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On oscillations in the additive divisor problem, 1
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1. Introduction. In its simplest form, the additive divisor problem is
to determine the asymptotic behaviour of the sum

Sk(x) =
∑

n≤x
d(n)d(n+ k) (x > 0) ,

where d(n) stands for the number of positive divisors of n and k is a positive
integer.

On the assumption that the shift k is fixed, the best result was obtained
by J.-M. Deshouillers and H. Iwaniec [3], who proved that for every ε > 0
we have

Sk(x) = xPk(log x) + Ek(x)

with

(1.1) Ek(x)�k,ε x
2/3+ε (x→∞) ,

where Pk is a quadratic polynomial.
On the other hand, confirming a conjecture by A. Ivić, Y. Motohashi

[10] has recently proved that for each fixed k we have

(1.2) Ek(x) = Ω(x1/2) (x→∞) .

In this note we shall prove a slight improvement of this result.

Theorem. For fixed k ≥ 1, we have

Ek(x) = Ω±(x1/2) (x→∞) .

The proof of (1.2) [10] (and of (1.1) [3]) proceeds via Kloosterman sums
and Kuznetsov’s trace formulas (cf. [2], [7], [8] and [12]). But it is perhaps
easy to conceive that there should be a more direct approach avoiding these
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tools, namely the one using the zeta-function of our problem,

ζk(s) :=
∞∑
n=1

d(n)d(n+ k)
ns

(Re s > 1) .

Moreover, within this approach it would then be natural to try to apply a
certain general result of Landau [9] (cf. Lemma 0 in Section 2). Actually, we
choose this line of argument.

The function ζk(s) was analyzed earlier by L. A. Takhtajan and
A. I. Vinogradov [14]; see also [5] for some revision of [14]. They applied
the spectral theory of the hyperbolic Laplacian (cf. [6]) directly to a modi-
fication of the Eisenstein series.

Needed facts from [14] (and [5]) will be given below in Lemmas 1 and 2
(Section 4). Lemma 3 in Section 4 (non-vanishing lemma) is not new. It is
stated in [10] as a fact needed for completing the proof of (1.2). It is also
remarked there that this fact is a consequence of a lemma of [11] which in
turn is proved via Kloosterman sums and Kuznetsov’s trace formulas. We
shall prove Lemma 3 in another way.

Acknowledgements. I would like to thank Professors Matti Jutila and
Yoichi Motohashi for kindly putting unpublished material at my disposal.

2. Consequence of a theorem of Landau. The following lemma is a
corollary of a classical result of Landau [9] (cf. e.g. [1]).

Lemma 0. Suppose g(x) is a piecewise continuous function bounded on
finite intervals such that

G(s) :=
∞∫

1

g(x)x−s−1 dx

converges absolutely for Re s > σa. Suppose G(s) analytically continues into
a region including the reals s ≥ σ0 (with no singularity at σ0) while G(s)
has a simple pole at σ0 + it0, t0 6= 0 with residue r. Then

lim sup
x→∞

g(x)x−σ0 ≥ |r| , lim inf
x→∞

g(x)x−σ0 ≤ −|r| .

3. Notations and auxiliary facts. The following notations will be
used (cf. [5], [7] and [14]):

(3.1) Kν(v) :=
∞∫

0

e−v cosh t cosh(νt) dt (v > 0, ν ∈ C)

(the K-Bessel function);

σs(k) :=
∑

d|k
ds;



Oscillations in the additive problem 65

ξ(s) := π−s/2Γ (s/2)ζ(s);

dµ(z) := y−2 dx dy (the invariant hyperbolic measure in the upper

half-plane z = x+ iy, y > 0);

κj :=
√
λj − 1/4, where λj is the jth (non-zero) eigenvalue of the

hyperbolic Laplacian (it is well known that λj > 1/4);

zj := 1/2 + iκj ;

%j(1) — the first Fourier coefficient of the Maass wave form attached
to λj ;

Hj(s) :=
∑∞
n=1 tj(n)/ns (Re s > 1) (the Maass L-function attached

to λj);

(3.2) E∗(z) :=
√
y(log y− c) + 2

√
y

∞∑
n=−∞
n 6=0

d(|n|)K0(2π|n|y)e(nx) (y > 0),

where e(α) := exp(2πiα) and c := log(4π)− γ with Euler’s
constant γ;

(3.3) Ik(s) :=
∫
Π

|E∗(z)|2e(kz)ys dµ(z) (Re s > 1),

where Π is the strip |x| ≤ 1/2, y > 0;

(3.4) Ik(w, s) :=
22−2sπ1−skw−sσ1−2w(k)Γ (s− w)Γ (s− 1 + w)

ξ(2w)Γ (s)
.

We will also use the following facts about the K-Bessel function (3.1):

(3.5) K0(v) > 0 (v > 0) ,

(3.6) K0(v) � v−1/2e−v (v →∞) ,

(3.7)
(
∂

∂ν

)n
Kν(v)

∣∣∣∣
ν=1/2

� v−1/2e−v (v →∞ ; n = 0, 1, 2) ,

(3.8) |Kiu(v)| ≤ K0(v) (u ≥ 0 , v > 0) ,

(3.9) Kiu(v)� e(−3/2)u (u ≥ 1 , v ≥ 1)

and

(3.10)
∞∫

0

Kν(t)e−tts−1 dt =
√
π 2−s

Γ (s+ ν)Γ (s− ν)
Γ (s+ 1/2)

(Re(s± ν) > 0) .

The facts (3.5) and (3.8) follow directly from (3.1). The fact (3.6) is,
of course, a corollary of the asymptotic formula for Kν(v) (see [4], p. 86,
(7)). The estimate (3.7) can be derived from (3.1), and (3.9) from a suitable
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integral representation for Kiu(v) (see for example [13], (8.8)). Finally, (3.10)
is a particular case of the formula (26) on p. 50 of [4].

We will use the following simple estimates from the theory of the Rie-
mann zeta-function:

(3.11) ζ(1/2 + it)� t (t→∞) ,

(3.12) ζ(1 + it)−1 � log7 t (t→∞)

and

(3.13)
T∫

0

|ζ(1/2 + it)|4 dt� T log4 T (T →∞) ;

see [15], (2.12.2), (3.6.3) and (7.6.1).

4. Analytic properties of ζk(s). All needed facts from [5] and [14] are
stated in the following two lemmas.

Lemma 1. The function ζk(s) can be meromorphically continued onto
the whole complex plane. The only singularities of ζk(s) in the half-plane
Re s ≥ 1/2 are: a triple pole at s = 1 and simple poles at s = zj , zj
(j = 1, 2, . . .). For z = 1/2 + iκ ∈ {z1, z2, . . .} we have

(4.1) Res
s=z

ζk(s) =

√
k |Γ (z/2)|4Γ (2κi)
(4k)zΓ (z/2)4

∑
zj=z

|%j(1)|2tj(k)H2
j (1/2) .

Lemma 2. For Re s > 1/2 we have

(4.2) Ik(s) = B(s) + C(s) +D(s) ,

where

(4.3) B(s) =
(
∂

∂w
− c
)2

Ik(w, s)
∣∣∣∣
w=1

,

(4.4) C(s) =
π
√
k

(4πk)sΓ (s)

×
∞∫

−∞

k−iuσ2iu(k)|ξ(1/2 + iu)|4Γ (s− 1/2− iu)Γ (s− 1/2 + iu)
|Γ (1/2 + iu)|2|ζ(1 + 2iu)|2 du

and

(4.5) D(s) =

√
k

(4πk)sΓ (s)

×
∞∑

j=1

|%j(1)|2tj(k)H2
j (1/2)|Γ (zj/2)|4Γ (s− zj)Γ (s− zj) .

The above series converges absolutely.
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Lemma 3. There is a κ > 0 such that∑
κj=κ

|%j(1)|2tj(k)H2
j (1/2) 6= 0 .

P r o o f. Suppose the contrary. Then by (4.2) and (4.5) we have

Ik(s) = B(s) + C(s) .

For y > 0 consider

m(y) : =
1

2πi

2+i∞∫
2−i∞

Ik(s)y−s ds(4.6)

=
1

2πi

2+i∞∫
2−i∞

B(s)y−s ds+
1

2πi

2+i∞∫
2−i∞

C(s)y−s ds

=: b(y) + c(y) .

From (4.3), (3.4) and (3.10) we obtain

b(y) =
(
∂

∂w
− c
)2[4πkwσ1−2w(k)

ξ(2w)

× 1
2πi

2+i∞∫
2−i∞

Γ (s− w)Γ (s+ w − 1)
Γ (s)

(4πky)−s ds
]∣∣∣∣
w=1

=
(
∂

∂w
− c
)2[(

a factor which depends
only on k and w

)
· Kw−1/2(2πky)e−2πky

√
y

]∣∣∣∣
w=1

.

From this and (3.7) it follows that

(4.7) b(y)� y−1e−4πky (y →∞) .

Next, using (4.4) and (3.10), we first obtain

c(y) =
e−2πky

2
√
y

∞∫
−∞

k−iuσ2iu(k)|ξ(1/2 + iu)|4Kiu(2πky)
|Γ (1/2 + iu)|2|ζ(1 + 2iu)|2 du .

Let T ≥ 2. From Stirling’s formula, (3.11)–(3.13), (3.8) and (3.9) it follows
that

c(y)� e−2πky

√
y

[
K0(2πky)

T∫
1

|ζ(1/2 + iu)|4 log14 u

u
du

+
∞∫
T

u3 log14 u · e(−3/2)u du

]

� e−2πky

√
y

[K0(2πky) log18 T + e−T ] .
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Putting T := 3πky, we obtain by (3.6),

(4.8) c(y)� y−2/3e−4πky (y →∞) .

Combining (4.7) and (4.8), we obtain

(4.9) m(y)� y−2/3e−4πky (y →∞) .

On the other hand, by (3.2), (3.3) and (4.6), we have

m(y) = exp(−2πky)
[
4d(k)K0(2πky)(log y − c)

+ 4
k−1∑
n=1

d(n)d(k − n)K0(2πny)K0(2π(k − n)y)

+ 8
∞∑
n=1

d(n)d(n+ k)K0(2πny)K0(2π(n+ k)y)
]
.

Thus, by (3.5) and (4.9), we conclude that

K0(2πky)� y−2/3e−2πky (y →∞) .

Comparison with (3.6) gives the desired contradiction.

5. Proof of the theorem. We are going to check whether the assump-
tions of Lemma 0 (Section 2) will be satisfied if we put there

g(x) := Ek(x) (x ≥ 1) .

We have of course

(5.1) G(s) :=
∞∫

1

g(x)x−s−1 dx =
ζk(s)
s
−

3∑
ν=1

aν
(s− 1)ν

(Re s > 1)

with some constants aν (ν = 1, 2, 3). By (1.1) and Lemma 1 (Section 4) we
conclude that G(s) is regular in the half-plane Re s > 1/2 and that G(s) has
no singularity at s = 1/2. Also, by (4.1), Lemma 3 (Section 4) and (5.1),
G(s) has a simple pole at some s = z 6= 1/2 with Re z = 1/2 such that

r := Res
s=z

G(s) =
1
z

Res
s=z

ζk(s) 6= 0 .

The theorem follows now immediately from Lemma 0.
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