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1. Introduction. In 1924 Franel [2] proved the formula
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(where {x} denotes the fractional part of x), which he used to establish a
connection between the Riemann hypothesis and the distribution of Farey
sequences.

In Greaves, Hall, Huxley and Wilson [3] we defined the Franel integral
of order n by

J(a1, . . . , an) =
1
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where a1, . . . , an are positive integers and %(x) = [x]−x+1/2. In particular,
for n = 4, we evaluated certain cases in terms of elementary functions of the
h.c.f.’s and l.c.m.’s of a1, . . . , an: others involved generalized Dedekind sums
and related cotangent sums.

In fact, twenty years before Franel proved equation (1), Kluyver [6] had
implicitly proved the more general result
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ambn

for all positive integers m,n, a, b. Here Br(x) is the periodic extension into
R of the Bernoulli polynomial Br(x) on [0, 1) given by the relation

(3)
zexz

ez − 1
=
∞∑
r=0

Br(x)
zr

r!
(|z| < 2π) .

In this paper we generalize the Franel integral of order 3 in two ways. Firstly,
following Kluyver, we replace the function % by higher order Bernoulli func-
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tions and define the Franel–Kluyver integral of order 3 by

(4) Jl,m,n(a1, a2, a3) =
1
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(where l+m+ n ≡ 0 (mod 2): if l+m+ n is odd then the integrand is an
odd, periodic function and the integral is zero). We show that this integral
can be evaluated as a linear combination of the generalized Dedekind sums

(5) Sm,n(h, k) =
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.

Secondly, we define

(6) J(a1, a2, a3; θ) =
1
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The evaluation of this integral involves the further generalized Dedekind–
Rademacher sum

(7) Sm,n(h, k;x) =
k−1∑
r=0

Bm
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)
Bn

(
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k
+ x

)
.

(Carlitz [1] has defined φm,n(h, k;x, y) where Sm,n(h, k;x) = φn,m(h, k;x, 0)
and proved reciprocity formulae for these sums.)

In Section 2 we show how both (4) and (6) can be reduced to integrals
involving the functions Br(aix), in which we need only consider pairwise
coprime variables. We work out the Fourier series for Bl(ax)Bm(bx) in Sec-
tion 3 which we then use to evaluate integrals equivalent to (4) and (6) in
Theorems 1 and 2 respectively.

We shall make use of the following alternative expression for the gener-
alized Dedekind sum (5):

(8) Sm,n(h, k) =
in−m

(2π)m+n

mn

km+n−1
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(
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k

)
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(
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k

)
,

where we have defined

(9) C(m)(z) =
dm

dzm
log(sinπz) = −(m− 1)!

∞∑
t=−∞

1
(t− z)m

for z 6∈ Z, and

(10) C(m)(0) =
{−2ζ(m)(m− 1)! if m is even,

0 if m is odd.



Franel–Kluyver integrals 73

Eisenstein proved that
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(e(x) := exp(2πix)), so that the ordinary Dedekind sum may be expressed
in terms of cotangents. Analogously, using the generalization

(11) Bm
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)
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we see that

Sm,n(h, k)

=
mn

km+n

(
i

2π

)m+n k−1∑
r=0

k−1∑
a=0

k−1∑
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C(m)
(
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)
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)
e

(
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k

)

which, since
k−1∑
r=0

e

(
rhb− ra

k

)
=
{
k if a ≡ hb (mod k),
0 else,

gives (8).

2. Reduction steps and related integrals. We let
(12)

Jl,m,n(a1, a2, a3; θ) =
1

a1a2a3

a1a2a3∫
0
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(
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)
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and define the related integral Il,m,n(a1, a2, a3; θ) by

(13) Il,m,n(a1, a2, a3; θ) =
1∫

0

Bl(a1x)Bm(a2x)Bn(a3x+ θ) dx .

Since the integrand in (12) has period [a1, a2, a3] we may write (12) as

(14) Jl,m,n(a1, a2, a3; θ)

=
1

[a1, a2, a3]

[a1,a2,a3]∫
0
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(
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)
Bm

(
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Bn

(
x

a3
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)
dx .

Then, substituting x = [a1, a2, a3]y, we find that

(15) Jl,m,n(a1, a2, a3; θ) = Il,m,n(A1, A2, A3; θ)

where

Ai =
[a1, a2, a3]

ai
(1 ≤ i ≤ 3) .



74 J. C. Wilson

There is an analogous transformation in the opposite direction.
We now show that the integral in (12) can be reduced to an I integral

in which the variables are pairwise coprime. Firstly we may assume the ai
in (12) have no common divisor, since putting x = ky gives

Jl,m,n(ka1, ka2, ka3; θ)

=
1

k3a1a2a3

k2a1a2a3∫
0

Bl

(
y

a1

)
Bm

(
y

a2

)
Bn

(
y

a3
+ θ

)
k dy

= Jl,m,n(a1, a2, a3; θ)

by periodicity.
We can also write Jl,m,n(a1, a2, a3; θ) as

(16) Jl,m,n(a1, a2, a3; θ)

=
1

a1a2a3

a1a2a3−1∑
s=0

s+1∫
s
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)
Bm

(
x
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)
Bn

(
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+ θ

)
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=
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1∫
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Bn

(
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)
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If we now let K = [a1, a2] and k = (a3,K), where a3 = hk, then hK =
[a1, a2, a3] and, by periodicity,

Jl,m,n(a1, a2, a3; θ)

=
1
hK

1∫
0

hK−1∑
s=0
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)
Bm

(
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)
Bn

(
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a3
+ θ

)
dy .

We write s = tK + u, for 0 ≤ u ≤ K − 1 and 0 ≤ t ≤ h− 1; then

Jl,m,n(a1, a2, a3; θ)

=
1
hK

1∫
0

h−1∑
t=0

K−1∑
u=0

Bl

(
u+ y

a1

)
Bm

(
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)
Bn

(
tK + u+ y

hk
+ θ

)
dy .

Now (h,K/k) = 1, so that if t runs through all residue classes modulo h,
then so does tK/k and

h−1∑
t=0

Bn

(
tK + u+ y

hk
+ θ

)
=
h−1∑
t=0

Bn

(
t

h
+
u+ y + hkθ

hk

)

=
1

hn−1Bn

(
u+ y

k
+ hθ

)
.

Thus
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(17) Jl,m,n(a1, a2, a3; θ)

=
1

hnK

1∫
0

K−1∑
u=0

Bl

(
u+ y

a1

)
Bm

(
u+ y

a2

)
Bn

(
u+ y

k
+ hθ

)
dy

=
1
hn
Jl,m,n(a1, a2, k;hθ) .

It is convenient at this stage to introduce the idea of total decomposition
sets, which we now define.

With any positive integers a1, . . . , an we associate 2n−1 further positive
integers d(S), where S runs through the non-empty subsets of {1, . . . , n},
having the properties:

(i) For any non-empty T ⊆ {1, . . . , n} we have

h.c.f. (ai : i ∈ T ) =
∏
{d(S) : T ⊆ S} .

(ii) For any non-empty T we have

l.c.m. [ai : i ∈ T ] =
∏
{d(S) : S ∩ T 6= ∅} .

We refer to {d(S)} as the total decomposition set of {a1, . . . , an}. Its exis-
tence and uniqueness were established in [4].

We shall also make use of the following lemma, which was proved by Hall
in [5].

Lemma 1. Let 2n − 1 positive integers e(S) be given, where S runs
through the non-empty subsets of {1, . . . , n}. Then {e(S)} is a total decom-
position set if , and only if , for every pair of subsets R, S neither of which
contains the other , we have (e(R), e(S)) = 1.

Using this notation we can write

a1 = d1d12d13d123 , a2 = d2d12d23d123 , a3 = d3d13d23d123 ,

and it follows from (16) and (17) that

Jl,m,n(a1, a2, a3; θ) =
1

dl1d
m
2 d

n
3
Jl,m,n(d12d13, d12d23, d13d23; d3θ) .

Now, by Lemma 1,

[d12d13, d12d23, d13d23] = d12d13d23

so that, from (15),

Jl,m,n(a1, a2, a3; θ) =
1

dl1d
m
2 d

n
3
Il,m,n(d23, d13, d12; d3θ)

and we notice that the variables d23, d13 and d12 are pairwise relatively
prime.
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3. The Fourier series for Bl(ax)Bm(bx). Let a and b be coprime
positive integers. The function Bl(ax)Bm(bx) has period 1 and so has an
expansion in complex Fourier series

Bl(ax)Bm(bx) ∼
∞∑

k=−∞
ck(a, b)e(kx)

where

ck(a, b) =
1∫

0

Bl(ax)Bm(bx)e(−kx) dx .

We apply Parseval’s theorem to the functions Bl(ax) and Bm(bx)e(−kx).
(See Whittaker and Watson [8], §9.5.) Since

Br(x) ∼ −r!
∞∑′

n=−∞

e(nx)
(2πin)r

(where the dash denotes throughout that undefined terms are excluded from
the sum) this gives

ck(a, b) =
l!m!

(2πi)l+m
∑∑

ga+hb−k=0

1
glhm

(18)

=
l!m!

(2πi)l+m

∞∑′

d=−∞

1

(ka+ db)l(kb− da)m
,

where aa+ bb = 1. Now
∞∑′

d=−∞

1
dr

=

{
2ζ(r) = − (2πi)rBr

r!
if r is even ,

0 if r is odd .

Therefore, since Br = 0 for odd r > 1, we may write

(19)
∞∑′

d=−∞

1
dr

= − (2πi)rBr
r!

for any r > 1. Hence

(20) c0(a, b) =
(−1)m−1l!m!Bl+m
ambl(l +m)!

.

To find ck(a, b) for k 6= 0, we consider the integral

1
2πi

∫
QM

f(z) dz
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where

f(z) =
π cot(πz)

(ka+ zb)l(kb− za)m

and QM is the square with corners (M + 1/2)(±1± i). We note that kb/a 6=
−ka/b for k 6= 0 and let R1 and R2 be the residues at z = −ka/b and
z = kb/a respectively. Then, since the integral round QM tends to zero as
M →∞, we have

0 = lim
M→∞

M∑′

l=−M

1

(ka+ db)l(kb− da)m
+R1 +R2

and so, for k 6= 0,

(21) ck(a, b) = − l!m!
(2πi)l+m

(R1 +R2) .

We consider the different cases separately.

C a s e 1: a - k, b - k. Since f(z) has a pole of order l at z = −ka/b, we
have

R1 =
1

(l − 1)!
dl−1

dzl−1

{
π cot(πz)

bl(kb− za)m

}

z→−ka/b

=
1

ambl(l − 1)!

×
{ l−1∑
s=0

(
l − 1
s

)
dl−1−s

dzl−1−sC
(1)(z)

ds

dzs

(
kb

a
− z
)−m}

z→−ka/b

=
1

ambl(l − 1)!

×
{ l−1∑
s=0

(
l − 1
s

)
C(l−s)(z)

(m+ s− 1)!
(m− 1)!

(
kb

a
− z
)−(m+s)}

z→−ka/b

=
(−1)lbm−l

km(l − 1)!(m− 1)!

×
l−1∑
s=0

(
l − 1
s

)
(−1)s(m+ s− 1)!

(
ab

k

)s
C(l−s)

(
ka

b

)
.

Similarly,

R2 =
(−1)mal−m

kl(l − 1)!(m− 1)!

m−1∑
s=0

(
m− 1
s

)
(−1)s(l + s− 1)!

(
ab

k

)s
C(m−s)

(
kb

a

)
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and so, when a - k, b - k, we have

(22) ck(a, b) =
lm

(2πi)l+m

×
{
bm−l

km

l−1∑
s=0

(
l − 1
s

)
(−1)l+s−1(m+ s− 1)!

(
ab

k

)s
C(l−s)

(
ka

b

)

+
al−m

kl

m−1∑
s=0

(
m− 1
s

)
(−1)m+s−1(l+s−1)!

(
ab

k

)s
C(m−s)

(
kb

a

)}
.

C a s e 2: a | k but b - k. At z = −ka/b, f(z) has a pole of order l, with
residue

R1 =
(−1)lbm−l

km(l − 1)!(m− 1)!

×
l−1∑
s=0

(
l − 1
s

)
(−1)s(m+ s− 1)!

(
ab

k

)s
C(l−s)

(
ka

b

)
.

Also f(z) has a pole of order m+ 1 at z = kb/a. We put z = w+kb/a; then
the Laurent expansion becomes

c−(m+1)

wm+1 + . . .+
c−1

w
+ . . . =

π cot(πw + πkb/a)

(ka+ wb+ kbb/a)l(−wa)m

=
π cot(πw)

(−w)mklam−l(1 + abw/k)l
.

We use the expansion

π cot(πw) =
∞∑

h=0

(2πi)2hB2hw
2h−1

(2h)!

so that we require the coefficient of wm−1 in

(−1)m

klam−l

∞∑

h=0

(2πi)2hB2hw
2h−1

(2h)!

∞∑
g=0

(
g + n− 1

g

)(
− abw

k

)g
.

This is

1
klam−l

m/2∑
r=0

(2πi)m−2rBm−2r

(m− 2r)!

(
l + 2r − 1

2r

)(
ab

k

)2r

when m is even, and

1
klam−l

(m−1)/2∑
r=0

(2πi)m−1−2rBm−1−2r

(m− 1− 2r)!

(
l + 2r
2r + 1

)(
ab

k

)2r+1
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when m is odd. Again, since Br = 0 for odd r > 1, we can write

R2 =
1

klam−l

m−2∑
s=0

(2πi)m−sBm−s
(m− s)!

(
l + s− 1

s

)(
ab

k

)s
+
albm

kl+m

(
l +m− 1

m

)

for any m. Hence, when a | k but b - k, we have

(23) ck(a, b)

=
al−mlm

kl(2πi)l+m

m−1∑
s=0

(
m− 1
s

)
(−1)m+s−1(l + s− 1)!

(
ab

k

)s
C(m−s)

(
kb

a

)

− l

am−l

m−2∑
s=0

(
m

s

)
(ab)s(l + s− 1)!Bm−s

(2πik)l+s
− l(l +m− 1)!albm

(2πik)l+m
.

C a s e 3: a - k but b | k. Since the formula for ck(a, b) is symmetric in a
and b, we have

(24) ck(a, b)

=
al−mlm

kl(2πi)l+m

m−1∑
s=0

(
m− 1
s

)
(−1)m+s−1(l + s− 1)!

(
ab

k

)s
C(m−s)

(
kb

a

)

− m

bl−m

l−2∑
s=0

(
l

s

)
(ab)s(m+ s− 1)!Bl−s

(2πik)m+s − m(l +m− 1)!albm

(2πik)l+m

for this case.

C a s e 4: a | k and b | k. In this case f(z) has poles of order l + 1 at
z = −ka/b and m+ 1 at z = kb/a, so that

(25) ck(a, b)

= − l

am−l

m−2∑
s=0

(
m

s

)
(ab)s(l + s− 1)!Bm−s

(2πik)l+s
− l(l +m− 1)!albm

(2πik)l+m

− m

bl−m

l−2∑
s=0

(
l

s

)
(ab)s(m+ s− 1)!Bl−s

(2πik)m+s − m(l +m− 1)!albm

(2πik)l+m
.

Thus, after a slight rearrangement, (20), (22), (23), (24) and (25) give

(26) Bl(ax)Bm(bx) ∼ (−1)m−1l!m!Bl+m
ambl(l +m)!

−
∞∑′

k=−∞
a|k

{
l

am−l

m−2∑
s=0

(
m

s

)
(ab)s(l + s− 1)!Bm−s

(2πik)l+s

+
l(l +m− 1)!albm

(2πik)l+m

}
e(kx)
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−
∞∑′

k=−∞
b|k

{
m

bl−m

l−2∑
s=0

(
l

s

)
(ab)s(m+ s− 1)!Bl−s

(2πik)m+s

+
m(l +m− 1)!albm

(2πik)l+m

}
e(kx)

−
∞∑′

k=−∞
a - k

al−mlm
kl(2πi)l+m

×
m−1∑
s=0

(
m− 1
s

)
(−1)m+s(l + s− 1)!

(
ab

k

)s
C(m−s)

(
kb

a

)
e(kx)

−
∞∑′

k=−∞
b - k

bm−llm
km(2πi)l+m

×
l−1∑
s=0

(
l − 1
s

)
(−1)l+s(m+ s− 1)!

(
ab

k

)s
C(l−s)

(
ka

b

)
e(kx) .

4. The triple Franel–Kluyver integral. Let

Il,m,n(a, b, c) =
1∫

0

Bl(ax)Bm(bx)Bn(cx) dx

where we may assume a, b and c are pairwise coprime and that l+m+ n is
even since the integral is zero otherwise. Then we have

Theorem 1.

(27) Il,m,n(a, b, c)

=
(−1)l+nl!m!n!al−1

cl

m∑
s=0

(
l + s− 1

s

)(
b

c

)s
(−1)s+1 Sm−s,l+n+s(cb, a)

(m− s)!(l + n+ s)!

+
(−1)m+nl!m!n!bm−1

cm

l∑
s=0

(
m+ s− 1

s

)(
a

c

)s
(−1)s+1 Sl−s,m+n+s(ca, b)

(l − s)!(m+ n+ s)!
.

P r o o f. We apply Parseval’s formula to the functions Bl(ax)Bm(bx) and
Bn(cx) to obtain

(28) Il,m,n(a, b, c)

=
∑′

a|k,k=hc

{
ln!
am−l

m−2∑
s=0

(
m

s

)
(ab)s(l + s− 1)!Bm−s

(2πi)l+n+shnkl+s
+
l(l +m− 1)!n!albm

(2πi)l+m+nhnkl+m

}
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+
∑′

b|k,k=hc

{
mn!
bl−m

l−2∑
s=0

(
l

s

)
(ab)s(m+ s− 1)!Bl−s
(2πi)m+n+shnkm+s +

m(l +m− 1)!n!albm

(2πi)l+m+nhnkl+m

}

+
∑′

a - k,k=hc

{
al−mlmn!

(2πi)l+m+n

×
m−1∑
s=0

(
m− 1
s

)
(−1)m+s(l + s− 1)!(ab)s

hnkl+s
C(m−s)

(
kb

a

)}

+
∑′

b - k,k=hc

{
bm−llmn!

(2πi)l+m+n

×
l−1∑
s=0

(
l − 1
s

)
(−1)l+s(m+ s− 1)!(ab)s

hnkm+s C(l−s)
(
ka

b

)}
.

In the first sum here, since a | k and (a, c) = 1, we must have a |h so we put
h = da; then k = cda and the first sum is

ln!
am+ncl

m−2∑
s=0

(
m

s

)(
b

c

)s (l + s− 1)!Bm−s
(2πi)l+n+s

∞∑′

d=−∞

1
dl+n+s

+
l(l +m− 1)!n!bm

(2πi)l+m+nam+ncl+m

∞∑′

d=−∞

1
dl+m+n .

Using (19) we can write this as

(29) − ln!
am+ncl

m∑
s=0

(
m

s

)(
b

c

)s (l + s− 1)!Bm−sBn+l+s

(n+ l + s)!

= − l!m!n!
am+ncl

m∑
s=0

(
l + s− 1

s

)(
b

c

)s
Bm−sBn+l+s

(m− s)!(n+ l + s)!
.

Similarly, the second sum in (28) gives

(30) − l!m!n!
bl+ncm

l∑
s=0

(
m+ s− 1

s

)(
a

c

)s
Bl−sBn+m+s

(l − s)!(n+m+ s)!
.

For the third sum in (28) we have a - k and k = hc so we put h = da + r,
0 < r < a; then this sum is

al−mlmn!
(2πi)l+m+ncl

m−1∑
s=0

(
ab

c

)s(
m− 1
s

)
(−1)m+s(l + s− 1)!

×
a−1∑
r=1

C(m−s)
(
rcb

a

) ∞∑

d=−∞

1
(da+ r)l+n+s .
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Now, from (9),

∞∑

d=−∞

1
(da+ r)l+n+s =

(−1)l+n+s−1

al+n+s(l + n+ s− 1)!
C(l+n+s)

(
r

a

)

so the third sum is

− lmn!
(2πi)l+m+nam+ncl

×
m−1∑
s=0

(
m− 1
s

)(
b

c

)s (l + s− 1)!
(l + n+ s− 1)!

a−1∑
r=0

C(m−s)
(
rcb

a

)
C(l+n+s)

(
r

a

)

+
lmn!

(2πi)l+m+nam+ncl

×
m−1∑
s=0

(
m− 1
s

)
(l + s− 1)!

(l + n+ s− 1)!

(
b

c

)s
C(m−s)(0)C(l+n+s)(0) ,

which, from (8) and (10), is

(31)
(−1)l+nl!m!n!al−1

cl

×
m−1∑
s=0

(
l + s− 1

s

)(
b

c

)s
(−1)s+1 Sm−s,l+n+s(cb, a)

(m− s)!(l + n+ s)!

+
l!m!n!
am+ncl

m−1∑
s=0

(
l + s− 1

s

)(
b

c

)s
Bm−sBl+n+s

(m− s)!(l + n+ s)!
.

Similarly the fourth sum in (28) is

(32)
(−1)m+nl!m!n!bm−1

cm

×
l−1∑
s=0

(
m+ s− 1

s

)(
a

c

)s
(−1)s+1 Sl−s,m+n+s(ca, b)

(l − s)!(m+ n+ s)!

+
l!m!n!
bl+ncm

l−1∑
s=0

(
m+ s− 1

s

)(
a

c

)s
Bl−sBm+n+s

(l − s)!(m+ n+ s)!
.

Thus, (29)–(32) give

Il,m,n(a, b, c)

=
(−1)l+nl!m!n!al−1

cl

m−1∑
s=0

(
l + s− 1

s

)(
b

c

)s
(−1)s+1 Sm−s,l+n+s(cb, a)

(m− s)!(l + n+ s)!
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+
(−1)m+nl!m!n!bm−1

cm

l−1∑
s=0

(
m+ s− 1

s

)(
a

c

)s
(−1)s+1 Sl−s,m+n+s(ca, b)

(l − s)!(m+ n+ s)!

− l!m!n!
(l +m+ n)!

bm

am+ncl+m

(
l +m− 1

m

)
Bl+m+n

− l!m!n!
(l +m+ n)!

al

bl+ncl+m

(
l +m− 1

l

)
Bl+m+n ,

which is equivalent to (27).

5. Shifted triple integrals. Let

I(a, b, c; θ) =
1∫

0

B1(ax)B1(bx)B1(cx+ θ) dx

where we may assume a, b and c are pairwise coprime and, since the inte-
grand has period 1 in θ, that 0 < θ < 1. In order to evaluate this integral
we shall require the following lemma.

Lemma 2. For α 6∈ Z and all real x we have

(33)
∞∑

n=−∞

e((n+ α)x)
(n+ α)k

= δk(x) +
e([x]α)2k−1(iπ)k{x}k−1

(k − 1)!

+
e([x]α)
(k − 1)!

k−1∑
s=0

(
k − 1
s

)
(−1)sC(s+1)(α)(2πi{x})k−1−s

where {x} denotes the fractional part of x and

δk(x) =
{

1 if k = 1 and x ∈ Z ,
0 else .

P r o o f. We begin with the Fourier series

(34) e(α(1/2− {x})) ∼ sinπα
πα

+
2 sinπα

π

∞∑
n=1

α cos 2πnx− in sin 2πnx
α2 − n2 .

The function on the left has bounded variation on any interval [a, b] and is
continuous for all x ∈ R \ Z. It follows that we may replace ∼ by = above
provided we add the term δ1(x)i sinπα on the right to take care of integral x.
We write, formally,

e(α(1/2− {x})) = δ1(x)i sinπα+
∞∑

n=−∞

sinπα
π(n+ α)

e(nx)

with the understanding that the terms involving ±n are bracketed together.
We multiply through by πe(αx)/ sinπα to obtain (33) in the case k = 1.
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We may write the summand on the right-hand side of (34) in the form

(α− n)e(nx) + (α+ n)e(−nx)
2(α2 − n2)

.

Let x ∈ [0, 1). We multiply (34) by πe(αx)/ sinπα and integrate term-by-
term from 0 to y. This step is justified by §13.53 of Titchmarsh [7], and we
obtain, for y ∈ [0, 1),

πe(α/2)
sinπα

y =
e(αy)− 1

2πiα2 +
∞∑
n=1

(
e((α+ n)y)− 1

2πi(α+ n)2 +
e((α− n)y)− 1

2πi(α− n)2

)

=
1

2πi

( ∞∑
n=−∞

e((α+ n)y)
(α+ n)2 − π2cosec2πα

)
.

We extend this periodically to obtain (33) in the case k = 2. We now proceed
by induction on k, and from this point the term-by-term integrations may be
justified by uniform convergence. Accordingly, assume that k ≥ 2, x ∈ [0, 1)
and (33) holds. Integrating from 0 to y gives
∞∑

n=−∞

e((n+ α)y)− 1
(n+ α)k+1 = 2πi

{
2k−1(iπ)kyk

k!

+
1

(k − 1)!

k−1∑
s=0

(
k − 1
s

)
(−1)sC(s+1)(α)(2πi)k−1−syk−s

k − s
}

so that
∞∑

n=−∞

e((n+ α)y)
(n+ α)k+1 =

2k(iπ)k+1yk

k!
+

∞∑
n=−∞

1
(n+ α)k+1

+
1
k!

k−1∑
s=0

(
k

s

)
(−1)sC(s+1)(α)(2πiy)k−s .

Therefore, since

C(k+1)(α) = (−1)kk!
∞∑

n=−∞

1
(n+ α)k+1

equation (33) holds for k + 1 and hence for all k ≥ 1.
We see from (9) that (33) also holds when x = 0 and therefore, since

∞∑
n=−∞

e((n+ α)x)
(n+ α)k

=
∞∑

n=−∞

e((n+ α){x})e([x]α)
(n+ α)k

,

(33) follows for x ∈ R.
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Theorem 2. For a, b, c pairwise coprime integers and 0 < θ < 1,

I(a, b, c; θ) =
{aθ}
ac

S1,1(bc, a; [aθ]/a) +
{bθ}
bc

S1,1(ac, b; [bθ]/b)(35)

+
1
2c
{S1,2(bc, a; [aθ]/a) + S1,2(ac, b; [bθ]/b)}

+
{aθ}
2ac

B1

(
[aθ]bc
a

)
+
{bθ}
2bc

B1

(
[bθ]ac
b

)

− 1
6a2b2c2

{b3B3(aθ) + a3B3(bθ)} .

P r o o f. Since

B1(cx+ θ) ∼ −
∞∑′

g=−∞

e(gθ)e(gcx)
2πig

and, from (26),

B1(ax)B1(bx) ∼ 1
12ab

+
∞∑′

h=−∞
a|h

ab

4π2h2 e(−hx) +
∞∑′

h=−∞
b|h

ab

4π2h2 e(−hx)

−
∞∑

h=−∞
a -h

1
4πh

cot
(
πhb

a

)
e(−hx)

−
∞∑

h=−∞
b -h

1
4πh

cot
(
πha

b

)
e(−hx) ,

Parseval’s formula gives

I(a, b, c; θ) =
∑′

{
− e(gθ)ab

8π3igh2 ; a |h, h = gc

}
(36)

+
∑′

{
− e(gθ)ab

8π3igh2 ; b |h, h = gc

}

+
∑′

{
− e(gθ)

8π2igh
cot
(
bhπ

a

)
; a -h, h = gc

}

+
∑′

{
− e(gθ)

8π2igh
cot
(
ahπ

b

)
; b -h, h = gc

}
.

For the first sum we let g = la, then h = cla and the sum is

(37) −
∞∑′

l=−∞

e(laθ)b
8π3ia2c2l3

= − b

8π3ia2c2

∞∑′

l=−∞

e(laθ)
l3

= − b

6a2c2
B3(aθ) .
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Similarly, the second sum is

(38) − a

b2c2
B3(bθ) .

In the third sum in (36) we must have a - g. Put g = la+ r, 0 < r < a; then
the sum is

(39)
1

8π2ic

a−1∑
r=1

cot
(
crbπ

a

) ∞∑

l=−∞

e(laθ + rθ)
(la+ r)2 .

Now, by Lemma 2,
∞∑

l=−∞

e(laθ + rθ)
(la+ r)2

=
e([aθ]r/a)

a2

{
2(iπ)2{aθ}+ 2πi{aθ}C(1)

(
r

a

)
− C(2)

(
r

a

)}
,

so that (39) is

(40)
i{aθ}
4πca2

a−1∑
r=1

C(1)
(
crb

a

)
e

(
[aθ]r
a

)

+
{aθ}

4π2ca2

a−1∑
r=1

C(1)
(
crb

a

)
C(1)

(
r

a

)
e

(
[aθ]r
a

)

+
i

8π3ca2

a−1∑
r=1

C(1)
(
crb

a

)
C(2)

(
r

a

)
e

(
[aθ]r
a

)
.

From (11) we have

Bn

(
hµ

k
+ x

)
=

n

kn

(
i

2π

)n k−1∑

λ=0

C(n)
(
λ

k

)
e

(
λ(hµ+ kx)

k

)

so that we can also write

Sm,n(h, k;x) =
(−1)(n−m)/2mn

(2π)m+nkm+n−1

k−1∑

λ=0

e(λx)C(m)
(
hλ

k

)
C(n)

(
λ

k

)

and the third sum in (36) is

(41)
{aθ}
2ac

B1

(
[aθ]bc
a

)
+
{aθ}
ac

S1,1(bc, a; [aθ]/a) +
1
2c
S1,2(bc, a; [aθ]/a) .

Similarly, the fourth sum is

(42)
{bθ}
2bc

B1

(
[bθ]ac
b

)
+
{bθ}
bc

S1,1(ac, b; [bθ]/b) +
1
2c
S1,2(ac, b; [bθ]/b) ,

so that, from (37), (38), (41) and (42) we obtain (35) as required.
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Notice that the integral on the left-hand side of (35) is bounded in ab-
solute value by 1/32 for any a, b and c (using Hölder’s inequality), whereas
there are terms on the right-hand side which can be very large in certain
cases. For example, if a is very large in comparison with b and c then there
must be cancellation between the terms

1
2c
S1,2(bc, a; [aθ]/a)− a

6b2c2
B3(bθ)

which suggests the existence of reciprocity relations for the homogeneous
Dedekind–Rademacher sums

Sm,n(c, b, a;x) = Sm,n(bc, a;x) .

In fact such relations do exist, but the appropriate choice in a particular
problem depends on the relative magnitudes of a, b and c: we do not have
a single formula for I(a, b, c; θ) in terms of Dedekind sums in which all the
terms are uniformly bounded. I hope to consider this matter further in a
later paper.
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