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Completely q-multiplicative functions:

the Mellin transform approach

by
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1. Introduction. In [Ge68] and [De72] A. O. Gelfond and H. De-
lange investigate properties of arithmetic functions which satisfy functional
equations closely related to the q-ary digit expansion of the integers:

(1.1)
f(aqr + b) = f(aqr) + f(b) or

f(aqr + b) = f(aqr)f(b)

for all r ≥ 0, a ≥ 0 and 0 ≤ b < qr. Note that these equations force
f(0) = 0 or f(0) = 1 respectively. These functions are called q-additive and
q-multiplicative, respectively. It is easy to see that the functional equations
imply that these functions are defined for all integers, when the values f(aqr)
are known for 1 ≤ a ≤ q − 1 and all r ≥ 0.

In [MM83] the case of q-additive functions is studied with the help of the
Dirichlet generating function of f(n) under the additional assumption that∑∞

k=0 f(aqk)zk is rational. The “typical” result for the summatory function∑
n<N f(n) is a (finite) linear combination of terms Nα(logN)kϕ(logqN),

where k ≥ 0 is an integer and ϕ is a continuous periodic function of
period 1. A well known example in this context is the binary sum-of-
digits function s(n) for which Delange’s summation formula (cf. [De75])
holds:

∑

n<N

s(n) =
N

2
log2N +Nϕ(log2N) .

Here the approach via Dirichlet generating functions gives a new and com-
fortable proof for this result and also allows the computation of the Fourier
coefficients of ϕ. In [FGKPT92] Mellin–Perron’s summation formula
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(cf. [Ap84])

(1.2)
∑

n<N

an

(
1 − n

N

)
=

1

2πi

c+i∞∫

c−i∞

∞∑

n=1

an

ns

Ns

s(s+ 1)
ds

is used to find asymptotic expansions for digital sums, e.g.
∑

n<N 2s(n). In
a series of papers (cf. [Al87] for a detailed survey) the notion of q-automatic
sequences is investigated; there are some connections to the sequences dis-
cussed here (see the beginning of Section 2).

In this paper we want to investigate asymptotic properties of the summa-
tory functions

∑
n<N f(n) of completely q-multiplicative functions (cf. Sec-

tion 2) by the use of the Mellin transform and the summation formula (1.2).
For this purpose we have to consider the analytical behaviour of the Dirichlet
generating functions of q-multiplicative functions. Note that some special
Dirichlet series and infinite products connected with q-ary digit counting
functions are considered in [AC85].

In a final section of the present paper the summatory function of
(−1)s(pn) (p prime) is analysed as example for the technique developed in
Section 2. The main term of the asymptotics can be extracted from [Du83].
For a full asymptotic expansion see also [GKS92]. Finally, an application
to the computation of the Hausdorff measure of a subset of the Sierpiński
gasket is demonstrated.

2. Completely q-multiplicative functions. As Delange’s results
show that the behaviour of the summatory function can be very irregular in
a general situation, we restrict our investigations to functions which satisfy

f
( L∑

l=0

εlq
l
)

=
L∏

l=0

f(εl)

and call these functions completely q-multiplicative. Special cases of these
functions are exponential functions of the sum-of-digits function, which were
studied in e.g. [Ha77], [St89] and [FGKPT92]. Notice that there are q-
multiplicative functions which are q-automatic (cf. [Al87]), but there are
also q-multiplicative functions which are not q-automatic, and vice versa;
e.g. 2s(n), where s(n) is the binary sum-of-digits function, is 2-multiplicative,
but not 2-automatic; the Thue–Morse sequence (−1)s(n) is 2-multiplicative
and 2-automatic, and the Rudin–Shapiro sequence is 2-automatic but not
2-multiplicative.

Our first objective is to find an analytic continuation of the Dirichlet
generating function of f(n)

γ(s) =

∞∑

n=1

f(n)

ns
.
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The following proposition generalizes a result in [AC85]; there is a simi-
lar theorem for the Dirichlet generating functions of q-automatic sequences
(cf. [Al87]).

Proposition 1. γ(s) has an analytic continuation to the whole complex

plane.

(1) If αf =
∑

n<q f(n) 6= 0 and logq αf 6∈ Z, γ(s) is meromorphic with

(possible) simple poles at logq αf −n+2kπi/(log q), where n ∈ N0 and k ∈ Z.

Moreover , γ(0) = −1 and γ(−n) = 0 for n ∈ N.

(2) If αf 6= 0 and logq αf ∈ Z there are poles at logq αf −n+2kπi/(log q)
for logq αf ≤ n and k ∈ Z \ {0}. If αf > 1 there are additional poles at

0 < n ≤ logq αf . If αf < 1 there are zeros at logq αf ≤ n < 0.
(3) If αf = 0 then γ(s) is an entire function with γ(0) = −1 and γ(−k) =

0 for k ∈ N.

P r o o f. We first note that

(2.1) G(z) =

∞∑

n=0

f(n)zn =

∞∏

k=0

(1 + f(1)zqk

+ . . .+ f(q − 1)z(q−1)qk

) .

From this equality we derive

(2.2) Γ (s)γ(s) =
∞∫

0

(G(e−x) − 1)xs−1 dx for Re s > σ0

for a suitable σ0 and therefore we can find all poles of Γ (s)γ(s) by investigat-
ing the asymptotic properties of G(e−t) as t→ 0 and t→ ∞ (cf. [FRS85]).

In order to apply Mellin’s inversion technique we investigate the function

(2.3) δ(s) =
∞∫

0

log(1 + f(1)e−x + . . .+ f(q − 1)e−(q−1)x)xs−1 dx

(if there is a zero of the term under the logarithm on the real axis, we
rotate the line of integration in this integral to arg x = ε). Clearly log(1 +
f(1)e−x + . . . + f(q − 1)e−(q−1)x) = O(e−x) as x → ∞, thus the poles of
the function (2.2) originate from the behaviour of the logarithm as x → 0.
We note that δ(σ + it) = O(t−M ) for all M > 0, because the integrand is
infinitely differentiable. We now have to distinguish two cases:

(a) αf = 1 + f(1) + . . . + f(q − 1) 6= 0. In this case there is a Taylor
expansion

log(1 + f(1)e−x + . . . + f(q − 1)e−(q−1)x) = log αf +

∞∑

k=1

akx
k .

Thus by the basic properties of the Mellin transform δ(s) has a meromorphic
continuation to the whole complex plane with poles at s = 0,−1,−2, . . . and
residues logαf , a1, a2, . . .
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Therefore we derive

(2.4)
∞∫

0

logG(e−x)xs−1 dx =
δ(s)

1 − q−s

for Re s > σ0 = 0. By Mellin’s inversion formula we obtain

logG(e−x) =
1

2πi

1+i∞∫

1−i∞

δ(s)

1 − q−s
x−s ds

and shifting the line of integration to the left and taking residues into account
yields

(2.5) logG(e−x) = − logq αf log x+ ψ0 +
∑

k∈Z\{0}

ψkx
ϑk +

∞∑

l=1

dlx
l ,

as an asymptotic expansion, where the coefficients ψk and dl can be ex-
pressed by values of δ(s) and ϑk = 2kπi/(log q).

Taking the exponential of (2.5) yields

(2.6) G(e−x) = x− logq αfΦ(logq x)

∞∑

k=0

gkx
k, g0 6= 0 ,

where Φ is a continuous periodic function of period 1. Therefore we conclude
that Γ (s)γ(s) has an analytic continuation to the whole complex plane with
(possible) simple poles at s = logq αf −n+ϑk, where n = 0, 1, . . . and k ∈ Z.
From the subtraction of 1 in (2.2) there originates a simple pole with residue
−1 at s = 0, at least in the case logq αf 6∈ Z.

(b) αf = 0. In this case we have, for some k > 0,

1 + f(1)e−x + . . .+ f(q − 1)e−(q−1)x = ckx
k + ck+1x

k+1 + . . .

with ck 6= 0 and

log(1 + f(1)e−x + . . .+ f(q − 1)e−(q−1)x) = k log x+ log ck +
∞∑

l=1

alx
l .

Again by the basic properties of the Mellin transform, δ(s) has a double
pole at s = 0 with principal part −k/s2 + (log ck)/s and simple poles at
s = −1,−2, . . . with residues a1, a2, . . .

As in case (a), by using Mellin’s inversion formula, shifting the line of
integration to the left and taking residues into account (note the triple pole
at s = 0), we obtain

(2.7) logG(e−x) = − k

log q
log2x+O(log x) .
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The full asymptotic expansion could be found as above, but it is not needed
in the following. Exponentiating (2.7) yields

G(e−x) = O

(
exp

(
− k

log q
log2x

)
xβ

)

for some β.
Again we find the analytic continuation of Γ (s)γ(s) by the basic prop-

erties of the Mellin transform. The only pole of this function at s = 0 with
residue −1 originates from the term −1 in (2.2). Dividing by Γ (s) yields
the desired conclusion.

We are now ready to formulate the

Theorem. Let f be a completely q-multiplicative function satisfying

(2.8) |1 + f(1) + f(2) + . . . + f(q − 1)| > max
0≤a<q

|f(a)| .

Then

(2.9) F (N) =
∑

n<N

f(n) = N̺eiα logqNψ(logqN) ,

where ψ is a continuous, periodic function of period 1, ̺ = logq |F (q)| and

α = argF (q). The Fourier expansion of ψ is given by

ψ̂(k) =
1

Γ (̺+ 1 + χk) log q

∞∫

0

(f(1)e−x + . . . + f(q − 1)e−(q−1)x

+ (1 + f(1)e−x + . . .+ f(q − 1)e−(q−1)x − F (q))

× (G(e−qx) − 1))x̺+χk−1 dx ,

where χk = (2kπi+α)/ log q. In the case that F (q) is real and positive ψ̂(0)
can be interpreted as the mean value of F (N)/N̺.

P r o o f. We split the proof into two parts: first we show (2.9) and then
we use our information on the Dirichlet series to give the formula for the
Fourier coefficients. Let N =

∑L

l=0 εlq
l and Np =

∑L

l=p εlq
l. Then we have

F (N) =
∑

n<N

f(n) =
∑

n<NL

f(n) +

L−1∑

p=0

Np−1∑

n=Np+1

f(n)(2.10)

= F (εLq
L) +

L−1∑

p=0

f(Np+1)F (εpq
p) .

Thus we have reduced the problem to the computation of F (εqk). Now,

F (εqk) =
∑

a<ε

f(a)F (qk) = F (ε)F (q)k .
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Therefore we have

F (N) =

L∑

p=0

L∏

k=p+1

f(εk)F (εp)F (q)p .

We now extract the main term

(2.11) F (N) = F (q)L

L∑

p=0

L∏

k=p+1

f(εk)F (εp)F (q)p−L

and set

(2.12) ϕ
( ∞∑

l=0

εlq
−l

)
=

∞∑

l=0

l−1∏

k=0

f(εk)F (εl)F (q)−l .

Using (2.8) we deduce that this series is convergent (this shows that the
assumption on f is even necessary for the behaviour of the summatory
function as indicated in the theorem). We now have to show that ϕ is
well-defined and continuous. Continuity at all points which are not q-adic
rationals is a consequence of the rapid convergence of the geometric series.
It remains to analyze the q-adic rationals: let

x =

L∑

l=0

εlq
−l =

L−1∑

l=0

εlq
−l + (εL − 1)q−L +

∞∑

l=L+1

(q − 1)q−l ;

then we have to show that the value of ϕ(x) is the same for both represen-
tations of x. We have to prove

ϕ(x) =

L∑

l=0

l−1∏

k=0

f(εk)F (εl)F (q)−l(2.13)

=

L−1∑

l=0

l−1∏

k=0

f(εk)F (εl)F (q)−l +

L−1∏

k=0

f(εk)F (εL − 1)F (q)−L

+

L−1∏

k=0

f(εk)F (εL − 1)

∞∑

l=L+1

f(q − 1)l−L−1F (q − 1)F (q)−l .

Summing up the infinite sum in the last line and collecting the result and
the other terms yields this equality. Thus ϕ is continuous and well-defined.
We note that ϕ(1) = 1 and ϕ(q) = F (q).

We now derive

F (N) = F (q)[logqN ]ϕ

(
N

q[logqN ]

)
(2.14)

= N̺eiα logqNF (q)−{logqN}ϕ(q{logqN}) ,
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where [x] and {x} denote the integer and the fractional part of x as usual.
Setting ψ(logqN) = F (q)−{logqN}ϕ(q{logqN}) yields the first part of the
theorem.

For the computation of the Fourier coefficients we again use the infor-
mation on the function G(e−t) (2.1) that we gathered in the proof of Propo-
sition 1. Using the functional equation (notice that this is a functional
equation “à la Mahler” [Ma29])

G(e−x) = (1 + f(1)e−x + . . . + f(q − 1)e−(q−1)x)G(e−qx)

we derive

(2.15) G(e−x) − 1

= F (q)(G(e−qx) − 1) + f(1)e−x + . . .+ f(q − 1)e−(q−1)x

+ (1 + f(1)e−x + . . .+ f(q − 1)e−(q−1)x − F (q))(G(e−qx) − 1) .

Taking the Mellin transform of this equation and dividing by Γ (s) yields

(2.16) η(s) := γ(s)(1 − F (q)q−s)

= f(1) +
f(2)

2s
+ . . .+

f(q − 1)

(q − 1)s

+

∞∑

n=1

(
f(qn+ 1)

(qn+ 1)s
+ . . .+

f(qn+ q − 1)

(qn+ q − 1)s

− f(qn+ 1) + . . .+ f(qn+ q − 1)

(qn)s

)
.

By the formula for the abscissa of convergence (cf. [HR15]) this last series
is convergent for σ > logqmax0≤a<q |f(a)| =: σ0. Note that this abscissa of
convergence is left of ̺. On the other hand, η(s) is absolutely convergent,
e.g. in the half plane σ > ̺+ 1, where we have η(σ + it) = O(1) as t → ∞.
For every ε > 0 we have η(σ0+ε+it) = o(t) (cf. [HR15]). Thus by Lindelöf’s
theorem we have η(̺+ it) = O(tα) for some α < 1.

By Mellin–Perron’s summation formula we have

(2.17)
∑

n<N

F (n)

=
∑

n<N

(N − n)f(n) = N +
N

2πi

̺+1+i∞∫

̺+1−i∞

η(s)

1 − F (q)q−s

Ns

s(s+ 1)
ds .

We shift the line of integration to σ = ̺ − ε and compute the residues at
the zeros of 1 − F (q)q−s:
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Ress=̺+χk

η(s)Ns

(1 − F (q)q−s)s(s+ 1)

=
η(̺+ χk)

(̺+ χk)(̺+ χk + 1) log q
e2kπi logqNeiα logqNN̺ .

This yields the asymptotic expansion
∑

n<N

F (n) = N̺+1eiα logqNΨ(logqN) +O(N̺+1−ε) ,

where the Fourier coefficients of Ψ come from the values of the residues:

Ψ̂(k) =
η(̺+ χk)

(̺+ χk)(̺+ χk + 1) log q
.

By a pseudo-Tauberian argument used in [FGKPT92] it is possible to
derive the Fourier coefficients of ψ from the Fourier expansion of Ψ .

Proposition 2. Let h be a continuous function, periodic with period 1,
and let τ be a complex number with Re τ > 0. Then there exists a continu-

ously differentiable function H of period 1 such that
∑

n<N

nτh(logqn) = Nτ+1H(logqN) + o(Nτ+1) ,

1∫

0

H(x) dx =
1

τ + 1

1∫

0

h(x) dx .

The proof of this proposition is a rephrasing of the proof of [FGKPT92,
Proposition 2].

Using Proposition 2 with nτh(logqn) = F (n) and τ = ̺+ χk yields

ψ̂(k) =
η(̺+ χk)

(̺+ χk) log q
.

Computing the Mellin transform of (2.15) yields the integral representation
of η(s) and the theorem is proved.

3. Examples and applications. As an example for completely q-
multiplicative functions we consider

(3.1)
∑

n<N

(−1)s(pn) ,

where s(n) is the dyadic sum-of-digits function and p is a prime which has 2
as a primitive root (the method discussed above can also be applied to
other cases, but then some parts of the computation become much more
complicated). The case p = 3 was considered in [Ne69] and [Co83], where it
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is proved that

∑

n<N

(−1)s(3n) = N log43F (log4N) +
η(N)

3
,

where

η(N) =

{
0 if N is even,
(−1)s(3N−1) if N is odd

and the continuous function F is strictly positive and nowhere differentiable.
This result shows that the sum-of-digits function of the multiples of 3 attains
even values more often than odd ones. In [GKS92] the sum (3.1) is investi-
gated in general and the asymptotic expansion is computed by investigating
the eigenvalues of certain matrices. It seems to be difficult to compute the
extremal values of the fractal function (or even to find out whether it takes
only positive values or not) in the general situation. In a forthcoming paper
[Gr93] the author proves that for p = 5 the fractal function is always positive
and computes its extremal values and the mean value.

Let ξ be a pth root of unity in the sequel; then the function

fξ(n) = (−1)s(n)ξn

is completely 2p−1-multiplicative. The theorem shows that the value of
Fξ(2

p−1) determines the asymptotic behaviour of F (N). In this case we
have

(3.2) Fξ(2
p−1) =

p−2∏

k=0

(1 − ξ2
k

) = p .

(Here we have used the assumption that 2 is a primitive root mod p. For
general p it is much more difficult to compute this product (cf. [GKS92]).)
Thus we have

∑

n<N

(−1)s(pn) =
1

p

( ∑

n<pN

(−1)s(n) +
∑

ξ

∑

n<pN

fξ(n)
)

= N
1

p−1
log2pψp

(
1

p− 1
log2N

)
+
ηp(N)

p
,

where

ηp(N) =

{
0 if N is even,
(−1)s(pN−1) if N is odd.

For p = 3 the function ψ3 satisfies

1.154700538 . . . =
2√
3
≤ ψ3(x) ≤

55

3

(
3

65

)log43

= 1.601958421 . . .
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(cf. [Co83]) and the mean value is 1.4092203477 . . . (cf. [FGKPT92]). For
p = 5 the extremal values are

0.8380851409 . . . =
7

10

(
15

11

)log165

≤ ψ5(x)

≤ 9

10

(
60

13

)log165

= 2.186770740 . . .

and the mean value is 1.56205765115 . . . (cf. [Gr93]).
Let us now consider the Sierpiński gasket.

Fig. 1

We want to compute the Hausdorff measure H of dimension log23 of the
subset M(h) of the gasket obtained by cutting the gasket along a horizontal
line as in Figure 1 (the measure is normed, such that H(G) = 1). Let h be
a dyadic rational

h =
L∑

l=1

εl

2l
.

Then the set M(h) consists of

(3.3)
∑

n<2Lh

2s(n)

triangles of measure 3−L. This follows immediately from the fact that the
positions of odd entries in Pascal’s triangle up to a given power of 2 form a
finite approximation to the Sierpiński gasket. The number of odd entries in
the nth line of Pascal’s triangle is given by 2s(n) (cf. [Ha77]). We now have

H(M(h)) =
∑

n<2Lh

2s(n)3−L =

L∑

l=1

εl2
ε1+...+εl−13−l .
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By approximating an arbitrary real number h by dyadic rationals and ob-
serving that H(M(h)) is a continuous function of h, we obtain

H(M(h)) =

∞∑

l=1

εl2
ε1+...+εl−13−l = hlog23F (log2h) ,

where F is a continuous periodic function of period 1, which also occurred
in [FGKPT92] when investigating the summatory function (3.3). The peri-
odicity of F reflects the self-similarity of the gasket.

Acknowledgements. I am indebted to an anonymous referee for valu-
able remarks concerning the presentation of the paper and for pointing out
the references [MM83] and [GKS92].
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