function (i.e. there are not enough nodes to make a 2s + 1 hook when
0 ≤ n ≤ 2s). It is now easy to see that the product power series has
positive coefficients. This completes the proof that c4s+2(n) > 0 for all
n ≥ 0.

The only values of t ≥ 4 that we have not considered are powers of 3.
We complete our discussion of the positivity of ct(n) by demonstrating that
c9(n) is always positive.

Theorem 6. If c9(n) is the number of 9-core partitions of n, then
c9(n) > 0 for all n ≥ 0.

P r o o f. The generating function for c9(n) is
∞∏

n=1

(1− q9n)9

1− qn
=

∞∏
n=1

(1− q3n)3

1− qn

∞∏
n=1

(1− q9n)9

(1− q3n)3

=
∞∑

n=0

c3(n)qn
∞∏

n=1

(1− q9n)9

(1− q3n)3
.

It is well known that η9(3τ)/η3(τ) is the normalized weight 3 Eisenstein
series on Γ0(3) with character ε(n) =

(
n
3

)
that vanishes at τ = i∞. Its

Fourier expansion is

η9(3τ)
η3(τ)

= q + 3q2 + 9q3 + . . . =
∞∑

n=1

σ2,ε(n)qn .

Here σ2,ε(n) is the generalized divisor function defined by

σ2,ε(n) =
∑
d|n

ε

(
n

d

)
d2 .
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Consequently, we obtain the identity

η9(9τ)
η3(3τ)

= q3
∞∏

n=1

(1− q9n)9

(1− q3n)3
=

∞∑
n=1

σ2,ε(n)q3n .

This identity implies that
∞∏

n=1

(1− q9n)9

(1− q3n)3
=

∞∑
n=1

σ2,ε(n)q3(n−1) =
∞∑

n=0

σ2,ε(n + 1)q3n .

The coefficients of the last power series are positive because the generalized
divisor function σ2,ε(n) is always positive.

Combining these facts we obtain
∞∑

n=0

c9(n)qn = {1 + q + 2q2 + . . .}
∞∑

n=0

σ2,ε(n + 1)q3n .

Since the first 3 coefficients of the power series in braces are positive and
σ2,ε(n) is always positive, we find that c9(n) is always positive. This com-
pletes the proof.

In summary we have proven the following theorem.

Theorem 7. Fix an integer t ≥ 4. If ct(n) is the number of t-core
partitions of n, then there are at most finitely many n such that ct(n) = 0.
Furthermore, if t ≥ 4 is even or divisible by 5, 7, 9 or 11, then ct(n) is
always positive.
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