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1. Introduction. In 1924 Franel [2]| proved the formula

TS (G

(where {z} denotes the fractional part of x), which he used to establish a
connection between the Riemann hypothesis and the distribution of Farey
sequences.

In Greaves, Hall, Huxley and Wilson [3] we defined the Franel integral
of order n by

1 aesdn oy T
J((J,l’...,an):m f Q(al>g<an>dx7

where ay, ..., a, are positive integers and o(x) = [z] —z+1/2. In particular,
for n = 4, we evaluated certain cases in terms of elementary functions of the
h.c.f’s and l.c.m.’s of aq, ..., a,: others involved generalized Dedekind sums
and related cotangent sums.

In fact, twenty years before Franel proved equation (1), Kluyver [6] had
implicitly proved the more general result

ab
1 "= [(2\= [(=x ;. m!n! (a, b)™*"
2 — Bm - Bn — |dx = (-1)" ! Bm n ’
) abéf <a> (b) z=(=1) (m+n)l" " gmpn

for all positive integers m,n,a,b. Here B,.(z) is the periodic extension into
R of the Bernoulli polynomial B,.(z) on [0, 1) given by the relation

Tz & r

ze z

1 EO:BT(JC)T! (2] <2m).
r=

3)

eZ

In this paper we generalize the Franel integral of order 3 in two ways. Firstly,
following Kluyver, we replace the function g by higher order Bernoulli func-
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tions and define the Franel-Kluyver integral of order 3 by

1 “ee_ e N= [(z\= [z
4 Jim,n y 42, = B\ — |Bm| — |Ba| — ) d
@ bmn{a1, 62, 83) a1azas3 f l(a1> <@2> (as) )

0

(where [ +m +n =0 (mod 2): if [ +m + n is odd then the integrand is an
odd, periodic function and the integral is zero). We show that this integral
can be evaluated as a linear combination of the generalized Dedekind sums

o sen-En(a(l)

Secondly, we define

1 a1a2a37 . .
(6) J(ay,az,as;60) = f B, <x>B1 <x>Bl <x+9> dx .
ajazas ay a2 as

The evaluation of this integral involves the further generalized Dedekind—
Rademacher sum

(7) S (hy ke 2) = ZB<> (Tkh+m)

(Carlitz [1] has defined ¢, 1, (h, k; 2, y) where Sp, (b, k; ) = ¢nm(h, k; 2,0)
and proved reciprocity formulae for these sums.)

In Section 2 we show how both (4) and (6) can be reduced to integrals
involving the functions B, (a;x), in which we need only consider pairwise
coprime variables. We work out the Fourier series for B;(ax)B,,(bz) in Sec-
tion 3 which we then use to evaluate integrals equivalent to (4) and (6) in
Theorems 1 and 2 respectively.

We shall make use of the following alternative expression for the gener-
alized Dedekind sum (5):

_ 7 (m) (70 i)
(8) Sm,n(hvk) (27T)m+n km+n 1 C < k )C (k) 7

where we have defined

(e o]

(9) C(m)(z) = i—n; log(sinmz) = —(m — 1)! Z (t_lz)m

for z ¢ Z, and

o oo = {2 i
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Eisenstein proved that

. k-1
B(T) = LS e (@) [re
5(5) = 2 20 (3)<(%)

(e(x) := exp(2mix)), so that the ordinary Dedekind sum may be expressed
in terms of cotangents. Analogously, using the generalization

(11) B <;) - :Z"L(?Z?r)m:dm)@)e(?)

we see that
Sy (b, k)
. m+n k—1k—1k—1
_mn (1 m (W) (L) (rb=ra
(5] T X em( =)o (7 )e( ™
r=0 a=0 b=0
which, since

— (rhb—ra k ifa=hb (mod k),
e —_— =
¢ k 0 else,

r=

gives (8).

2. Reduction steps and related integrals. We let
(12)

1 alazagi . .
Jimom(a1,az2,a3;0) = f B; <x)Bm<x>Bn (x + 9> dx
a1a2as3 5 a ag as

and define the related integral I; ,, (a1, a2, as; ) by
1
(13) I mon(ay,az,a3;0) = f Bi(a12) B, (asr) B, (azx + 0) dz .
0

Since the integrand in (12) has period [aq1, az, as] we may write (12) as
(14)  Jimnlar,a2,a3;0)

la1,a2,a3]
1 — _ _
()8 (2B (2 o)
[alv az, CL3] o ai a2 a3

Then, substituting x = [a1, as, as]y, we find that
(15) Jimon(a1,a2,a3;0) = I (AL, Az, As; 0)
where

Ai _ [(11, az, CL3]

1<4i<3).
@i (<icy)
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There is an analogous transformation in the opposite direction.

We now show that the integral in (12) can be reduced to an I integral
in which the variables are pairwise coprime. Firstly we may assume the a;
in (12) have no common divisor, since putting x = ky gives

Jt.mn(kay, kaz, kas; 0)
k2a1a2a3
1 _ _ _
- Bl<y>Bm<y>Bn<y+9>kdy
k a1a20a3 5 ay as as

= Jimn(a1,a2,a3;6)

by periodicity.
We can also write Jj ,m, n(a1,a2,a3;6) as

(16) Jl,m,n(alya%a?);e)
1 ajazaz—1 s+17 T o x o x
= > Bl<)Bm<>Bn<+9> dx
a1a20as s—0 e a1 ag as
)Bm<s+y>Bn<S+y ; e> dy.
a9 as

If we now let K = [a1,az2] and k = (a3, K), where a3 = hk, then hKK =
[a1, az,as] and, by periodicity,

1 a1a2a3—1

B 1 — (s+y
_alazagf ZO Bl< a1

0

Jl,m,n(alaa27a’3;9)
1 hK—-1
1 —(s54+y\= [(s+y\= [(s+y
= — B B, B, 0)dy.
hKfZl(m) (a2> <a3+>y

We write s =tK +u, for 0 <u< K —1and 0 <t <h—1; then

— — K
>Bm(u—|—y>Bn(t —|—u+y+9)dy.
ag hk
Now (h, K/k) = 1, so that if ¢ runs through all residue classes modulo h,
then so does tK /k and

h—1 h—1
= (tK+u+y = ([t u+y+hko
B,|————=+0 | = B+ —F———

1 - fu+y
= B, .
T < 3 + h9>

Jim.n(a1,a2,a3;6)

1 lh—lK—li u+y
i) 2 (s

t=0 u=0

(]

Thus
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(17) Jl,m,n(alva‘27a3;9)
P (Ut uty\g (vty
han Z ( ) m( 1 )Bn< ! +h0>dy

Jl,m,n(alg as, k’, he) .

hn
It is convenient at this stage to introduce the idea of total decomposition
sets, which we now define.
With any positive integers aq, ..., a, we associate 2" — 1 further positive
integers d(S), where S runs through the non-empty subsets of {1,...,n},
having the properties:

(i) For any non-empty 7" C {1,...,n} we have
hef. (a;:ieT)=]]{d(S): T CS}.
(ii) For any non-empty 7" we have
Lem. fa; i € T) = [[{d(S) : SNT # 0} .

We refer to {d(S)} as the total decomposition set of {ai,...,an}. Its exis-
tence and uniqueness were established in [4].

We shall also make use of the following lemma, which was proved by Hall
in [5].

LEMMA 1. Let 2™ — 1 positive integers e(S) be given, where S runs
through the non-empty subsets of {1,...,n}. Then {e(S)} is a total decom-
position set if, and only if, for every pair of subsets R, S neither of which
contains the other, we have (e(R),e(S)) = 1.

Using this notation we can write
a1 = didyadizdizs, a2 = dadizdazdias, a3 = dzdizdazdiag,
and it follows from (16) and (17) that

1

J1mon(di2d13, di2das, di3das; dsf
dldmd”l (1213 12023, 413423 3)

Jim,n(a1,a2,a3;0) =

Now, by Lemma 1,
[d12d13, d12da3, di3da3] = diadizdas
so that, from (15),

1
didgd;
and we notice that the variables ds3,d;3 and dio are pairwise relatively
prime.

Jimn(ai,az,a3;0) = Ii pmon(dos, di3, di2; d30)
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3. The Fourier series for Bj(azx)B,,(bz). Let a and b be coprime
positive integers. The function B;(ax)B,,(bx) has period 1 and so has an
expansion in complex Fourier series

o0

Bi(az)Bm(bz) ~ > cxla,b)e(kx)

k=—o0

where
b) = [ Bi(az)Bm(bv)e(—kz) dz.
0

We apply Parseval’s theorem to the functions Bj(az) and B, (bz)e(—kx).
(See Whittaker and Watson [8], §9.5.) Since

Bt 3 )

(where the dash denotes throughout that undefined terms are excluded from
the sum) this gives

18 aleb) =g LY

+hbk0

Im! = 1
— (2mi)m = (ka+ db)!(kb — da)™

where @a + bb = 1. Now
(2mi)"B

Z/ 1 {2{(7") = —7'r if r is even,
dr 0 T

d=—o00 if r is odd.

Therefore, since B, = 0 for odd r > 1, we may write

09 Y =t

d=—o0
for any r > 1. Hence

(—1)m_1l!m!Bl+m

(20) co(a:0) = “— ),

To find ¢k (a,b) for k # 0, we consider the integral

1
Qm,QAjJ‘ f(z)dz



Franel-Kluyver integrals 77

where
7 cot(mz)
(ka + 2b)(kb — za)™
and @y is the square with corners (M +1/2)(+1+4). We note that kb/a #
—ka/b for k # 0 and let Ry and Ry be the residues at z = —ka/b and

z = kb/a respectively. Then, since the integral round Qs tends to zero as
M — oo, we have

f(z) =

0= Ii . ! R+ R
Moo £ (ki + db)! (kb — da)

and so, for k # 0,

'm!

(21) ck(a,b) = _W

(Rl + Rg) .

We consider the different cases separately.

Case 1: atk, btk. Since f(z) has a pole of order | at z = —ka/b, we
have

Ri — 1 dl_l{ mcot(mz) }
P - bl (kD — za)m ok /b

B 1
ambl(l—1)!
-1 - -
I—1\ d-—1—= d® (kb n
oW >
" {ZO () Emmseop (5 ) }ze_ka/b
B 1
ambl(l —1)!
-1 T —(m+s)
-1 —1)!
AT (e ()
s=0 s (m —1)! a z——ka/b
(_1)lbm—l

~ k(- D)l(m - 1)!

S (e (@)oo (5).

Similarly,

2 = k:(l(—l)m e .i:( > S(l+s—1)!<‘z)>sc<ms><"j>
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and so, when atk, bfk, we have

Im
(2mi)ttm

x{b;::l :_ZZ (l ; 1>(1)l+s_1(m+s B 1)!<CZ)> - S)(kba>

+“lklm Zg <m51>( D™ (I 4s—1)! (k> ctm= ><Zb>}

Case2: a|k but btk. At z = —ka/b, f(z) has a pole of order I, with
residue

(22)  cx(a,b) =

(_1)lbm—l
k(1= 1) (m — 1)
X :;Z: (l _S 1) (=1)%(m+s—1)! <CZ)) cl=9 (k:ba) .

Also f(z) has a pole of order m+1 at z = kb/a. We put z = w + kb/a; then
the Laurent expansion becomes

R =

C—(m+1) P S 7 cot(mw + wkb/a)
wrtl T w T (k@ + wb 4 kbb/a)l(—wa)™
7 cot(mw)

T (—w)mklam (1 + abw k)

We use the expansion

> (27)2h Bojw?h 1
7 eot(mw) = hzo oh)!
so that we require the coefficient of w™ ™! in
Z (2mi 2hB2hw 2h—1 i <g+n— 1)(_ abw>g
klam ! = g k

This is

me?er or (1+2r — 1Y (ab)*"
k:lam l (m — 2r)! 2r k
when m is even, and

(m=1)/2

1 Z (27Ti)m—1—2er_1_2r [+ 2r CLb 2r+1
klam—t (m—1-=2r)! 2r+1)\ k

r=0
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when m is odd. Again since B, = 0 for odd r > 1, we can write

Z 2mm SBm sfl+s—1 a7b S+albm [+m—1
2 klaml s k kl+m m

for any m. Hence, when a | k but bfk, we have
(23)  cxla,b)

a=mm e~ (m—1 o1 ab kb
- @ _1\m+s— o (m—s)
]{,‘l(271'i)l+m ~ ( s )( 1) (l + s ) < L > C < a >

l 735 m\ (ab)*(L+ s = DBy 1L+ m —1)lalo™
am~t = \'s (2mik)its (2mik)t+m

Case 3: afk but b|k. Since the formula for ¢j(a,b) is symmetric in a
and b, we have

(24)  cxla,b) 1
= m: (m;1)(—1)m+8—1(z+s—1)!<‘;b> Clm- s><’zb>

moa <l> (ab)*(m+s—1D!B_y  m(l+m—1)ab™
s=0

(2mik)m+ts (2mik)i+m
for this case.

Case 4: alk and b|k. In this case f(z) has poles of order I + 1 at
z=—ka/band m+1 at z = kb/a, so that

(25)  cila, b)

(I+s=D!Bp—s ll+m-— 1)lalb™
- (2mik)its (2mik)i+m
Z ) (m+s—1DIB_s m(l +m — 1)lalb™
bl m (2mik)m+s (2mik)i+m '

Thus, after a shght rearrangement, (20), (22), (23), (24) and (25) give

(26)  Bi(az)By,(bx) ~ (=)™ !By

ambl(l4+m)!
B i l mf m\ (ab)*(l + s — 1)!Bp,_s
am—t £~ \ s (2mik)its
k:lfkoo s=0

11 +m — 1)lalb™
( (2mk;)l+)m }e(kx)



80 J. C. Wilson

S {bfm — (i) (ab)S(g 7:_;);:8)!31_5

m(l +m — 1)lalb™
( (gm'k)l‘f'zn }e(k‘x)

Z’ bm_llm
B km(2mi)itm
btk

xZ( ) D (m 45— 1)! (kb) - s)<kba>e(kx).

4. The triple Franel-Kluyver integral. Let
I mn(a,b,c) fBl ar)B,, (bx)B, (cx) dx

where we may assume a, b and ¢ are pairwise coprime and that [ +m + n is
even since the integral is zero otherwise. Then we have

THEOREM 1.
(27)  Iim.n(a,b,c)

_ (_1)l+nl!m!n!al_l S <l +s— 1) (b>s(_1)s+1 Sm—s,l-&-n-l—s(cga a)

ct s c (m—s)!(l+n+s)!

(]

s=

~ O

(=)™ T iminlpm—1 m+s—1\(a)’ st1_Si—sminys(ca,b)
+ ooy —) (=1 Y| 1
c ‘ s c (I —=s)!(m+n+s)!

s=

Proof. We apply Parseval’s formula to the functions B;(az)B,, (br) and
B, (cz) to obtain

(28)  Iim.n(a,b,c)

_ ZI In! mz_2 m\ (ab)*(I + s — 1)!Bp,—s N I(1 +m — 1)Inla'b™
alk,k=he amt = \'s (2mi)Antspnflts (2 )+ mEn pnflm
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(27ri)m+n+shnkm+s (27Ti)l+m+nhnkl+m

1—2
Z mn I (ab)*(m+s—1D!Bi_y  m(l+m—1)nla'b™
=0

sz—:l m8_1 (—1)m+5(ln+ss—1)!(ab) (m—s) ’fab

i m( N )
> { G

x§:< ) lﬂgﬂ;ilnxw)cu”<%v}'

81

|

In the first sum here, since a | k and (a,c¢) = 1, we must have a | h so we put

h = da; then k = cda and the first sum is
! &L m\ (b *(l+s—1)!B
am+nel <\ s P (2mi) l+n+s Z dl+n+s
l(l+m—1)!n!bm = 1

(27ri)l+m+nam+ncl+m dl+m+n :

=—0

Using (19) we can write this as

o a0

 Imnl (145 =1\ (b\®  Bu_Buiiis
- amtnd g s c)] (m—s)l(n+l+s)

Similarly, the second sum in (28) gives

(30) UIm!n! ! m+s—1 s Bi_sBnim+s
bl+”cm c) (IL—s)!(n+m+s)!’

For the third sum in (28) we have atk and k = hc so we put h = da +r,

0 < r < a; then this sum is
l—m m—1 S
a Imn! ab m—1
(2mi)HFmFnd <C> ( s )(_1)m+s(l +5—1)!
s=0

a—1 - )
(m—s) [ T€D R S
2 C < a ) d:zoo (da+ r)iFets
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Now, from (9),

> (_1)l+n+sfl (nts) r
Z da—{—r nts al+”+5(l—|—n—|—s—1)!c <a>

so the third sum is

_ Imn!
(27T,L')l+m+nam+ncl
m—1 s a—1
m—1\ /b (l+s—1) rcb
e C(m s) C(l+n+s)
X;( s )(c) (l+n+s—1)! Z (a> a
Imn!

+

(27-”')l+m+n qmtn Cl
1

me0< s 1> (145 1)1 : (b) Clm=e) )l )

4 l+n+s—1

which, from (8) and (10), is

(=) iminla! =t
I

(31) -

m—1 s -
% <l + s — 1> <b> (_1)s+1 Sm—s,l+n+s(0ba a)
=0

‘ c (m—s)!(l+n+s)!
l'm'n’ mz‘: I+s—1\(b Br—sBiints
am+”cl c) (m—s)ll+n+s)

Similarly the fourth sum in (28) is

(=)™ T imlnlpm =t

Cm

(32)

-1 s _
-1 ) s,m—+n-+s
«3 <m+5 ><a> (—1)"+! lSl +n+s(Ca, b)
g s c (I —s)!(m+n+s)!
N Imin! 22 /m+s—1 a *  Bi_sBminis
pitnem s c) (I—9)(m+n+s)’

Thus, (29)-(32) give

Il,m,n(aa bv C)
_ (=) iminlal 1 mzf <l +5— 1> (b)s(_l)s+1 Sm—s.itnts(ch, a)

cl —~ s c (m—s)l(l+n+s)!
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N (—=1)™ " mlnlpm—1 i (m +5— 1) <a>s(—1)s+1 Si—s.m+n+s(ca,b)

cm ~ s c ({=s)(m+n+s)!
l'm!n! b l+m—1 B
~ (I+m+n) amtnc+m m Frmtn
I!'m!n! al l+m—1 B
I+ m+n)! bitrctm l Frmtn

which is equivalent to (27).

5. Shifted triple integrals. Let

1
I(a,b,c;0) fBl ar)B1(bx)Bi(cx + 0) dx

where we may assume a,b and c are pairwise coprime and, since the inte-
grand has period 1 in 6, that 0 < 6 < 1. In order to evaluate this integral
we shall require the following lemma.

LEMMA 2. For a € Z and all real x we have

> el(n+a)z e([z]a) 28—t (im) R {z}F 1
CIDY W_WH (o2 it

n=—oo

_1| ( ) 1)*CUHY (@) (2mifa})t 1

where {x} denotes the fmctzonal part of x and
5k($):{1 ifk=1landx € Z,
0 else.

Proof. We begin with the Fourier series

sinTa 2sinma o cos 2mnx — in sin 2mnx
+ E 2 ‘
T

(34)  e(a(l/2—A{zx})) ~

T a? —n?

n=1
The function on the left has bounded variation on any interval [a, b] and is
continuous for all z € R\ Z. It follows that we may replace ~ by = above
provided we add the term §; (z)i sin ma on the right to take care of integral .
We write, formally,
sin ma

e(a(1/2 —{z})) = 61 (z)isinTa + Tt a) e(nx)

with the understanding that the terms 1nv01v1ng +n are bracketed together.
We multiply through by me(ax)/sinma to obtain (33) in the case k = 1.
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We may write the summand on the right-hand side of (34) in the form
(a —n)e(nz) + (a + n)e(—nx)
2(a? — n?) '
Let z € [0,1). We multiply (34) by me(ax)/sinma and integrate term-by-

term from 0 to y. This step is justified by §13.53 of Titchmarsh [7], and we
obtain, for y € [0, 1),

reloft), a1, §(dlarmy 1, a1y

N 2mi(a + n)? 2mi(a — n)?

sin To 2mio?
n=1

1 —  e((a+n)y) 2 2
:2m<nz_:oo(oé_‘_,n)2—ﬂ' cosec T« | .
We extend this periodically to obtain (33) in the case k = 2. We now proceed
by induction on k, and from this point the term-by-term integrations may be
justified by uniform convergence. Accordingly, assume that k > 2, x € [0, 1)
and (33) holds. Integrating from 0 to y gives

S dotam-1_,, { 241 im) g

= (nta)ktt k!
Lo Zl k— 1\ (—1)*CeHD () (2mi) b1 -syks
(k—1)! po s k—s
so that
S ellnraly) Myt S 1
= (nt )it k! e (nta)itt
1 & [k
+ 72 <S> (—1)*CtH (a) (2miy)F .
T s=0
Therefore, since
- 1
(k+1) (N — (_1\k
c (a) =(=1) k!nzz_:oo (n+ a)k+1

equation (33) holds for k£ + 1 and hence for all k£ > 1.
We see from (9) that (33) also holds when x = 0 and therefore, since

f: e((n+a)z) _ f: e((n + a){z})e([z]a)

(n+ a)k (n+ )k

I

n=—oo

(33) follows for = € R.

n=—oo
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THEOREM 2. For a, b, ¢ pairwise coprime integers and 0 < 0 < 1,

(35)  I(a,b,c;0) = {a@} Sy 1(be, a;[ad]/a) + {ZQ} S1,1(ac, b; [b0]/b)
—{Sl 2(be, a; [ab]/a) + Sy 2(ac, b; [b0]/b) }
{a@}f [aB]be {b@} ac
e (U0) B ()

1
W{b?)Bg(aG) +CL3B3( )

Proof. Since

Bi(cx +0) ~ — i/ W

g=—00

and, from (26),

12ab

Bi(ax)B;(bz) ~7+ Z i 2h2 i 2h2 —h
:a|h Bih

a
he—
ath
> 1 wha
_ Z_OO ﬂ cot ( b )6(—}11}),
bth

Parseval’s formula gives

(36)  I(a,b,c;0) zz’{ _ ;frgge)hz’ " h—gc}
+ { 8ng92€, b|h, h:gc}
+Z{ 87 QZgh cot <bZ7T>; ath, h:gc}
+Z{ 871' Zgh cot <a};ﬂ>; bth, h—gc},

For the first sum we let g = la, then h = cla and the sum is

37 - ZI e(l.ae)b _ b Z/ e(ng) _ b By(af) .

l 8m3ia2c2[3 8m3ia2c? l 6a2c?
=——00 R

x)

85



86 J. C. Wilson

Similarly, the second sum is
a

(38) 2.3 Ba(00).

In the third sum in (36) we must have afg. Put ¢ =la+r, 0 < r < a; then
the sum is

a—1 - oo
1 erbm e(lad + rb)
(39) 8m2ic ;::1 cot < a > lz_:m (la+r)2 ~

Now, by Lemma 2,

>, e(lab + 10
3 ( )

= (latr)?
- eqﬂlz];/a){ﬂm)?{ae} + 2mi{af}CD <Z> —Cc® <2> } :

so that (39) is

e (e ()2

472 ca?
r=1

From (11) we have
o\ k-1
— [ hu n (i A A(hp + kz)
B, | & S CON AN T R
(v ) =wlar) 2o ()

so that we can also write
hA A
Az oM [ 22 o) [ 2
e(Ax) < ? > k:

(1) (=) 2,
(41) {;agc} B, < [ai]bc) + {Zi} S1.1(be, a;[ab]/a) + 5051,2(507 a;[af]/a) .

Smn(hy k) = (2 )mtn fgmtn—1
A=0

and the third sum in (36) is

Similarly, the fourth sum is

2bc b bc
so that, from (37), (38), (41) and (42) we obtain (35) as required.

(42) {69}}—31 < [b&]ac) + {b0} S1,1(ac, b; [b0]/b) + %51,2(567 b; [b0] /) ,
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Notice that the integral on the left-hand side of (35) is bounded in ab-
solute value by 1/32 for any a,b and ¢ (using Hélder’s inequality), whereas
there are terms on the right-hand side which can be very large in certain
cases. For example, if a is very large in comparison with b and ¢ then there
must be cancellation between the terms

51 (be, ;a6 /a) —

a —
——B3(b0

which suggests the existence of reciprocity relations for the homogeneous
Dedekind—Rademacher sums

Smn(c,bya;x) = Sy n(be, a; ).

In fact such relations do exist, but the appropriate choice in a particular
problem depends on the relative magnitudes of a, b and ¢: we do not have
a single formula for I(a,b,c; ) in terms of Dedekind sums in which all the
terms are uniformly bounded. I hope to consider this matter further in a
later paper.
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