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1. Introduction. Let Z, N, Q be the sets of integers, positive inte-
gers and rational numbers respectively. Let Dy, Ds € N be odd, and let
N(Dy, D3) denote the number of solutions () (z,n) of the equation

(1) Diz?+Dy=2""2 2>0,n>0.
There are many papers concerned with upper bounds for N(D1, D3) when
min(Dy, Dy) = 1. The known results include the following:

1 (Nagell [12]). N(1,7) = 5.

2 (Apéry [1]). If Dy # 7, then N(1, D) < 2.

3 (Beukers [5]). N(1,23) = N(1,2""2 — 1) = 2 for r > 1, otherwise
N(1,Dy) <1 for Dy # 7.

4 (Le [8]). N(7,1) =2, otherwise N(Dy,1) < 1.

We have not been able to find similar results for the case min(D;, Dy)>1.
In this paper we prove a general result as follows:

THEOREM 1. If min(Dy, Do) > 1 and (D1, D3) # (3,5), then N(D1, D2)
<2.

By [4], we see that N(3,5) = 3. On the other hand, we notice that if
D1, D5 satisfy
() DiXP=2% - (-)PVE Dy 3.a% 4 (1) PDr,
X1,Z1 €N, Z1 > 1,

then (1) has two solutions
3) (z,n) = (X1,21), (@O + ()P D2)X,,37,).
Supported by the National Natural Science Foundation of China.

(}) Throughout this paper, “solution” and “positive solution” are abbreviations for
“integer solution” and “positive integer solution” respectively.
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Such a pair (Dy, D2) will be called exceptional. By Theorem 1, if (Dy, D3) #
(3,5) and (D1, D2) is exceptional, then N(D;, Ds) = 2. For the remaining
cases, we have:

THEOREM 2. If min(Dy, D2) > 1, max(Dq, Dy) > expexpexp 105 and
(D1, D3) is not exceptional, then N(Dq,Dy) < 1.

This theorem determines all but a finite number of (D;, D2) for which
N(D;, Dy) > 1.

2. Preliminaries

LEMMA 1 ([10, Formula 1.76]). For any m € N and any complex numbers
a and 3, we have

[m/2]
=0
where
[Tf] - W eN, i=0,...,[m/2]. m

LEMMA 2. If p is an odd prime withp >3, t € N, t > 2 t(t—1) =p"s,
r,s € N and p1s, then

3 7 T
<2Z.>p =0 (mod p"*?)
fori>1.

Proof. Let p* ||2i(2¢ — 1). Since p > 5 and ged(24,2i — 1) = 1, we get
a; < [Log2i/Logp] <i—2. From

AV t—2\ p?
=2t —1 L
<2¢)p i )<2i - 2) 2i(2i — 1)

the lemma follows. m

LEMMA 3. Let a,a’,b,r,s € N be such thata’ >a>b,r>1 and a’ =a

(mod 2%). Then
((CD - @)2” =0 (mod 2"*%).

Proof. Clearly, the lemma holds for b = 1. If b>1, let E(z) =

[1°Zs (2—i). Then
()50 (-1
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and E(d') — E(a) =0 (mod o’ — a). Hence E(d') — E(a) =0 (mod 2%) as
a' =a (mod 2°%). Let 27 || bl. From
=[b b
Vo ; [21] < iz:; oi

we get v, < b — 1. This implies that

((i) - <Z>>26r =2"(E(d) — E(a))z(bb_!l)r =0 (mod 2"*°). m

LEMMA 4. Let t,t',r,s € N be such thatt' >t >1 and t' =t (mod 2%).
Then

t—i—1\_. t+1
( ! >2”=0(mod27“+8), %gigt—l.
1

Proof. For (t—i—'l)/2§i§t—1, we have t/ — 21 <t/ —t <t —¢—1.
This implies that H;;B(t’ —i—j—1)=0 (mod 2%) as t’ =t (mod 2°). Let
27 || 41, Since 7; < i — 1, we get

¢ —i—1\., ..2r6-D
Tt __ T . . _ r4+s
< ; >2 =2 f H(t—z—j—l):O(mod2 ). m
7=0
LEMMA 5. If min(Dy, D2) > 1 and the equation
(4) D X2+ Dy Y? =272 ged(X,Y)=1, Z>0,
has solutions (X,Y, Z), then all solutions of (4) are given by
XvDi+Yy=Dy _ (X1yDi+ XYiy/=Ds\'
2 B 2 ’
AN e {—1,1},

where t € N with 2tt, (X1,Y1,Z1) is a unique positive solution of (4) such
that Zy < Z for all solutions of (4). (X1,Y1,Z1) is called the least solution

of (4).
Proof. Notice that the only solutions of the equation u?—(—Dj Dy)v? =

1 are (u,v) = (£1,0). By much the same argument as in the proof of
Lemmas 11 and 12 of [9], we can prove the lemma without difficulty. =

7 =7,

LEMMA 6. Let a1,as be complexr numbers with as # 0. The solution of
the difference equation

Um42 = Q1 Umt1 + G2Um,  m >0,
with given initial conditions ug, uy S

U = uoF'(m) + (u1 —arug)F(m—1), m >0,
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where
0 if m <0,
1 ifm =0,
F(m) = 3 <T1 Z T2>a71"1ag2 if m>0.

r1+2ro=m
71,7220

Proof. By the definition of F(m),

[m/2]
F(m) = Z <m T2> a71"_27"2a72"2 , m>0.

T2 =0

2 — 1-— — -1
<m+ 7"2) _ (m—i— 7’2) N (m (ro )>’ ry > 0.
T2 T2 7’2—1

we have

Since

Fim+2)=aF(m+1)+aF(m), m>0.
Clearly, the lemma holds for m = 0 or 1. Now we assume that it holds
for some m with m > 1. Then we have

Um41 = A1 Uy, + A2Up—1
= a1 (uoF'(m) + (u1 — arug)F(m — 1))
+ as(ugF(m — 1) + (u; — ayug)F(m — 2))
= w1 F(m) + aguoF(m — 1)
= w1 F(m) +up(F(m+ 1) — a1 F(m))
=uoF(m+ 1)+ (u1 — arug)F(m).
Thus, by induction on m, the lemma is proved. m
Let « be a nonzero algebraic number with the defining polynomial
apz" + a1z . 4 ar =ag(z—0o1a)... (2 —0opa),  ag >0,

where o1, ...,0.«a are all the conjugates of @. Then

1 T
h(a) = ;(Log ag + ; Log max(1, \Uia\))
is called Weil’s height of a.

LEMMA 7. Let a be an algebraic number with degree 2, and let loga
be any nonzero determination of the logarithm of . If h(a) > 2me and
A = by loga — bylog(—1) # 0 for some by,bs € N with max(by,by) > 10°,
then

|A| > exp(—21590A(1 + Log B + Log Log 2B)?)
where A = h(a)), B = max(by, bs).
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Proof. Put oy = a and ay = —1. By the definitions of [11], we
have D = 2, f = 2e, a1 = h(a) + Log2 and ay = me. Since h(a) > 2me
and B > 10°, we may choose Z = 1.5 and G = 1 + Log B + Log Log2B.
Notice that oy and as are multiplicatively dependent numbers. We see from
Figure 4 of [11] that C'/Z3 = 158, co = 59.59, ¢; = 1.88 and ¢ = 4.94. Thus,
by Theorem 5.11 of [11], the lemma is proved. m

LEMMA 8 ([6]). Let F,,, be the m-th Fibonacci number. If F,, is a power
of 2, thenm =1,2,3 or 6.
LEMMA 9 ([3]). The only solutions of the equation
X2+ XY —2XY? -Y® =1
are (X,Y) = (1,0), (0,—1), (~=1,1), (2,-1), (=1,2), (5,4), (4,—9) and
(=9,5). m
LEMMA 10 ([2]). Let a € Z with a # 0, and let f(X,Y) € Z[X,Y] be a

homogeneous polynomial of degree r > 3 which is irreducible over Q. Then
all solutions (X,Y") of the equation

f(X,)Y)=a
satisfy
max(|X], [Y') < exp((rH)*" + (Log|al)"*?).
where H is the height of f(X,Y). m
Remark. By some better estimates for the upper bound of solutions

of Thue’s equation (cf. Gyéry and Papp [7]), the bound max(D;, Dy) >
expexpexp 105 in Theorem 2 can be improved.

3. Further preliminary lemmas. Notice that if D; = d? is a square
and (z,n) is a solution of (1), then (z’,n’) = (dx,n) is a solution of the
equation

224+ Dy =2"12 2/ >0,n >0.
We may assume that min(Dy, Do) > 1 and D; is not a square.

LeEMMA 11. Equation (1) has a solution (z,n) if and only if (4) has
solutions (X,Y, Z) and its least solution (X1,Y1,Z1) satisfies Y1 = 1.

Proof. If Y7 = 1, then (1) has a solution (x,n) = (X1,Z1). On the
other hand, if (z,n) is a solution of (1), then (z,1,n) is a solution of (4).
By Lemma 5, we have

2v/Di +v=Ds _ A(XMDTH/YI\/—Th)t

=7
(5) n 1t7 9 9

AN e{-1,1}, teN, 2{t.
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Let
. )\le/Dl + NYiv/—Ds _— )\Xp/Dl — NY1vV—Do
1 — ) 1 — .
2 2

Since D1 X2 + DY = 2%1%2 by Lemma 1, from (5) we get

t_ =t t_ =t

€1~ ¢1 v €1 T €1

1= =\ —
v/ —Do 161 — €1
(t=1)/2 "
=Y = \t—2i—-1 =\t
1 ; [i]<€1 81) (5151)
(t=1)/2
=AY, ~DyYP) = 25,
IR MIEATES
=0
This implies that Y1 = 1. =
LEMMA 12. Let
(6) - X1v D1+ V—Ds = X1V Dy — v —Ds
B 2 ’ B 2 ‘

If Z1 > 1, 2% || Dy — (=1)(P2=1/2 gnd (1) has a solution (x,n) with (x,n) #
(X1,741), then
et -2 t=1 Do+l
2

(7) n==27Zit, ——=(-1)> :

€—¢E
where t = 2%, + 1, t1 €N, 24t1, a =21 — f+ 1.
Proof. By the proof of Lemma 11, we have n = Z;t and

gt — gt

8 — AN,
®) e—¢
where t € N, 24t and ¢t > 1. By Lemma 1, we get
(t—1)/2 "
AN = —Dy)7 2% = (=Dy)7 (mod 27

whence we obtain

0 et — gt (t—1)/2 " H tfl—i2Z1i . t—1 Do+l
— — 2 = (— 2 2

) —= 3 |l]D) (-1)

=0

since Z; > 1 and Dy — (—1)P2=1/2 =0 (mod 4). If t = 2%¢; + 1, t; € N
and 2{ty, then

=1 t=1 Da+1

5

(10) (—D») (=1)=7 —z =2°FF71 (mod 2°%F).
By (9) and (10), weget a =2, — G+ 1. m
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LEMMA 13. If Z1 > 1 and (7) holds for some t € N with t > 1 and 21t,
then t is an odd prime.

Proof. Suppose that ¢ is not a prime. Then ¢ has an odd prime factor
pwithp <t Ift=2%% 41, p=2%+1and t/p = 2% t3 + 1, where
t1,to,t3 € N with 2ft1t2t3, then

— : !/ " 'f a/ # a//
11 { min(o/, o) i ,
( ) o > a/ lf a/ — a//.

For any m € Z with m > 0, let Y,,, = (¢"™ —€™)/(¢ —€). By Lemma 1,

we have Y}, Y}/, € Z. If (7) holds, then
i P _ =P p\t/p _ (zP\t/P
1.ogn1 P —EP (D) (gP)

(1) =

E—¢€ ep —¢p
Wb/ o
j=0

This implies that Y}, = £1 and (|(¢? +&P)/(¢ +€)|,pZ1) is a solution of (1).
Therefore, by the proof of Lemma 12, we have a = o’ = " = Z; — 3+ 1,
which contradicts (11). Thus ¢ is an odd prime. =

LEMMA 14. If (7) holds for some t € N, then t < 8.5 - 10°.

Proof. For any complex number z, we have either |e* — 1| > 1/2 or
le* — 1| > |z — km/—1]/2 for some k € Z. Hence

(12)  Logle" —&"| > tLog|e| + Log

tlog £ klog(—1)| — Log 2,
€

where k € Z with |k| <t. Since
(13) D1 X7 + Dy =27%2

we see from (6) that /e satisfies

—\ 2 —
1
2 <6> _g(DlX%—D2>§+2zl =0,
(14) 9 9
D X?-D
ng (2Z1’1122> =1.

This implies that /e is not a root of unity. Therefore, A = tlog(g/e) —
klog(—1) # 0. From (13) and (14), h(Z/c) = Log2%/? and the degree of
Q(E/e) is equal to 2. By Lemma 7, we have

|A] > exp(—21590(Log 2%1/2+1) (1 + Log t + Log Log 2t)?) .
Substituting this into (12) gives
(15)  Logle' — &

> tLog |e| — 21590(Log 2%1/%*1)(1 + Logt + Log Log 2t)? — Log 2.
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Notice that || = 241/2 and |e — &| = /Dy < 2(41+2)/2_ 1f (7) holds, then
from (15) we get

Log 2(#172)/2+1 4 91590(Log 2%1/2+1)(1+ Log t + Log Log 2t)? > t Log 271/ ,

whence we obtain t < 8.5-10°. m

4. Proofs
ASSERTION 1. N(5,3) = 2.

Proof. Since 5+ 3 = 23, we see that (1,1, 1) is the least solution of the
equation

5X2 432 =272 gcd(X,Y)=1, Z>0.
By Lemma 5, if (z,n) is a solution of the equation
(16) 50243=2""2 2£>0,n>0,
with (x,n) # (1,1), then there exist some ¢ € N such that

mw—*gﬂ(ﬁ@v—*s)t,

(17) n=t, 5

MN e{-1,1}, t>1, 21t.

From (17), we get

- (t—1)/2 N L
(18) +2171 = (=3)z + z; (2Z,>5l(_3)2—1.
Since 22 = 32 = —1 (mod 5), we find from (18) that t =1 (mod 4) and
e - (t—=1)/2 Ny o
(19) (-)7T4T —37 = ; <22> 51(—3)= .

Let t = 2°50t; 4 1, where a,t; € N, 3 € Z, 3 > 0, ged(10,¢,) = 1.
Notice that

(20) 5,8+2 H (_1)(t—1)/44(t—1)/2 - 3(t—1)/2 )

t
5 5ﬁ+1
(5)

by Lemma 2. Hence (19) is impossible. If 5 = 0, then from (19) and (20) we
get 5| t, since 32 +42 = 52. Let t = 5"t', where r,#' € N with ged(10,¢') = 1.

If 6 > 0, then

(t-1)/2 ;
50+1 5i(_3) 7
> ()5

=1
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By Lemma 2, we have

(t—1)/2 "
r+1 i o\igt—i
5 > (2i>5( 3) .

i=1

Therefore, » = 1 by (19) and (20). On the other hand, if ' > 1, then

(t'—1)/2 ” -
2t =1 — 5(—3)= I
S (o)7e

Jj=0

by (17). By much the same argument as above, we can prove that 5|t a
contradiction. Thus ¢ = 1 and ¢ = 5. It follows from (17) that (16) has
only one solution (z,n) = (5,5) with (z,n) # (1,1). =

ASSERTION 2. If
(D1, Do) = (3,13), (5,11), (7,25), (9,23), (1,23), (15,49), (17,47),
(31,97), (33,95), (63,193), (7,193), (65,191), (127,385),
(129,383), (255,769), (257,767), (511,1537), (513,1535),
(57,1535), (1023,3073), (1025,3071), (41,3071), (3,29),
(21,11), (13,3),
then N(Dl,DQ) =2.

Proof. For the case (D1, D3) = (3,13), (1) has two solutions (z,n) =
(1,2) and (9,6). Let o = (v3++v/—13)/2, 0 = (V3—+/—13)/2, and let k,, =
(g*mt1 —g?m*1) /(o — o) for any m € Z with m > 0. Then K = {k,,}>°_,
is an integer sequence satisfying
(21) ]{0 = 1, k‘l = —1, k‘m+2 = —5k'm+1 — 16km y m Z 0.

By Lemma 12, if N(3,13) > 2, then there exist some ¢ € N such that
(22) k(tfl)/gz—l, t>3, 21t.

Let p be an odd prime, and let k,(,f) = ky, (mod p) with 0 < /{:7(5) <
p. By (21), we find that if p = 17,19,23,29,37 and 47, then {k{}>_,
are periodic sequences with periods [ = 36,180,132,35,342 and 23 re-
spectively. Moreover, k&) = —1 (mod p) if and only if m = 1 (mod I).
This implies that if (22) holds, then (¢t —1)/2 = 1 (mod L), where L =
lem(36, 180, 132, 35,342, 23) = 5782510 > 5 - 105. So we have ¢ > 107. This
is impossible by Lemma 14. Thus N(3,13) = 2.

Using the same method, we can prove the other cases. The details of the
proof will be given in: D.-Y. Jin and M.-H. Le, Application of computers to
number theory research I, to appear. m
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ASSERTION 3. Let €, be defined as in (6). If Zy > 1 and there exist
t1,t2 € N such that to > t1 > 1, 2¢t1t2 and

t1 =
(23) ST =1, =12

E—¢€

then ty > 2Z1(t1i—1)+1
Proof. If (23) holds, then (1) has two solutions. By Lemma 12, we

have t; = t2 (mod 4) and
gh —gh t1—1 Do+1

24 — = (—1)77 7z l=1,2.

(24) = =) =1

For any m € Z with m > 0, let Y,,, = (¢™ —&€™)/(¢ —€). Then

(25)  Yo=0, Yi=1, Ypio=Xi/DYpi1—2%4Y,,, m>0,

by (13). On applying Lemma 6 to (25), we get

(26) Y=Fm-1), m>0,

where
0 if m <0,
1 if m=0,

N Fm={ <ﬁ+r2>(xlm)n<_2ayz it m > 0.

r
r1+2ra=m 1
r1,r22>0

Hence, from (24), (26) and (27), we get

t1—1 Do+1

(—1) Yy, = P - 1)
(ti—1)/2

t;— tr —1—1 - . .

= (D XD + > (l : >(D1X12)tl21_1(—2zl)’
2

=1

for [ = 1,2. It follows that

(28)  (—1)7T TE (DX ) [+ L4+ I =0,
where
(t1—1)/2 . .
to—1—1 t1—1—1 t2=1_, i
h= 2 ((2 i )_<1 i ))(DlX%) (=2,
=1
= to—1—1 o\ f2=t Z1\i
L= Y R OB
i=(t1+1)/2

(ta—1)/2 ¢ i—1 L

-t e i

D S
i=t
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Let 2 ||t; — 1, 2% || Dy — (=1)(P2=1/2 and 2|ty — t;. Recall that 3 =
Z1—a+1< Z; +2 by Lemma 12. We have

28 | D1 X2 — (—1)P2¥D/2 = (D, — (—1)P271)/2) 4 97142
Hence
9B+s—1 || (DlXIQ)(tQ—tl)/z 1.
This implies that
(29) 9Z1—a+s I (D1X12)(t27t1)/2 _1.

On the other hand, by Lemmas 3 and 4, we have I; =0 (mod 2%:*%) and
I, =0 (mod 2%1%+9) respectively. Therefore, by (29), if (28) holds, then

(30) gZ1=ats || o

Since I3 = 0 (mod 2%%1), from (30) we get Zi1t; < Z; — a + s. Hence
ty —t > 25 >2%M0-DF g

Proof of Theorem 1. By Assertion 1, the theorem holds for Z; = 1.
From now on we assume that Z; > 1.

By Lemmas 11-13, if N(Dq,D3) > 2, then (24) holds for some odd
primes tq,ty with to > t;. Further, by Lemma 14 and Assertion 3, we have

(31) 8.5-10% > ty > 241 (ti—D+1

When t; = 3, from (9) we get Dy — (—1)(P2=1)/2 = 3.2%1 This implies
that the pair (Dp, D) is exceptional. From (31), we get Z; < 10. By
Assertion 2, N(Dq, Dy) = 2.

When t; = 5, we have (Dy — 5 -2%71)2 — 5.22%=1) = 1. Since
L2 —5F2 = (—1)™4 gives all solutions of the equation u? — 5v% = +4, 2%
is a Fibonacci number. Since Z; > 1, by Lemma 8, we find that Z; = 3 and
(D1, D2) = (3,29) or (21,11). By Assertion 2, N(Dy, D3) = 2.

When t; = 7, we have

(D2 _ 2Zl+1)3 + 2Z1 (D2 _ 221+1)2 _ 22Z1+1(D2 _ 2Z1+1) o 2321 = +1.

By Lemma 9, we find that Z; = 2 and (D1, D3) = (13,3). Then N(Dq, D3)
= 2 by Assertion 2.

When ¢; = 11, we see from (31) that Z; = 2. Notice that (1) has no
solution (x,n) with n = 22 for (D1, D2) = (3,13), (5,11), (7,9), (11,5) and
(13,3). Hence (24) is impossible.

When t; > 13, (31) is impossible for Z; > 1. =

Proof of Theorem 2. According to the proof of Theorem 1, if
max (D1, Dg) > 29, (D1, Ds) is not exceptional and N(Dy, D3) > 1, then
(9) holds for some odd prime ¢ with

(32) 85100 >1>7.
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Let
(t—1)/2 "
t—1 . .
X.Y)= X7z 'Y,
=3 (]
Notice that

M‘l’ [(t—t1)/2]_t’ mzo(modt% j=1,...,(t=1)/2

for any odd prime ¢. By Eisenstein’s theorem, f(X,Y) is a homogeneous
polynomial of degree (¢t — 1)/2 with integer coefficients which is irreducible
in Q. From (9) we get

(33) f(=Dg,27%) = 41,
Since
t—1

max [t} <27,
i=0,0,(t—1)/2 | 1
if (33) holds for t > 7, then

1 ; RVTERENC N
(34) 1 max(D1, Dy) < max(D2,27") <exp | |2 —

by Lemma 10. The combination of (32) and (34) yields max(Dy, D) <
expexpexp 105. m
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