On the diophantine equation $D_{1} x^{2}+D_{2}=2^{n+2}$

by

Maohua Le (Changsha)

1. Introduction. Let $\mathbb{Z}, \mathbb{N}, \mathbb{Q}$ be the sets of integers, positive integers and rational numbers respectively. Let $D_{1}, D_{2} \in \mathbb{N}$ be odd, and let $N\left(D_{1}, D_{2}\right)$ denote the number of solutions $\left(^{1}\right)(x, n)$ of the equation

$$
\begin{equation*}
D_{1} x^{2}+D_{2}=2^{n+2}, \quad x>0, n>0 \tag{1}
\end{equation*}
$$

There are many papers concerned with upper bounds for $N\left(D_{1}, D_{2}\right)$ when $\min \left(D_{1}, D_{2}\right)=1$. The known results include the following:

1 (Nagell [12]). $N(1,7)=5$.
2 (Apéry [1]). If $D_{2} \neq 7$, then $N\left(1, D_{2}\right) \leq 2$.
3 (Beukers [5]). $N(1,23)=N\left(1,2^{r+2}-1\right)=2$ for $r>1$, otherwise $N\left(1, D_{2}\right) \leq 1$ for $D_{2} \neq 7$.

4 (Le [8]). $N(7,1)=2$, otherwise $N\left(D_{1}, 1\right) \leq 1$.
We have not been able to find similar results for the case $\min \left(D_{1}, D_{2}\right)>1$. In this paper we prove a general result as follows:

Theorem 1. If $\min \left(D_{1}, D_{2}\right)>1$ and $\left(D_{1}, D_{2}\right) \neq(3,5)$, then $N\left(D_{1}, D_{2}\right)$ ≤ 2.

By [4], we see that $N(3,5)=3$. On the other hand, we notice that if D_{1}, D_{2} satisfy

$$
\begin{align*}
& D_{1} X_{1}^{2}=2^{Z_{1}}-(-1)^{\left(D_{2}-1\right) / 2}, \quad D_{2}=3 \cdot 2^{Z_{1}}+(-1)^{\left(D_{2}-1\right) / 2}, \tag{2}\\
& X_{1}, Z_{1} \in \mathbb{N}, Z_{1}>1,
\end{align*}
$$

then (1) has two solutions

$$
\begin{equation*}
(x, n)=\left(X_{1}, Z_{1}\right), \quad\left(\left(2^{Z_{1}+1}+(-1)^{\left(D_{2}-1\right) / 2}\right) X_{1}, 3 Z_{1}\right) . \tag{3}
\end{equation*}
$$

[^0]Such a pair $\left(D_{1}, D_{2}\right)$ will be called exceptional. By Theorem 1 , if $\left(D_{1}, D_{2}\right) \neq$ $(3,5)$ and $\left(D_{1}, D_{2}\right)$ is exceptional, then $N\left(D_{1}, D_{2}\right)=2$. For the remaining cases, we have:

Theorem 2. If $\min \left(D_{1}, D_{2}\right)>1$, $\max \left(D_{1}, D_{2}\right)>\exp \exp \exp 105$ and $\left(D_{1}, D_{2}\right)$ is not exceptional, then $N\left(D_{1}, D_{2}\right) \leq 1$.

This theorem determines all but a finite number of $\left(D_{1}, D_{2}\right)$ for which $N\left(D_{1}, D_{2}\right)>1$.

2. Preliminaries

Lemma 1 ([10, Formula 1.76]). For any $m \in \mathbb{N}$ and any complex numbers α and β, we have

$$
\alpha^{m}+\beta^{m}=\sum_{i=0}^{[m / 2]}(-1)^{i}\left[\begin{array}{c}
m \\
i
\end{array}\right](\alpha+\beta)^{m-2 i}(\alpha \beta)^{i},
$$

where

$$
\left[\begin{array}{c}
m \\
i
\end{array}\right]=\frac{(m-i-1)!m}{(m-2 i)!i!} \in \mathbb{N}, \quad i=0, \ldots,[m / 2]
$$

Lemma 2. If p is an odd prime with $p>3, t \in \mathbb{N}, t>2, t(t-1)=p^{r} s$, $r, s \in \mathbb{N}$ and $p \nmid s$, then

$$
\binom{t}{2 i} p^{i} \equiv 0\left(\bmod p^{r+2}\right)
$$

for $i>1$.
Proof. Let $p^{\alpha_{i}} \| 2 i(2 i-1)$. Since $p \geq 5$ and $\operatorname{gcd}(2 i, 2 i-1)=1$, we get $\alpha_{i} \leq[\log 2 i / \log p] \leq i-2$. From

$$
\binom{t}{2 i} p^{i}=p^{2} t(t-1)\binom{t-2}{2 i-2} \frac{p^{i-2}}{2 i(2 i-1)},
$$

the lemma follows.
Lemma 3. Let $a, a^{\prime}, b, r, s \in \mathbb{N}$ be such that $a^{\prime}>a \geq b, r>1$ and $a^{\prime} \equiv a$ $\left(\bmod 2^{s}\right)$. Then

$$
\left(\binom{a^{\prime}}{b}-\binom{a}{b}\right) 2^{b r} \equiv 0\left(\bmod 2^{r+s}\right) .
$$

Proof. Clearly, the lemma holds for $b=1$. If $b>1$, let $E(z)=$ $\prod_{i=0}^{b-1}(z-i)$. Then

$$
\binom{a^{\prime}}{b}=\frac{E\left(a^{\prime}\right)}{b!}, \quad\binom{a}{b}=\frac{E(a)}{b!},
$$

and $E\left(a^{\prime}\right)-E(a) \equiv 0\left(\bmod a^{\prime}-a\right)$. Hence $E\left(a^{\prime}\right)-E(a) \equiv 0\left(\bmod 2^{s}\right)$ as $a^{\prime} \equiv a\left(\bmod 2^{s}\right)$. Let $2^{\gamma_{b}} \| b$!. From

$$
\gamma_{b}=\sum_{i=1}^{\infty}\left[\frac{b}{2^{i}}\right]<\sum_{i=0}^{\infty} \frac{b}{2^{i}}=b
$$

we get $\gamma_{b} \leq b-1$. This implies that

$$
\left(\binom{a^{\prime}}{b}-\binom{a}{b}\right) 2^{b r}=2^{r}\left(E\left(a^{\prime}\right)-E(a)\right) \frac{2^{(b-1) r}}{b!} \equiv 0\left(\bmod 2^{r+s}\right)
$$

Lemma 4. Let $t, t^{\prime}, r, s \in \mathbb{N}$ be such that $t^{\prime}>t>1$ and $t^{\prime} \equiv t\left(\bmod 2^{s}\right)$. Then

$$
\binom{t^{\prime}-i-1}{i} 2^{r i} \equiv 0\left(\bmod 2^{r+s}\right), \quad \frac{t+1}{2} \leq i \leq t-1
$$

Proof. For $(t+1) / 2 \leq i \leq t-1$, we have $t^{\prime}-2 i<t^{\prime}-t \leq t^{\prime}-i-1$. This implies that $\prod_{j=0}^{i-1}\left(t^{\prime}-i-j-1\right) \equiv 0\left(\bmod 2^{s}\right)$ as $t^{\prime} \equiv t\left(\bmod 2^{s}\right)$. Let $2^{\gamma_{i}} \| i$. Since $\gamma_{i} \leq i-1$, we get

$$
\binom{t^{\prime}-i-1}{i} 2^{r i}=2^{r} \frac{2^{r(i-1)}}{i!} \prod_{j=0}^{i-1}(t-i-j-1) \equiv 0\left(\bmod 2^{r+s}\right)
$$

Lemma 5. If $\min \left(D_{1}, D_{2}\right)>1$ and the equation

$$
\begin{equation*}
D_{1} X^{2}+D_{2} Y^{2}=2^{Z+2}, \quad \operatorname{gcd}(X, Y)=1, Z>0 \tag{4}
\end{equation*}
$$

has solutions (X, Y, Z), then all solutions of (4) are given by

$$
\begin{array}{r}
Z=Z_{1} t, \quad \frac{X \sqrt{D_{1}}+Y \sqrt{-D_{2}}}{2}=\lambda\left(\frac{X_{1} \sqrt{D_{1}}+\lambda^{\prime} Y_{1} \sqrt{-D_{2}}}{2}\right)^{t} \\
\lambda, \lambda^{\prime} \in\{-1,1\}
\end{array}
$$

where $t \in \mathbb{N}$ with $2 \nmid t,\left(X_{1}, Y_{1}, Z_{1}\right)$ is a unique positive solution of (4) such that $Z_{1} \leq Z$ for all solutions of $(4) .\left(X_{1}, Y_{1}, Z_{1}\right)$ is called the least solution of (4).

Proof. Notice that the only solutions of the equation $u^{2}-\left(-D_{1} D_{2}\right) v^{2}=$ 1 are $(u, v)=(\pm 1,0)$. By much the same argument as in the proof of Lemmas 11 and 12 of [9], we can prove the lemma without difficulty.

Lemma 6. Let a_{1}, a_{2} be complex numbers with $a_{2} \neq 0$. The solution of the difference equation

$$
u_{m+2}=a_{1} u_{m+1}+a_{2} u_{m}, \quad m \geq 0
$$

with given initial conditions u_{0}, u_{1} is

$$
u_{m}=u_{0} F(m)+\left(u_{1}-a_{1} u_{0}\right) F(m-1), \quad m \geq 0
$$

where

$$
F(m)=\left\{\begin{array}{lll}
0 & \text { if } m<0, \\
1 & \text { if } m=0, \\
\sum_{\substack{r_{1}+2 r_{2}=m \\
r_{1}, r_{2} \geq 0}}\binom{r_{1}+r_{2}}{r_{1}} a_{1}^{r_{1}} a_{2}^{r_{2}} & \text { if } m>0 .
\end{array}\right.
$$

Proof. By the definition of $F(m)$,

$$
F(m)=\sum_{r_{2}=0}^{[m / 2]}\binom{m-r_{2}}{r_{2}} a_{1}^{m-2 r_{2}} a_{2}^{r_{2}}, \quad m \geq 0 .
$$

Since

$$
\binom{m+2-r_{2}}{r_{2}}=\binom{m+1-r_{2}}{r_{2}}+\binom{m-\left(r_{2}-1\right)}{r_{2}-1}, \quad r_{2} \geq 0,
$$

we have

$$
F(m+2)=a_{1} F(m+1)+a_{2} F(m), \quad m \geq 0 .
$$

Clearly, the lemma holds for $m=0$ or 1 . Now we assume that it holds for some m with $m>1$. Then we have

$$
\begin{aligned}
u_{m+1}= & a_{1} u_{m}+a_{2} u_{m-1} \\
= & a_{1}\left(u_{0} F(m)+\left(u_{1}-a_{1} u_{0}\right) F(m-1)\right) \\
& +a_{2}\left(u_{0} F(m-1)+\left(u_{1}-a_{1} u_{0}\right) F(m-2)\right) \\
= & u_{1} F(m)+a_{2} u_{0} F(m-1) \\
= & u_{1} F(m)+u_{0}\left(F(m+1)-a_{1} F(m)\right) \\
= & u_{0} F(m+1)+\left(u_{1}-a_{1} u_{0}\right) F(m) .
\end{aligned}
$$

Thus, by induction on m, the lemma is proved.
Let α be a nonzero algebraic number with the defining polynomial

$$
a_{0} z^{r}+a_{1} z^{r-1}+\ldots+a_{r}=a_{0}\left(z-\sigma_{1} \alpha\right) \ldots\left(z-\sigma_{r} \alpha\right), \quad a_{0}>0,
$$

where $\sigma_{1} \alpha, \ldots, \sigma_{r} \alpha$ are all the conjugates of α. Then

$$
h(\alpha)=\frac{1}{r}\left(\log a_{0}+\sum_{i=1}^{r} \log \max \left(1,\left|\sigma_{i} \alpha\right|\right)\right)
$$

is called Weil's height of α.
Lemma 7. Let α be an algebraic number with degree 2 , and let $\log \alpha$ be any nonzero determination of the logarithm of α. If $h(\alpha) \geq 2 \pi e$ and $\Lambda=b_{1} \log \alpha-b_{2} \log (-1) \neq 0$ for some $b_{1}, b_{2} \in \mathbb{N}$ with $\max \left(b_{1}, b_{2}\right) \geq 10^{5}$, then

$$
|\Lambda| \geq \exp \left(-21590 A(1+\log B+\log \log 2 B)^{2}\right)
$$

where $A=h(\alpha), B=\max \left(b_{1}, b_{2}\right)$.

Proof. Put $\alpha_{1}=\alpha$ and $\alpha_{2}=-1$. By the definitions of [11], we have $D=2, f=2 e, a_{1}=h(\alpha)+\log 2$ and $a_{2}=\pi e$. Since $h(\alpha) \geq 2 \pi e$ and $B \geq 10^{5}$, we may choose $Z=1.5$ and $G=1+\log B+\log \log 2 B$. Notice that α_{1} and α_{2} are multiplicatively dependent numbers. We see from Figure 4 of [11] that $C / Z^{3}=158, c_{0}=59.59, c_{1}=1.88$ and $c=4.94$. Thus, by Theorem 5.11 of [11], the lemma is proved.

Lemma 8 ([6]). Let F_{m} be the m-th Fibonacci number. If F_{m} is a power of 2 , then $m=1,2,3$ or 6 .

Lemma 9 ([3]). The only solutions of the equation

$$
X^{3}+X^{2} Y-2 X Y^{2}-Y^{3}=1
$$

are $(X, Y)=(1,0),(0,-1),(-1,1),(2,-1),(-1,2),(5,4),(4,-9)$ and $(-9,5)$.

Lemma 10 ([2]). Let $a \in \mathbb{Z}$ with $a \neq 0$, and let $f(X, Y) \in \mathbb{Z}[X, Y]$ be a homogeneous polynomial of degree $r \geq 3$ which is irreducible over \mathbb{Q}. Then all solutions (X, Y) of the equation

$$
f(X, Y)=a
$$

satisfy

$$
\max (|X|,|Y|)<\exp \left((r H)^{(10 r)^{5}}+(\log |a|)^{2 r+2}\right)
$$

where H is the height of $f(X, Y)$.
Remark. By some better estimates for the upper bound of solutions of Thue's equation (cf. Győry and Papp [7]), the bound $\max \left(D_{1}, D_{2}\right)>$ $\exp \exp \exp 105$ in Theorem 2 can be improved.
3. Further preliminary lemmas. Notice that if $D_{1}=d^{2}$ is a square and (x, n) is a solution of (1), then $\left(x^{\prime}, n^{\prime}\right)=(d x, n)$ is a solution of the equation

$$
x^{\prime 2}+D_{2}=2^{n^{\prime}+2}, \quad x^{\prime}>0, n^{\prime}>0 .
$$

We may assume that $\min \left(D_{1}, D_{2}\right)>1$ and D_{1} is not a square.
Lemma 11. Equation (1) has a solution (x, n) if and only if (4) has solutions (X, Y, Z) and its least solution $\left(X_{1}, Y_{1}, Z_{1}\right)$ satisfies $Y_{1}=1$.

Proof. If $Y_{1}=1$, then (1) has a solution $(x, n)=\left(X_{1}, Z_{1}\right)$. On the other hand, if (x, n) is a solution of (1), then $(x, 1, n)$ is a solution of (4). By Lemma 5, we have

$$
\begin{equation*}
n=Z_{1} t, \quad \frac{x \sqrt{D_{1}}+\sqrt{-D_{2}}}{2}=\lambda\left(\frac{X_{1} \sqrt{D_{1}}+\lambda^{\prime} Y_{1} \sqrt{-D_{2}}}{2}\right)^{t}, \tag{5}
\end{equation*}
$$

Let

$$
\varepsilon_{1}=\lambda \frac{X_{1} \sqrt{D_{1}}+\lambda^{\prime} Y_{1} \sqrt{-D_{2}}}{2}, \quad \bar{\varepsilon}_{1}=\lambda \frac{X_{1} \sqrt{D_{1}}-\lambda^{\prime} Y_{1} \sqrt{-D_{2}}}{2} .
$$

Since $D_{1} X_{1}^{2}+D_{2} Y_{1}^{2}=2^{Z_{1}+2}$, by Lemma 1, from (5) we get

$$
\begin{aligned}
1 & =\frac{\varepsilon_{1}^{t}-\bar{\varepsilon}_{1}^{t}}{\sqrt{-D_{2}}}=\lambda \lambda^{\prime} Y_{1} \frac{\varepsilon_{1}^{t}-\bar{\varepsilon}_{1}^{t}}{\varepsilon_{1}-\bar{\varepsilon}_{1}} \\
& =\lambda \lambda^{\prime} Y_{1} \sum_{i=0}^{(t-1) / 2}\left[\begin{array}{l}
t \\
i
\end{array}\right]\left(\varepsilon_{1}-\bar{\varepsilon}_{1}\right)^{t-2 i-1}\left(\varepsilon_{1} \bar{\varepsilon}_{1}\right)^{i} \\
& =\lambda \lambda^{\prime} Y_{1} \sum_{i=0}^{(t-1) / 2}\left[\begin{array}{l}
t \\
i
\end{array}\right]\left(-D_{2} Y_{1}^{2}\right)^{\frac{t-1}{2}} 2^{Z_{1} i} .
\end{aligned}
$$

This implies that $Y_{1}=1$.
Lemma 12. Let

$$
\begin{equation*}
\varepsilon=\frac{X_{1} \sqrt{D_{1}}+\sqrt{-D_{2}}}{2}, \quad \bar{\varepsilon}=\frac{X_{1} \sqrt{D_{1}}-\sqrt{-D_{2}}}{2} . \tag{6}
\end{equation*}
$$

If $Z_{1}>1,2^{\beta} \| D_{2}-(-1)^{\left(D_{2}-1\right) / 2}$ and (1) has a solution (x, n) with $(x, n) \neq$ $\left(X_{1}, Z_{1}\right)$, then

$$
\begin{equation*}
n=Z_{1} t, \quad \frac{\varepsilon^{t}-\bar{\varepsilon}^{t}}{\varepsilon-\bar{\varepsilon}}=(-1)^{\frac{t-1}{2} \cdot \frac{D_{2}+1}{2}}, \tag{7}
\end{equation*}
$$

where $t=2^{\alpha} t_{1}+1, t_{1} \in \mathbb{N}, 2 \nmid t_{1}, \alpha=Z_{1}-\beta+1$.
Proof. By the proof of Lemma 11, we have $n=Z_{1} t$ and

$$
\begin{equation*}
\frac{\varepsilon^{t}-\bar{\varepsilon}^{t}}{\varepsilon-\bar{\varepsilon}}=\lambda \lambda^{\prime} \tag{8}
\end{equation*}
$$

where $t \in \mathbb{N}, 2 \nmid t$ and $t>1$. By Lemma 1 , we get

$$
\lambda \lambda^{\prime}=\sum_{i=0}^{(t-1) / 2}\left[\begin{array}{l}
t \\
i
\end{array}\right]\left(-D_{2}\right)^{\frac{t-1}{2}-i_{2} Z_{1} i} \equiv\left(-D_{2}\right)^{\frac{t-1}{2}}\left(\bmod 2^{Z_{1}}\right),
$$

whence we obtain

$$
\frac{\varepsilon^{t}-\bar{\varepsilon}^{t}}{\varepsilon-\bar{\varepsilon}}=\sum_{i=0}^{(t-1) / 2}\left[\begin{array}{l}
t \tag{9}\\
i
\end{array}\right]\left(-D_{2}\right)^{\frac{t-1}{2}-i} 2^{Z_{1} i}=(-1)^{\frac{t-1}{2} \cdot \frac{D_{2}+1}{2}}
$$

since $Z_{1}>1$ and $D_{2}-(-1)^{\left(D_{2}-1\right) / 2} \equiv 0(\bmod 4)$. If $t=2^{\alpha} t_{1}+1, t_{1} \in \mathbb{N}$ and $2 \nmid t_{1}$, then

$$
\begin{equation*}
\left(-D_{2}\right)^{\frac{t-1}{2}}-(-1)^{\frac{t-1}{2} \cdot \frac{D_{2}+1}{2}} \equiv 2^{\alpha+\beta-1}\left(\bmod 2^{\alpha+\beta}\right) . \tag{10}
\end{equation*}
$$

By (9) and (10), we get $\alpha=Z_{1}-\beta+1$.

Lemma 13. If $Z_{1}>1$ and (7) holds for some $t \in \mathbb{N}$ with $t>1$ and $2 \nmid t$, then t is an odd prime.

Proof. Suppose that t is not a prime. Then t has an odd prime factor p with $p<t$. If $t=2^{\alpha} t_{1}+1, p=2^{\alpha^{\prime}} t_{2}+1$ and $t / p=2^{\alpha^{\prime \prime}} t_{3}+1$, where $t_{1}, t_{2}, t_{3} \in \mathbb{N}$ with $2 \nmid t_{1} t_{2} t_{3}$, then

$$
\alpha \begin{cases}=\min \left(\alpha^{\prime}, \alpha^{\prime \prime}\right) & \text { if } \alpha^{\prime} \neq \alpha^{\prime \prime} \tag{11}\\ >\alpha^{\prime} & \text { if } \alpha^{\prime}=\alpha^{\prime \prime}\end{cases}
$$

For any $m \in \mathbb{Z}$ with $m \geq 0$, let $Y_{m}=\left(\varepsilon^{m}-\bar{\varepsilon}^{m}\right) /(\varepsilon-\bar{\varepsilon})$. By Lemma 1 , we have $Y_{p}, Y_{t / p} \in \mathbb{Z}$. If (7) holds, then

$$
\begin{aligned}
(-1)^{\frac{t-1}{2} \cdot \frac{D_{2}+1}{2}} & =\frac{\varepsilon^{p}-\bar{\varepsilon}^{p}}{\varepsilon-\bar{\varepsilon}} \cdot \frac{\left(\varepsilon^{p}\right)^{t / p}-\left(\bar{\varepsilon}^{p}\right)^{t / p}}{\varepsilon^{p}-\bar{\varepsilon}^{p}} \\
& =Y_{p} \sum_{j=0}^{(t / p-1) / 2}\left[\begin{array}{c}
t / p \\
j
\end{array}\right]\left(-D_{2} Y_{p}^{2}\right)^{\frac{t / p-1}{2}-j} 2^{Z_{1} p j}
\end{aligned}
$$

This implies that $Y_{p}= \pm 1$ and $\left(\left|\left(\varepsilon^{p}+\bar{\varepsilon}^{p}\right) /(\varepsilon+\bar{\varepsilon})\right|, p Z_{1}\right)$ is a solution of (1). Therefore, by the proof of Lemma 12, we have $\alpha=\alpha^{\prime}=\alpha^{\prime \prime}=Z_{1}-\beta+1$, which contradicts (11). Thus t is an odd prime.

Lemma 14. If (7) holds for some $t \in \mathbb{N}$, then $t<8.5 \cdot 10^{6}$.
Proof. For any complex number z, we have either $\left|e^{z}-1\right|>1 / 2$ or $\left|e^{z}-1\right| \geq|z-k \pi \sqrt{-1}| / 2$ for some $k \in \mathbb{Z}$. Hence

$$
\begin{equation*}
\log \left|\varepsilon^{t}-\bar{\varepsilon}^{t}\right| \geq t \log |\varepsilon|+\log \left|t \log \frac{\bar{\varepsilon}}{\varepsilon}-k \log (-1)\right|-\log 2 \tag{12}
\end{equation*}
$$

where $k \in \mathbb{Z}$ with $|k| \leq t$. Since

$$
\begin{equation*}
D_{1} X_{1}^{2}+D_{2}=2^{Z_{1}+2} \tag{13}
\end{equation*}
$$

we see from (6) that $\bar{\varepsilon} / \varepsilon$ satisfies

$$
\begin{gather*}
2^{Z_{1}}\left(\frac{\bar{\varepsilon}}{\varepsilon}\right)^{2}-\frac{1}{2}\left(D_{1} X_{1}^{2}-D_{2}\right) \frac{\bar{\varepsilon}}{\varepsilon}+2^{Z_{1}}=0 \tag{14}\\
\operatorname{gcd}\left(2^{Z_{1}}, \frac{D_{1} X_{1}^{2}-D_{2}}{2}\right)=1
\end{gather*}
$$

This implies that $\bar{\varepsilon} / \varepsilon$ is not a root of unity. Therefore, $\Lambda=t \log (\bar{\varepsilon} / \varepsilon)-$ $k \log (-1) \neq 0$. From (13) and (14), $h(\bar{\varepsilon} / \varepsilon)=\log 2^{Z_{1} / 2}$ and the degree of $\mathbb{Q}(\bar{\varepsilon} / \varepsilon)$ is equal to 2 . By Lemma 7, we have

$$
|\Lambda|>\exp \left(-21590\left(\log 2^{Z_{1} / 2+1}\right)(1+\log t+\log \log 2 t)^{2}\right) .
$$

Substituting this into (12) gives

$$
\begin{align*}
& \log \left|\varepsilon^{t}-\bar{\varepsilon}^{t}\right| \tag{15}\\
& \quad>t \log |\varepsilon|-21590\left(\log 2^{Z_{1} / 2+1}\right)(1+\log t+\log \log 2 t)^{2}-\log 2
\end{align*}
$$

Notice that $|\varepsilon|=2^{Z_{1} / 2}$ and $|\varepsilon-\bar{\varepsilon}|=\sqrt{D_{2}}<2^{\left(Z_{1}+2\right) / 2}$. If (7) holds, then from (15) we get
$\log 2^{\left(Z_{1}+2\right) / 2+1}+21590\left(\log 2^{Z_{1} / 2+1}\right)(1+\log t+\log \log 2 t)^{2}>t \log 2^{Z_{1} / 2}$, whence we obtain $t<8.5 \cdot 10^{6}$.

4. Proofs

Assertion 1. $N(5,3)=2$.
Proof. Since $5+3=2^{3}$, we see that $(1,1,1)$ is the least solution of the equation

$$
5 X^{2}+3 Y^{2}=2^{Z+2}, \quad \operatorname{gcd}(X, Y)=1, Z>0 .
$$

By Lemma 5 , if (x, n) is a solution of the equation

$$
\begin{equation*}
5 x^{2}+3=2^{n+2}, \quad x>0, n>0 \tag{16}
\end{equation*}
$$

with $(x, n) \neq(1,1)$, then there exist some $t \in \mathbb{N}$ such that

$$
\begin{equation*}
n=t, \quad \frac{x \sqrt{5}+\sqrt{-3}}{2}=\lambda\left(\frac{\sqrt{5}+\lambda^{\prime} \sqrt{-3}}{2}\right)^{t}, \tag{17}
\end{equation*}
$$

$$
\lambda, \lambda^{\prime} \in\{-1,1\}, t>1,2 \nmid t .
$$

From (17), we get

$$
\begin{equation*}
\pm 2^{t-1}=(-3)^{\frac{t-1}{2}}+\sum_{i=1}^{(t-1) / 2}\binom{t}{2 i} 5^{i}(-3)^{\frac{t-1}{2}-i} \tag{18}
\end{equation*}
$$

Since $2^{2} \equiv 3^{2} \equiv-1(\bmod 5)$, we find from (18) that $t \equiv 1(\bmod 4)$ and

$$
\begin{equation*}
(-1)^{\frac{t-1}{4}} 4^{\frac{t-1}{2}}-3^{\frac{t-1}{2}}=\sum_{i=1}^{(t-1) / 2}\binom{t}{2 i} 5^{i}(-3)^{\frac{t-1}{2}-i} \tag{19}
\end{equation*}
$$

Let $t=2^{\alpha} 5^{\beta} t_{1}+1$, where $\alpha, t_{1} \in \mathbb{N}, \beta \in \mathbb{Z}, \beta \geq 0, \operatorname{gcd}\left(10, t_{1}\right)=1$.
Notice that

$$
\begin{equation*}
5^{\beta+2} \|(-1)^{(t-1) / 4} 4^{(t-1) / 2}-3^{(t-1) / 2} \tag{20}
\end{equation*}
$$

If $\beta>0$, then

$$
5^{\beta+1}\left\|\binom{t}{2} 5, \quad 5^{\beta+1}\right\| \sum_{i=1}^{(t-1) / 2}\binom{t}{2 i} 5^{i}(-3)^{\frac{t-1}{2}-i}
$$

by Lemma 2. Hence (19) is impossible. If $\beta=0$, then from (19) and (20) we get $5 \mid t$, since $3^{2}+4^{2}=5^{2}$. Let $t=5^{r} t^{\prime}$, where $r, t^{\prime} \in \mathbb{N}$ with $\operatorname{gcd}\left(10, t^{\prime}\right)=1$.

By Lemma 2, we have

$$
5^{r+1} \| \sum_{i=1}^{(t-1) / 2}\binom{t}{2 i} 5^{i}(-3)^{\frac{t-1}{2}-i}
$$

Therefore, $r=1$ by (19) and (20). On the other hand, if $t^{\prime}>1$, then

$$
2^{t^{\prime}-1}=\sum_{j=0}^{\left(t^{\prime}-1\right) / 2}\binom{t^{\prime}}{2 j} 5^{j}(-3)^{\frac{t^{\prime}-1}{2}-j}
$$

by (17). By much the same argument as above, we can prove that $5 \mid t^{\prime}$, a contradiction. Thus $t^{\prime}=1$ and $t=5$. It follows from (17) that (16) has only one solution $(x, n)=(5,5)$ with $(x, n) \neq(1,1)$.

Assertion 2. If

$$
\begin{aligned}
\left(D_{1}, D_{2}\right)= & (3,13),(5,11),(7,25),(9,23),(1,23),(15,49),(17,47) \\
& (31,97),(33,95),(63,193),(7,193),(65,191),(127,385) \\
& (129,383),(255,769),(257,767),(511,1537),(513,1535) \\
& (57,1535),(1023,3073),(1025,3071),(41,3071),(3,29) \\
& (21,11),(13,3)
\end{aligned}
$$

then $N\left(D_{1}, D_{2}\right)=2$.
Proof. For the case $\left(D_{1}, D_{2}\right)=(3,13)$, (1) has two solutions $(x, n)=$ $(1,2)$ and $(9,6)$. Let $\varrho=(\sqrt{3}+\sqrt{-13}) / 2, \bar{\varrho}=(\sqrt{3}-\sqrt{-13}) / 2$, and let $k_{m}=$ $\left(\varrho^{2 m+1}-\bar{\varrho}^{2 m+1}\right) /(\varrho-\bar{\varrho})$ for any $m \in \mathbb{Z}$ with $m \geq 0$. Then $K=\left\{k_{m}\right\}_{m=0}^{\infty}$ is an integer sequence satisfying

$$
\begin{equation*}
k_{0}=1, \quad k_{1}=-1, \quad k_{m+2}=-5 k_{m+1}-16 k_{m}, \quad m \geq 0 \tag{21}
\end{equation*}
$$

By Lemma 12 , if $N(3,13)>2$, then there exist some $t \in \mathbb{N}$ such that

$$
\begin{equation*}
k_{(t-1) / 2}=-1, \quad t>3,2 \nmid t \tag{22}
\end{equation*}
$$

Let p be an odd prime, and let $k_{m}^{(p)} \equiv k_{m}(\bmod p)$ with $0 \leq k_{m}^{(p)}<$ p. By (21), we find that if $p=17,19,23,29,37$ and 47 , then $\left\{k_{m}^{(p)}\right\}_{m=0}^{\infty}$ are periodic sequences with periods $l=36,180,132,35,342$ and 23 respectively. Moreover, $k_{m}^{(p)} \equiv-1(\bmod p)$ if and only if $m \equiv 1(\bmod l)$. This implies that if (22) holds, then $(t-1) / 2 \equiv 1(\bmod L)$, where $L=$ $\operatorname{lcm}(36,180,132,35,342,23)=5782510>5 \cdot 10^{6}$. So we have $t>10^{7}$. This is impossible by Lemma 14. Thus $N(3,13)=2$.

Using the same method, we can prove the other cases. The details of the proof will be given in: D.-Y. Jin and M.-H. Le, Application of computers to number theory research I, to appear.

Assertion 3. Let $\varepsilon, \bar{\varepsilon}$ be defined as in (6). If $Z_{1}>1$ and there exist $t_{1}, t_{2} \in \mathbb{N}$ such that $t_{2}>t_{1}>1,2 \nmid t_{1} t_{2}$ and

$$
\begin{equation*}
\left|\frac{\varepsilon^{t_{l}}-\bar{\varepsilon}_{l}^{t_{l}}}{\varepsilon-\bar{\varepsilon}}\right|=1, \quad l=1,2, \tag{23}
\end{equation*}
$$

then $t_{2}>2^{Z_{1}\left(t_{1}-1\right)+1}$.
Proof. If (23) holds, then (1) has two solutions. By Lemma 12, we have $t_{1} \equiv t_{2}(\bmod 4)$ and

$$
\begin{equation*}
\frac{\varepsilon^{t_{l}}-\bar{\varepsilon}^{t_{l}}}{\varepsilon-\bar{\varepsilon}}=(-1)^{\frac{t_{1}-1}{2} \cdot \frac{D_{2}+1}{2}}, \quad l=1,2 . \tag{24}
\end{equation*}
$$

For any $m \in \mathbb{Z}$ with $m \geq 0$, let $Y_{m}=\left(\varepsilon^{m}-\bar{\varepsilon}^{m}\right) /(\varepsilon-\bar{\varepsilon})$. Then

$$
\begin{equation*}
Y_{0}=0, \quad Y_{1}=1, \quad Y_{m+2}=X_{1} \sqrt{D_{1}} Y_{m+1}-2^{Z_{1}} Y_{m}, \quad m \geq 0, \tag{25}
\end{equation*}
$$

by (13). On applying Lemma 6 to (25), we get

$$
\begin{equation*}
Y_{m}=F(m-1), \quad m \geq 0, \tag{26}
\end{equation*}
$$

where
(27) $\quad F(m)= \begin{cases}0 & \text { if } m<0, \\ 1 & \text { if } m=0, \\ \sum_{\substack{r_{1}+2 r_{2}=m \\ r_{1}, r_{2} \geq 0}}\binom{r_{1}+r_{2}}{r_{1}}\left(X_{1} \sqrt{D_{1}}\right)^{r_{1}}\left(-2^{Z_{1}}\right)^{r_{2}} & \text { if } m>0 .\end{cases}$

Hence, from (24), (26) and (27), we get

$$
\begin{aligned}
& (-1)^{\frac{t_{1}-1}{2} \cdot \frac{D_{2}+1}{2}}=Y_{t_{l}}=F\left(t_{l}-1\right) \\
& \quad=\left(D_{1} X_{1}^{2}\right)^{\frac{t_{l}-1}{2}}+\sum_{i=1}^{\left(t_{l}-1\right) / 2}\binom{t_{l}-i-1}{i}\left(D_{1} X_{1}^{2}\right)^{\frac{t_{l}-1}{2}-i}\left(-2^{Z_{1}}\right)^{i}
\end{aligned}
$$

for $l=1,2$. It follows that

$$
\begin{equation*}
(-1)^{\frac{t_{1}-1}{2} \cdot \frac{D_{2}+1}{2}}\left(\left(D_{1} X_{1}^{2}\right)^{\left(t_{2}-t_{1}\right) / 2}-1\right)+I_{1}+I_{2}+I_{3}=0, \tag{28}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{1}=\sum_{i=1}^{\left(t_{1}-1\right) / 2}\left(\binom{t_{2}-i-1}{i}-\binom{t_{1}-i-1}{i}\right)\left(D_{1} X_{1}^{2}\right)^{\frac{t_{2}-1}{2}-i}\left(-2^{Z_{1}}\right)^{i}, \\
& I_{2}=\sum_{i=\left(t_{1}+1\right) / 2}^{t_{1}-1}\binom{t_{2}-i-1}{i}\left(D_{1} X_{1}^{2}\right)^{\frac{t_{2}-1}{2}-i}\left(-2^{Z_{1}}\right)^{i}, \\
& I_{3}=\sum_{i=t_{1}}^{\left(t_{2}-1\right) / 2}\binom{t_{2}-i-1}{i}\left(D_{1} X_{1}^{2}\right)^{\frac{t_{2}-1}{2}-i}\left(-2^{Z_{1}}\right)^{i} .
\end{aligned}
$$

Let $2^{\alpha}\left\|t_{1}-1,2^{\beta}\right\| D_{2}-(-1)^{\left(D_{2}-1\right) / 2}$ and $2^{s} \| t_{2}-t_{1}$. Recall that $\beta=$ $Z_{1}-\alpha+1<Z_{1}+2$ by Lemma 12 . We have

$$
2^{\beta} \| D_{1} X_{1}^{2}-(-1)^{\left(D_{2}+1\right) / 2}=-\left(D_{2}-(-1)^{\left(D_{2}-1\right) / 2}\right)+2^{Z_{1}+2}
$$

Hence

$$
2^{\beta+s-1} \|\left(D_{1} X_{1}^{2}\right)^{\left(t_{2}-t_{1}\right) / 2}-1
$$

This implies that

$$
\begin{equation*}
2^{Z_{1}-\alpha+s} \|\left(D_{1} X_{1}^{2}\right)^{\left(t_{2}-t_{1}\right) / 2}-1 \tag{29}
\end{equation*}
$$

On the other hand, by Lemmas 3 and 4 , we have $I_{1} \equiv 0\left(\bmod 2^{Z_{1}+s}\right)$ and $I_{2} \equiv 0\left(\bmod 2^{Z_{1}+s}\right)$ respectively. Therefore, by (29), if (28) holds, then

$$
\begin{equation*}
2^{Z_{1}-\alpha+s} \| I_{3} \tag{30}
\end{equation*}
$$

Since $I_{3} \equiv 0\left(\bmod 2^{Z_{1} t_{1}}\right)$, from (30) we get $Z_{1} t_{1} \leq Z_{1}-\alpha+s$. Hence $t_{2}-t_{1} \geq 2^{s} \geq 2^{Z_{1}\left(t_{1}-1\right)+1}$.

Proof of Theorem 1. By Assertion 1, the theorem holds for $Z_{1}=1$. From now on we assume that $Z_{1}>1$.

By Lemmas 11-13, if $N\left(D_{1}, D_{2}\right)>2$, then (24) holds for some odd primes t_{1}, t_{2} with $t_{2}>t_{1}$. Further, by Lemma 14 and Assertion 3, we have

$$
\begin{equation*}
8.5 \cdot 10^{6}>t_{2}>2^{Z_{1}\left(t_{1}-1\right)+1} \tag{31}
\end{equation*}
$$

When $t_{1}=3$, from (9) we get $D_{2}-(-1)^{\left(D_{2}-1\right) / 2}=3 \cdot 2^{Z_{1}}$. This implies that the pair $\left(D_{1}, D_{2}\right)$ is exceptional. From (31), we get $Z_{1} \leq 10$. By Assertion 2, $N\left(D_{1}, D_{2}\right)=2$.

When $t_{1}=5$, we have $\left(D_{2}-5 \cdot 2^{Z_{1}-1}\right)^{2}-5 \cdot 2^{2\left(Z_{1}-1\right)}=1$. Since $L_{m}^{2}-5 F_{m}^{2}=(-1)^{m} 4$ gives all solutions of the equation $u^{2}-5 v^{2}= \pm 4,2^{Z_{1}}$ is a Fibonacci number. Since $Z_{1}>1$, by Lemma 8, we find that $Z_{1}=3$ and $\left(D_{1}, D_{2}\right)=(3,29)$ or $(21,11)$. By Assertion $2, N\left(D_{1}, D_{2}\right)=2$.

When $t_{1}=7$, we have

$$
\left(D_{2}-2^{Z_{1}+1}\right)^{3}+2^{Z_{1}}\left(D_{2}-2^{Z_{1}+1}\right)^{2}-2^{2 Z_{1}+1}\left(D_{2}-2^{Z_{1}+1}\right)-2^{3 Z_{1}}= \pm 1
$$

By Lemma 9, we find that $Z_{1}=2$ and $\left(D_{1}, D_{2}\right)=(13,3)$. Then $N\left(D_{1}, D_{2}\right)$ $=2$ by Assertion 2 .

When $t_{1}=11$, we see from (31) that $Z_{1}=2$. Notice that (1) has no solution (x, n) with $n=22$ for $\left(D_{1}, D_{2}\right)=(3,13),(5,11),(7,9),(11,5)$ and $(13,3)$. Hence (24) is impossible.

When $t_{1} \geq 13$, (31) is impossible for $Z_{1}>1$.
Proof of Theorem 2. According to the proof of Theorem 1, if $\max \left(D_{1}, D_{2}\right)>29,\left(D_{1}, D_{2}\right)$ is not exceptional and $N\left(D_{1}, D_{2}\right)>1$, then (9) holds for some odd prime t with

$$
\begin{equation*}
8.5 \cdot 10^{6}>t>7 \tag{32}
\end{equation*}
$$

Let

$$
f(X, Y)=\sum_{i=0}^{(t-1) / 2}\left[\begin{array}{l}
t \\
i
\end{array}\right] X^{\frac{t-1}{2}-i} Y^{i} .
$$

Notice that

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=1, \quad\left[\begin{array}{c}
t \\
(t-1) / 2
\end{array}\right]=t, \quad\left[\begin{array}{l}
t \\
j
\end{array}\right] \equiv 0(\bmod t), \quad j=1, \ldots,(t-1) / 2
$$

for any odd prime t. By Eisenstein's theorem, $f(X, Y)$ is a homogeneous polynomial of degree $(t-1) / 2$ with integer coefficients which is irreducible in \mathbb{Q}. From (9) we get

$$
\begin{equation*}
f\left(-D_{2}, 2^{Z_{1}}\right)= \pm 1 \tag{33}
\end{equation*}
$$

Since

$$
\max _{i=0, \ldots,(t-1) / 2}\left[\begin{array}{l}
t \\
i
\end{array}\right]<2^{t-1}
$$

if (33) holds for $t \geq 7$, then

$$
\begin{equation*}
\frac{1}{4} \max \left(D_{1}, D_{2}\right)<\max \left(D_{2}, 2^{Z_{1}}\right)<\exp \left(\left(2^{t-1}\left(\frac{t-1}{2}\right)\right)^{(5(t-1))^{5}}\right) \tag{34}
\end{equation*}
$$

by Lemma 10. The combination of (32) and (34) yields $\max \left(D_{1}, D_{2}\right)<$ $\exp \exp \exp 105$.

Acknowledgements. The author would like to thank the referee for his valuable suggestions.

References

[1] R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960), 1263-1264.
[2] A. Baker, Contribution to the theory of diophantine equations I : On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1967), 273-297.
[3] V. I. Baulin, On an indeterminate equation of the third degree with least positive discriminant, Tul'sk. Gos. Ped. Inst. Uchen. Zap. Fiz.-Mat. Nauk Vyp. 7 (1960), 138-170 (in Russian).
[4] E. Bender and N. Herzberg, Some diophantine equations related to the quadratic form $a x^{2}+b y^{2}$, in: Studies in Algebra and Number Theory, G.-C. Rota (ed.), Adv. in Math. Suppl. Stud. 6, Academic Press, San Diego 1979, 219-272.
[5] F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1981), 389-410.
[6] J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc. 39 (1964), 537-540.
[7] K. Győry and Z. Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, in: Studies in Pure Mathematics, Akadémiai Kiadó, Budapest 1983, 245-257.
[8] M.-H. Le, The divisibility of the class number for a class of imaginary quadratic fields, Kexue Tongbao (Chinese) 32 (1987), 724-727 (in Chinese).
[9] -, On the number of solutions of the generalized Ramanujan-Nagell equation $x^{2}-D$ $=2^{n+2}$, Acta Arith. 60 (1991), 149-167.
[10] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983.
[11] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method III, Ann. Fac. Sci. Toulouse 97 (1989), 43-75.
[12] T. Nagell, The diophantine equation $x^{2}+7=2^{n}$, Ark. Mat. 4 (1960), 185-187.
RESEARCH DEPARTMENT
CHANGSHA RAILWAY INSTITUTE
CHANGSHA, HUNAN
P. R. CHINA

[^0]: Supported by the National Natural Science Foundation of China.
 $\left({ }^{1}\right)$ Throughout this paper, "solution" and "positive solution" are abbreviations for "integer solution" and "positive integer solution" respectively.

