
ACTA ARITHMETICA
LXV.3 (1993)

On the non-triviality of the basic Iwasawa λ-invariant
for an infinitude of imaginary quadratic fields

by

Jonathan W. Sands (Burlington, Vt.)

1. Introduction. We fix an odd prime p and let K vary throughout the
family of all imaginary quadratic fields in which p splits. The basic p-adic
Iwasawa λ-invariant of K will be denoted by λp(K). This is our principal
object of consideration.

In our special situation, the theorem of Ferrero and Washington [3] im-
plies that the basic p-adic Iwasawa µ-invariant µp(K) vanishes, and λp(K)
has two especially simple interpretations. Analytically, it is the Weierstrass
degree of the power series connected with a p-adic L-function associated
with K. Algebraically, it arises in connection with the basic unramified p-
adic Iwasawa module for K. Under our assumption, this module is free over
the ring Zp of p-adic integers and λp(K) is simply its rank.

When we focus on the case where p splits in the field K, one can see
from either point of view that λp(K) ≥ 1. Analytically, the splitting of p
creates a trivial zero at the origin in the p-adic L-function and hence in the
related power series. Thus the power series has no constant term and is of
Weierstrass degree at least one. Algebraically, class field theory guarantees
that for each of the two divisors of p there is a Zp-extension of K which does
not ramify outside of that prime. The composite of these two extensions is
unramified above the basic Zp-extension of K and thus contributes 1 to the
rank of the basic unramified p-adic Iwasawa module for K. Genus theory
can also be used to provide another algebraic interpretation.

Because λp(K) ≥ 1 in the case of interest to us, we consider it to be
trivial when λp(K) = 1 and non-trivial when λp(K) > 1. Heuristics and
computations [1] suggest that among imaginary quadratic fields K in which
p splits, the trivial case is significantly more common, while both cases
should have a positive natural density. Horie [5] has proved the infinitude
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of non-trivial cases, while Jochnowitz [6] can now prove the infinitude of
trivial cases. Our method is tailored towards actually counting the number
of non-trivial cases among imaginary quadratic fields whose discriminant has
absolute value below a given bound X. We are not able to prove positive
density, but for X = 4p2n we obtain more than

√
X/2p non-trivial cases,

thus strengthening Horie’s result.
Our proof consists of first obtaining a criterion which avoids the consid-

eration of class numbers, and then actually constructing fields which satisfy
this criterion. This explains why our method improves on Horie’s result
and at the same time fails to apply to the trivial case. For in order that
λp(K) = 1 when p splits in K, it is necessary that p not divide the class
number of K, as we will see (Proposition 2.1). Jochnowitz’s work on the
Fourier coefficients of modular forms allows her to control the class num-
ber and obtain the infinitude of trivial cases. On the other hand, Horie
[5] noted that the infinitude of non-trivial cases follows immediately from
Yamamoto’s [7] construction of infinitely many imaginary quadratic fields
in which p splits and the class group has p-rank at least 2. Horie’s main
result in that work is the infinitude of imaginary quadratic fields K with
λp(K) = 0, which also requires controlling the class number. These results
involving class numbers do not lend themselves to the derivation of useful
asymptotic estimates. By the avoidance of class number questions, we are
able to construct a different sort of family of fields whose discriminants are
relatively small.

We thank Ralph Greenberg for bringing Jochnowitz’s work to our at-
tention. We also thank the staff, students, and faculty of the Fachbereich
Informatik, Universität des Saarlandes, for their support and hospitality
during the period in which this note was written.

2. A variant of Gold’s criterion. The necessary and sufficient condi-
tion of Gold [4] for λp(K) > 1 in our situation requires that K have class
number h(K) not divisible by p. However, we can see the effect of a factor
of p in the class number via a special case of the theorem of Federer, Gross
and Sinnott [2]. This leads to the following.

2.1. Proposition. Assume that p is an odd prime and that p splits in the
imaginary quadratic field K. Thus (p) = PP, the product of a first degree
prime ideal of K and its complex conjugate. Then

1. λp(K) ≥ 1.
2. Suppose that r is a positive integer not divisible by p such that Pr =

(α), a principal ideal of K. Then λp > 1 if and only if either αp−1 ≡ 1
(mod P2) or p divides the class number h(K).
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2.2. R e m a r k. Gold’s criterion [4] is exactly this proposition in the case
when h(K) is not divisible by p.

P r o o f o f P r o p o s i t i o n 2.1. Under our assumptions, the theorem of
Federer, Gross and Sinnott [2] says that the leading term of the characteristic
polynomial in the variable T for the basic unramified p-adic Iwasawa module
of K is (up to multiplication by a factor which is relatively prime to p)

h(K) logp(α)

rp
T =

h(K) logp(α
p−1)

rp(p− 1)
T .

The function logp is the p-adic logarithm, with the usual normalization. The
element α is viewed as lying in the completion KP of K at P, which one
identifies with the field of p-adic numbers Qp. Then αp−1 ≡ 1 (mod P), so
αp−1 = 1 + x with x ∈ pZp, and logp(α

p−1) may be computed by means of
the power series logp(1+x) = x−x2/2+ . . . The Iwasawa invariant λp(K) is
the Weierstrass degree of the characteristic polynomial. The formula above
shows (without any assumption on r) that this degree is at least one, thus
establishing the first statement of the proposition.

The formula also implies that λp(K) is greater than 1 if and only if p
divides h(K)(x/p) in Zp. This follows from the fact that p is odd and r(p−1)
is not divisible by p. Thus λp(K) > 1 if and only if p divides h(K) or p2

divides x = αp−1 − 1 in Zp. But p2 divides αp−1 − 1 in Zp if and only if
αp−1 − 1 ∈ P2 in K.

2.3. Corollary. Assume that p is an odd prime and that p splits as
(p) = PP in the imaginary quadratic field K. Suppose that r > 1 is an
integer not divisible by p such that Pr = (α), and let Tr(α) ∈ Z be the trace
of α. Then λp(K) > 1 if and only if either p divides h(K) or (Tr(α))p−1 ≡ 1
(mod p2).

P r o o f. Since (α) = Pr, we have (α) = Pr, and since r > 1, we con-
clude that α ≡ 0 (mod P2). Hence Tr(α) = α + α ≡ α (mod P2) and
(Tr(α))p−1 ≡ αp−1 (mod P2). By combining this with the proposition, we
now see that

αp−1 ≡ 1 (mod P2)⇔ (Tr(α))p−1 ≡ 1 (mod P2)

⇔ (Tr(α))p−1 ≡ 1 (mod p2) .

The last equivalence holds because Tr(α) ∈ Z, and P2 ∩ Z = (p2).

3. Construction of fields to meet the criterion. We now construct
imaginary quadratic fields K in which p splits and which satisfy λp(K) > 1.
This is done by constructing discriminants −D with an appropriate property
and putting K = Q(

√−D). The infinitude of such fields will follow easily
from the construction.
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Recall that p is a fixed odd prime. We now also fix an arbitrary integer
n ≥ 2, which is not divisible by p. It is interesting to note that Horie’s fields
with λp(K) > 1 come from Yamamoto’s construction of ideal classes of order
p, while our construction of fields with λp(K) > 1 parallels Yamamoto’s
construction of ideal classes of order n. Indeed, we could impose further
conditions to ensure that the primes above p generate such classes. We
define a function fn from the set

Cn = {a ∈ Z : 0 < a < 2pn and a 6≡ 0 (mod p)}
to the set of integers greater than −4p2n and not divisible by p which are
the discriminants of imaginary quadratic fields.

If a ∈ Cn, then 0 < 4p2n − a2. The latter quantity may be written
uniquely as b2D, with b a positive integer and −D a discriminant of an
imaginary quadratic field. Of course we then know that 0 < D < 4p2n and
p -D since p - a. Thus we can define fn(a) = −D.

3.1. Lemma. Let −D be in the image of fn. Then

1. The prime p splits in K = Q(
√−D).

2. The cardinality of f−1
n (−D) is at most half the number of units in K.

Hence if −D < −4, then it corresponds to a unique a. If −D = −4, there
are at most 2 corresponding a’s, and if −D = −3, there are at most 3.

P r o o f. Suppose a ∈ f−1
n (−D), so that fn(a) = −D. By the definition

of fn, there exists a positive integer b such that 4p2n − a2 = b2D. Thus

p2n =
a2 + b2D

4
= N

(
a+ b

√−D
2

)
,

with N denoting the norm from K to Q. So p divides N
(
a+b
√−D
2

)
, but

p - a+b
√−D
2 because p - a. This shows that p splits in K.

Now (p) = PP in K, and we have observed that this product does not
divide a+b

√−D
2 . Since the norm of the latter is p2n, the only factorization

possibilities are
(
a+b
√−D
2

)
= P2n or P2n. Now we see that the positive

integer a is twice the real part of a generator of P2n. However, the number
of choices for this generator equals the number of units in K, and only half
of these choices yield a > 0.

The discriminants in the image of fn will determine fields of the desired
type once we restrict to an appropriate subset of Cn.

Define

An = {a ∈ Cn : ap−1 ≡ 1 (mod p2)} .
3.2. Lemma. Suppose that a ∈ An and fn(a) = −D. Then the field

K = Q(
√−D) has λp(K) > 1.
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P r o o f. The preceeding lemma shows that p = PP in K and that P2n =
(α) with α = a+b

√−D
2 , for some integer b. Since Tr(α) = a ∈ An and the

definition of An specifies that ap−1 ≡ 1 (mod p2), we can conclude from
the corollary above that λp(K) > 1. We have assumed that p -n precisely
so that this corollary can be applied with r = 2n 6≡ 0 (mod p).

Our main result will follow upon counting the number of elements in An.

3.3. Theorem. Among the imaginary quadratic fields in which p splits,
there exist at least 2(p− 1)pn−2− 3 fields K for which λp(K) > 1 and whose
discriminant −D satisfies −D > −4p2n.

P r o o f. The condition for a∈Cn to lie in An depends only on a (mod p2).
Thus to determine the cardinality of An, we count the number of elements
a ∈ Cn in the range 0 ≤ a < p2 which satisfy this condition, and multiply
by the number 2pn/p2 = 2pn−2 of translates of this range by p2 which are
contained in Cn. This count yields the p−1 solutions of ap−1 ≡ 1 (mod p2).
Thus the cardinality of An is 2(p− 1)pn−2.

By the preceding lemma, each a ∈ An determines a discriminant −D =
fn(a) of an imaginary quadratic field K with the desired properties −D >
−4p2n and λp(K) > 1. The first lemma implies that taking the image of a
subset of Cn under fn decreases the cardinality by at most 3. This yields
the result.

As a corollary, we have a new proof of Horie’s observation.

3.4. Corollary. For each fixed odd prime p, there exist infinitely many
imaginary quadratic fields K such that p splits in K and λp(K) > 1.

P r o o f. Let n→∞ in the theorem.
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