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1. Introduction. Let Z, N, Q be the sets of integers, positive inte-
gers and rational numbers respectively. Let D1, D2 ∈ N be odd, and let
N(D1, D2) denote the number of solutions (1) (x, n) of the equation

(1) D1x
2 + D2 = 2n+2 , x > 0 , n > 0 .

There are many papers concerned with upper bounds for N(D1, D2) when
min(D1, D2) = 1. The known results include the following:

1 (Nagell [12]). N(1, 7) = 5.
2 (Apéry [1]). If D2 6= 7, then N(1, D2) ≤ 2.
3 (Beukers [5]). N(1, 23) = N(1, 2r+2 − 1) = 2 for r > 1, otherwise

N(1, D2) ≤ 1 for D2 6= 7.
4 (Le [8]). N(7, 1) = 2, otherwise N(D1, 1) ≤ 1.

We have not been able to find similar results for the case min(D1, D2)>1.
In this paper we prove a general result as follows:

Theorem 1. If min(D1, D2) > 1 and (D1, D2) 6= (3, 5), then N(D1, D2)
≤ 2.

By [4], we see that N(3, 5) = 3. On the other hand, we notice that if
D1, D2 satisfy

(2) D1X
2
1 = 2Z1 − (−1)(D2−1)/2 , D2 = 3 · 2Z1 + (−1)(D2−1)/2 ,

X1, Z1 ∈ N , Z1 > 1 ,

then (1) has two solutions

(3) (x, n) = (X1, Z1) , ((2Z1+1 + (−1)(D2−1)/2)X1, 3Z1) .

Supported by the National Natural Science Foundation of China.
(1) Throughout this paper, “solution” and “positive solution” are abbreviations for

“integer solution” and “positive integer solution” respectively.
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Such a pair (D1, D2) will be called exceptional . By Theorem 1, if (D1, D2) 6=
(3, 5) and (D1, D2) is exceptional, then N(D1, D2) = 2. For the remaining
cases, we have:

Theorem 2. If min(D1, D2) > 1, max(D1, D2) > exp exp exp 105 and
(D1, D2) is not exceptional , then N(D1, D2) ≤ 1.

This theorem determines all but a finite number of (D1, D2) for which
N(D1, D2) > 1.

2. Preliminaries

Lemma 1 ([10, Formula 1.76]). For any m ∈ N and any complex numbers
α and β, we have

αm + βm =
[m/2]∑
i=0

(−1)i

[
m

i

]
(α + β)m−2i(αβ)i ,

where [
m

i

]
=

(m− i− 1)!m
(m− 2i)!i!

∈ N , i = 0, . . . , [m/2] .

Lemma 2. If p is an odd prime with p > 3, t ∈ N, t > 2, t(t− 1) = prs,
r, s ∈ N and p - s, then (

t

2i

)
pi ≡ 0 (mod pr+2)

for i > 1.

P r o o f. Let pαi ‖ 2i(2i− 1). Since p ≥ 5 and gcd(2i, 2i− 1) = 1, we get
αi ≤ [Log 2i/ Log p] ≤ i− 2. From(

t

2i

)
pi = p2t(t− 1)

(
t− 2
2i− 2

)
pi−2

2i(2i− 1)
,

the lemma follows.

Lemma 3. Let a, a′, b, r, s ∈ N be such that a′ > a ≥ b, r > 1 and a′ ≡ a
(mod 2s). Then ((

a′

b

)
−

(
a

b

))
2br ≡ 0 (mod 2r+s) .

P r o o f. Clearly, the lemma holds for b = 1. If b>1, let E(z) =∏b−1
i=0 (z−i). Then (

a′

b

)
=

E(a′)
b!

,

(
a

b

)
=

E(a)
b!

,



Diophantine equation D1x2 + D2 = 2n+2 31

and E(a′) − E(a) ≡ 0 (mod a′ − a). Hence E(a′) − E(a) ≡ 0 (mod 2s) as
a′ ≡ a (mod 2s). Let 2γb ‖ b!. From

γb =
∞∑

i=1

[
b

2i

]
<

∞∑
i=0

b

2i
= b

we get γb ≤ b− 1. This implies that((
a′

b

)
−

(
a

b

))
2br = 2r(E(a′)− E(a))

2(b−1)r

b!
≡ 0 (mod 2r+s) .

Lemma 4. Let t, t′, r, s ∈ N be such that t′ > t > 1 and t′ ≡ t (mod 2s).
Then (

t′ − i− 1
i

)
2ri ≡ 0 (mod 2r+s) ,

t + 1
2

≤ i ≤ t− 1 .

P r o o f. For (t + 1)/2 ≤ i ≤ t − 1, we have t′ − 2i < t′ − t ≤ t′ − i − 1.
This implies that

∏i−1
j=0(t

′− i− j− 1) ≡ 0 (mod 2s) as t′ ≡ t (mod 2s). Let
2γi ‖ i!. Since γi ≤ i− 1, we get(

t′ − i− 1
i

)
2ri = 2r 2r(i−1)

i!

i−1∏
j=0

(t− i− j − 1) ≡ 0 (mod 2r+s) .

Lemma 5. If min(D1, D2) > 1 and the equation

(4) D1X
2 + D2Y

2 = 2Z+2 , gcd(X, Y ) = 1 , Z > 0 ,

has solutions (X, Y, Z), then all solutions of (4) are given by

Z = Z1t ,
X
√

D1 + Y
√
−D2

2
= λ

(
X1

√
D1 + λ′Y1

√
−D2

2

)t

,

λ, λ′ ∈ {−1, 1} ,

where t ∈ N with 2 - t, (X1, Y1, Z1) is a unique positive solution of (4) such
that Z1 ≤ Z for all solutions of (4). (X1, Y1, Z1) is called the least solution
of (4).

P r o o f. Notice that the only solutions of the equation u2−(−D1D2)v2 =
1 are (u, v) = (±1, 0). By much the same argument as in the proof of
Lemmas 11 and 12 of [9], we can prove the lemma without difficulty.

Lemma 6. Let a1, a2 be complex numbers with a2 6= 0. The solution of
the difference equation

um+2 = a1um+1 + a2um , m ≥ 0 ,

with given initial conditions u0, u1 is

um = u0F (m) + (u1 − a1u0)F (m− 1) , m ≥ 0 ,
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where

F (m) =


0 if m < 0,
1 if m = 0,∑
r1+2r2=m

r1,r2≥0

(
r1 + r2

r1

)
ar1
1 ar2

2 if m > 0.

P r o o f. By the definition of F (m),

F (m) =
[m/2]∑
r2=0

(
m− r2

r2

)
am−2r2
1 ar2

2 , m ≥ 0 .

Since (
m + 2− r2

r2

)
=

(
m + 1− r2

r2

)
+

(
m− (r2 − 1)

r2 − 1

)
, r2 ≥ 0 ,

we have
F (m + 2) = a1F (m + 1) + a2F (m) , m ≥ 0 .

Clearly, the lemma holds for m = 0 or 1. Now we assume that it holds
for some m with m > 1. Then we have

um+1 = a1um + a2um−1

= a1(u0F (m) + (u1 − a1u0)F (m− 1))
+ a2(u0F (m− 1) + (u1 − a1u0)F (m− 2))

= u1F (m) + a2u0F (m− 1)
= u1F (m) + u0(F (m + 1)− a1F (m))
= u0F (m + 1) + (u1 − a1u0)F (m) .

Thus, by induction on m, the lemma is proved.

Let α be a nonzero algebraic number with the defining polynomial

a0z
r + a1z

r−1 + . . . + ar = a0(z − σ1α) . . . (z − σrα) , a0 > 0 ,

where σ1α, . . . , σrα are all the conjugates of α. Then

h(α) =
1
r

(
Log a0 +

r∑
i=1

Log max(1, |σiα|)
)

is called Weil’s height of α.

Lemma 7. Let α be an algebraic number with degree 2, and let log α
be any nonzero determination of the logarithm of α. If h(α) ≥ 2πe and
Λ = b1 log α − b2 log(−1) 6= 0 for some b1, b2 ∈ N with max(b1, b2) ≥ 105,
then

|Λ| ≥ exp(−21590A(1 + Log B + Log Log 2B)2) ,

where A = h(α), B = max(b1, b2).
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P r o o f. Put α1 = α and α2 = −1. By the definitions of [11], we
have D = 2, f = 2e, a1 = h(α) + Log 2 and a2 = πe. Since h(α) ≥ 2πe
and B ≥ 105, we may choose Z = 1.5 and G = 1 + Log B + Log Log 2B.
Notice that α1 and α2 are multiplicatively dependent numbers. We see from
Figure 4 of [11] that C/Z3 = 158, c0 = 59.59, c1 = 1.88 and c = 4.94. Thus,
by Theorem 5.11 of [11], the lemma is proved.

Lemma 8 ([6]). Let Fm be the m-th Fibonacci number. If Fm is a power
of 2, then m = 1, 2, 3 or 6.

Lemma 9 ([3]). The only solutions of the equation

X3 + X2Y − 2XY 2 − Y 3 = 1

are (X, Y ) = (1, 0), (0,−1), (−1, 1), (2,−1), (−1, 2), (5, 4), (4,−9) and
(−9, 5).

Lemma 10 ([2]). Let a ∈ Z with a 6= 0, and let f(X, Y ) ∈ Z[X, Y ] be a
homogeneous polynomial of degree r ≥ 3 which is irreducible over Q. Then
all solutions (X, Y ) of the equation

f(X, Y ) = a

satisfy

max(|X|, |Y |) < exp((rH)(10r)5 + (Log |a|)2r+2) ,

where H is the height of f(X, Y ).

R e m a r k. By some better estimates for the upper bound of solutions
of Thue’s equation (cf. Győry and Papp [7]), the bound max(D1, D2) >
exp exp exp 105 in Theorem 2 can be improved.

3. Further preliminary lemmas. Notice that if D1 = d2 is a square
and (x, n) is a solution of (1), then (x′, n′) = (dx, n) is a solution of the
equation

x′2 + D2 = 2n′+2 , x′ > 0 , n′ > 0 .

We may assume that min(D1, D2) > 1 and D1 is not a square.

Lemma 11. Equation (1) has a solution (x, n) if and only if (4) has
solutions (X, Y, Z) and its least solution (X1, Y1, Z1) satisfies Y1 = 1.

P r o o f. If Y1 = 1, then (1) has a solution (x, n) = (X1, Z1). On the
other hand, if (x, n) is a solution of (1), then (x, 1, n) is a solution of (4).
By Lemma 5, we have

(5) n = Z1t ,
x
√

D1 +
√
−D2

2
= λ

(
X1

√
D1 + λ′Y1

√
−D2

2

)t

,

λ, λ′ ∈ {−1, 1} , t ∈ N , 2 - t .
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Let

ε1 = λ
X1

√
D1 + λ′Y1

√
−D2

2
, ε1 = λ

X1

√
D1 − λ′Y1

√
−D2

2
.

Since D1X
2
1 + D2Y

2
1 = 2Z1+2, by Lemma 1, from (5) we get

1 =
εt
1 − εt

1√
−D2

= λλ′Y1
εt
1 − εt

1

ε1 − ε1

= λλ′Y1

(t−1)/2∑
i=0

[
t

i

]
(ε1 − ε1)t−2i−1(ε1ε1)i

= λλ′Y1

(t−1)/2∑
i=0

[
t

i

]
(−D2Y

2
1 )

t−1
2 2Z1i .

This implies that Y1 = 1.

Lemma 12. Let

(6) ε =
X1

√
D1 +

√
−D2

2
, ε =

X1

√
D1 −

√
−D2

2
.

If Z1 > 1, 2β ‖D2− (−1)(D2−1)/2 and (1) has a solution (x, n) with (x, n) 6=
(X1, Z1), then

(7) n = Z1t ,
εt − εt

ε− ε
= (−1)

t−1
2 ·D2+1

2 ,

where t = 2αt1 + 1, t1 ∈ N, 2 - t1, α = Z1 − β + 1.

P r o o f. By the proof of Lemma 11, we have n = Z1t and

(8)
εt − εt

ε− ε
= λλ′ ,

where t ∈ N, 2 - t and t > 1. By Lemma 1, we get

λλ′ =
(t−1)/2∑

i=0

[
t

i

]
(−D2)

t−1
2 −i2Z1i ≡ (−D2)

t−1
2 (mod 2Z1) ,

whence we obtain

(9)
εt − εt

ε− ε
=

(t−1)/2∑
i=0

[
t

i

]
(−D2)

t−1
2 −i2Z1i = (−1)

t−1
2 ·D2+1

2

since Z1 > 1 and D2 − (−1)(D2−1)/2 ≡ 0 (mod 4). If t = 2αt1 + 1, t1 ∈ N
and 2 - t1, then

(10) (−D2)
t−1
2 − (−1)

t−1
2 ·D2+1

2 ≡ 2α+β−1 (mod 2α+β) .

By (9) and (10), we get α = Z1 − β + 1.
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Lemma 13. If Z1 > 1 and (7) holds for some t ∈ N with t > 1 and 2 - t,
then t is an odd prime.

P r o o f. Suppose that t is not a prime. Then t has an odd prime factor
p with p < t. If t = 2αt1 + 1, p = 2α′t2 + 1 and t/p = 2α′′t3 + 1, where
t1, t2, t3 ∈ N with 2 - t1t2t3, then

(11) α
{

= min(α′, α′′) if α′ 6= α′′,
> α′ if α′ = α′′.

For any m ∈ Z with m ≥ 0, let Ym = (εm − εm)/(ε− ε). By Lemma 1,
we have Yp, Yt/p ∈ Z. If (7) holds, then

(−1)
t−1
2 ·D2+1

2 =
εp − εp

ε− ε
· (εp)t/p − (εp)t/p

εp − εp

= Yp

(t/p−1)/2∑
j=0

[
t/p

j

]
(−D2Y

2
p )

t/p−1
2 −j2Z1pj .

This implies that Yp = ±1 and (|(εp + εp)/(ε + ε)|, pZ1) is a solution of (1).
Therefore, by the proof of Lemma 12, we have α = α′ = α′′ = Z1 − β + 1,
which contradicts (11). Thus t is an odd prime.

Lemma 14. If (7) holds for some t ∈ N, then t < 8.5 · 106.

P r o o f. For any complex number z, we have either |ez − 1| > 1/2 or
|ez − 1| ≥ |z − kπ

√
−1|/2 for some k ∈ Z. Hence

(12) Log |εt − εt| ≥ t Log |ε|+ Log
∣∣∣∣t log

ε

ε
− k log(−1)

∣∣∣∣− Log 2 ,

where k ∈ Z with |k| ≤ t. Since

(13) D1X
2
1 + D2 = 2Z1+2 ,

we see from (6) that ε/ε satisfies

(14)
2Z1

(
ε

ε

)2

− 1
2
(D1X

2
1 −D2)

ε

ε
+ 2Z1 = 0 ,

gcd
(

2Z1 ,
D1X

2
1 −D2

2

)
= 1 .

This implies that ε/ε is not a root of unity. Therefore, Λ = t log(ε/ε) −
k log(−1) 6= 0. From (13) and (14), h(ε/ε) = Log 2Z1/2 and the degree of
Q(ε/ε) is equal to 2. By Lemma 7, we have

|Λ| > exp(−21590(Log 2Z1/2+1)(1 + Log t + Log Log 2t)2) .

Substituting this into (12) gives

(15) Log |εt − εt|
> tLog |ε| − 21590(Log 2Z1/2+1)(1 + Log t + Log Log 2t)2 − Log 2 .
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Notice that |ε| = 2Z1/2 and |ε − ε| =
√

D2 < 2(Z1+2)/2. If (7) holds, then
from (15) we get

Log 2(Z1+2)/2+1+21590(Log 2Z1/2+1)(1+Log t+Log Log 2t)2 > tLog 2Z1/2 ,

whence we obtain t < 8.5 · 106.

4. Proofs

Assertion 1. N(5, 3) = 2.

P r o o f. Since 5 + 3 = 23, we see that (1, 1, 1) is the least solution of the
equation

5X2 + 3Y 2 = 2Z+2 , gcd(X, Y ) = 1 , Z > 0 .

By Lemma 5, if (x, n) is a solution of the equation

(16) 5x2 + 3 = 2n+2 , x > 0 , n > 0 ,

with (x, n) 6= (1, 1), then there exist some t ∈ N such that

(17) n = t ,
x
√

5 +
√
−3

2
= λ

(√
5 + λ′

√
−3

2

)t

,

λ, λ′ ∈ {−1, 1} , t > 1 , 2 - t .

From (17), we get

(18) ±2t−1 = (−3)
t−1
2 +

(t−1)/2∑
i=1

(
t

2i

)
5i(−3)

t−1
2 −i .

Since 22 ≡ 32 ≡ −1 (mod 5), we find from (18) that t ≡ 1 (mod 4) and

(19) (−1)
t−1
4 4

t−1
2 − 3

t−1
2 =

(t−1)/2∑
i=1

(
t

2i

)
5i(−3)

t−1
2 −i .

Let t = 2α5βt1 + 1, where α, t1 ∈ N, β ∈ Z, β ≥ 0, gcd(10, t1) = 1.
Notice that

(20) 5β+2 ‖ (−1)(t−1)/44(t−1)/2 − 3(t−1)/2 .

If β > 0, then

5β+1

∥∥∥∥(
t

2

)
5 , 5β+1

∥∥∥∥ (t−1)/2∑
i=1

(
t

2i

)
5i(−3)

t−1
2 −i

by Lemma 2. Hence (19) is impossible. If β = 0, then from (19) and (20) we
get 5 | t, since 32 +42 = 52. Let t = 5rt′, where r, t′ ∈ N with gcd(10, t′) = 1.
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By Lemma 2, we have

5r+1

∥∥∥∥ (t−1)/2∑
i=1

(
t

2i

)
5i(−3)

t−1
2 −i .

Therefore, r = 1 by (19) and (20). On the other hand, if t′ > 1, then

2t′−1 =
(t′−1)/2∑

j=0

(
t′

2j

)
5j(−3)

t′−1
2 −j

by (17). By much the same argument as above, we can prove that 5 | t′, a
contradiction. Thus t′ = 1 and t = 5. It follows from (17) that (16) has
only one solution (x, n) = (5, 5) with (x, n) 6= (1, 1).

Assertion 2. If

(D1, D2) = (3, 13), (5, 11), (7, 25), (9, 23), (1, 23), (15, 49), (17, 47),

(31, 97), (33, 95), (63, 193), (7, 193), (65, 191), (127, 385),

(129, 383), (255, 769), (257, 767), (511, 1537), (513, 1535),

(57, 1535), (1023, 3073), (1025, 3071), (41, 3071), (3, 29),

(21, 11), (13, 3),

then N(D1, D2) = 2.

P r o o f. For the case (D1, D2) = (3, 13), (1) has two solutions (x, n) =
(1, 2) and (9, 6). Let % = (

√
3+

√
−13)/2, % = (

√
3−

√
−13)/2, and let km =

(%2m+1 − %2m+1)/(%− %) for any m ∈ Z with m ≥ 0. Then K = {km}∞m=0

is an integer sequence satisfying

(21) k0 = 1 , k1 = −1 , km+2 = −5km+1 − 16km , m ≥ 0 .

By Lemma 12, if N(3, 13) > 2, then there exist some t ∈ N such that

(22) k(t−1)/2 = −1 , t > 3 , 2 - t .

Let p be an odd prime, and let k
(p)
m ≡ km (mod p) with 0 ≤ k

(p)
m <

p. By (21), we find that if p = 17, 19, 23, 29, 37 and 47, then {k(p)
m }∞m=0

are periodic sequences with periods l = 36, 180, 132, 35, 342 and 23 re-
spectively. Moreover, k

(p)
m ≡ −1 (mod p) if and only if m ≡ 1 (mod l).

This implies that if (22) holds, then (t − 1)/2 ≡ 1 (mod L), where L =
lcm(36, 180, 132, 35, 342, 23) = 5782510 > 5 · 106. So we have t > 107. This
is impossible by Lemma 14. Thus N(3, 13) = 2.

Using the same method, we can prove the other cases. The details of the
proof will be given in: D.-Y. Jin and M.-H. Le, Application of computers to
number theory research I , to appear.
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Assertion 3. Let ε, ε be defined as in (6). If Z1 > 1 and there exist
t1, t2 ∈ N such that t2 > t1 > 1, 2 - t1t2 and

(23)
∣∣∣∣εtl − εtl

ε− ε

∣∣∣∣ = 1 , l = 1, 2,

then t2 > 2Z1(t1−1)+1.

P r o o f. If (23) holds, then (1) has two solutions. By Lemma 12, we
have t1 ≡ t2 (mod 4) and

(24)
εtl − εtl

ε− ε
= (−1)

t1−1
2 ·D2+1

2 , l = 1, 2.

For any m ∈ Z with m ≥ 0, let Ym = (εm − εm)/(ε− ε). Then

(25) Y0 = 0 , Y1 = 1 , Ym+2 = X1

√
D1Ym+1 − 2Z1Ym , m ≥ 0 ,

by (13). On applying Lemma 6 to (25), we get

(26) Ym = F (m− 1) , m ≥ 0 ,

where

(27) F (m) =


0 if m < 0,
1 if m = 0,∑
r1+2r2=m

r1,r2≥0

(
r1 + r2

r1

)
(X1

√
D1)r1(−2Z1)r2 if m > 0.

Hence, from (24), (26) and (27), we get

(−1)
t1−1

2 ·D2+1
2 = Ytl

= F (tl − 1)

= (D1X
2
1 )

tl−1
2 +

(tl−1)/2∑
i=1

(
tl − i− 1

i

)
(D1X

2
1 )

tl−1
2 −i(−2Z1)i

for l = 1, 2. It follows that

(28) (−1)
t1−1

2 ·D2+1
2 ((D1X

2
1 )(t2−t1)/2 − 1) + I1 + I2 + I3 = 0 ,

where

I1 =
(t1−1)/2∑

i=1

((
t2 − i− 1

i

)
−

(
t1 − i− 1

i

))
(D1X

2
1 )

t2−1
2 −i(−2Z1)i ,

I2 =
t1−1∑

i=(t1+1)/2

(
t2 − i− 1

i

)
(D1X

2
1 )

t2−1
2 −i(−2Z1)i ,

I3 =
(t2−1)/2∑

i=t1

(
t2 − i− 1

i

)
(D1X

2
1 )

t2−1
2 −i(−2Z1)i .
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Let 2α ‖ t1 − 1, 2β ‖D2 − (−1)(D2−1)/2 and 2s ‖ t2 − t1. Recall that β =
Z1 − α + 1 < Z1 + 2 by Lemma 12. We have

2β ‖D1X
2
1 − (−1)(D2+1)/2 = −(D2 − (−1)(D2−1)/2) + 2Z1+2 .

Hence
2β+s−1 ‖ (D1X

2
1 )(t2−t1)/2 − 1 .

This implies that

(29) 2Z1−α+s ‖ (D1X
2
1 )(t2−t1)/2 − 1 .

On the other hand, by Lemmas 3 and 4, we have I1 ≡ 0 (mod 2Z1+s) and
I2 ≡ 0 (mod 2Z1+s) respectively. Therefore, by (29), if (28) holds, then

(30) 2Z1−α+s ‖ I3 .

Since I3 ≡ 0 (mod 2Z1t1), from (30) we get Z1t1 ≤ Z1 − α + s. Hence
t2 − t1 ≥ 2s ≥ 2Z1(t1−1)+1.

P r o o f o f T h e o r e m 1. By Assertion 1, the theorem holds for Z1 = 1.
From now on we assume that Z1 > 1.

By Lemmas 11–13, if N(D1, D2) > 2, then (24) holds for some odd
primes t1, t2 with t2 > t1. Further, by Lemma 14 and Assertion 3, we have

(31) 8.5 · 106 > t2 > 2Z1(t1−1)+1 .

When t1 = 3, from (9) we get D2 − (−1)(D2−1)/2 = 3 · 2Z1 . This implies
that the pair (D1, D2) is exceptional. From (31), we get Z1 ≤ 10. By
Assertion 2, N(D1, D2) = 2.

When t1 = 5, we have (D2 − 5 · 2Z1−1)2 − 5 · 22(Z1−1) = 1. Since
L2

m − 5F 2
m = (−1)m4 gives all solutions of the equation u2 − 5v2 = ±4, 2Z1

is a Fibonacci number. Since Z1 > 1, by Lemma 8, we find that Z1 = 3 and
(D1, D2) = (3, 29) or (21, 11). By Assertion 2, N(D1, D2) = 2.

When t1 = 7, we have

(D2 − 2Z1+1)3 + 2Z1(D2 − 2Z1+1)2 − 22Z1+1(D2 − 2Z1+1)− 23Z1 = ±1 .

By Lemma 9, we find that Z1 = 2 and (D1, D2) = (13, 3). Then N(D1, D2)
= 2 by Assertion 2.

When t1 = 11, we see from (31) that Z1 = 2. Notice that (1) has no
solution (x, n) with n = 22 for (D1, D2) = (3, 13), (5, 11), (7, 9), (11, 5) and
(13, 3). Hence (24) is impossible.

When t1 ≥ 13, (31) is impossible for Z1 > 1.

P r o o f o f T h e o r e m 2. According to the proof of Theorem 1, if
max(D1, D2) > 29, (D1, D2) is not exceptional and N(D1, D2) > 1, then
(9) holds for some odd prime t with

(32) 8.5 · 106 > t > 7 .
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Let

f(X, Y ) =
(t−1)/2∑

i=0

[
t

i

]
X

t−1
2 −iY i .

Notice that[
t

0

]
= 1 ,

[
t

(t− 1)/2

]
= t ,

[
t

j

]
≡ 0 (mod t) , j = 1, . . . , (t− 1)/2

for any odd prime t. By Eisenstein’s theorem, f(X, Y ) is a homogeneous
polynomial of degree (t− 1)/2 with integer coefficients which is irreducible
in Q. From (9) we get

(33) f(−D2, 2Z1) = ±1 .

Since

max
i=0,...,(t−1)/2

[
t

i

]
< 2t−1 ,

if (33) holds for t ≥ 7, then

(34)
1
4

max(D1, D2) < max(D2, 2Z1) < exp
((

2t−1

(
t− 1

2

))(5(t−1))5)
by Lemma 10. The combination of (32) and (34) yields max(D1, D2) <
exp exp exp 105.
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