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1. Introduction. Several conditions are known for an infinite conver-
gent series

∑∞
n=1 bn/an of positive rational numbers to have an irrational

sum (see for instance [Erd], [ErG], [ErS], [Opp1], [Sán1], [Sán2] and the
references cited therein). In 1987, the author [Bad] proved the following
criterion of irrationality.

Theorem A. Let (an) and (bn), n ≥ 1, be two sequences of positive
integers such that

(1.1) an+1 >
bn+1

bn
a2

n −
bn+1

bn
an + 1

for all sufficiently large n. Then the sum of the series
∑∞

n=1 bn/an is an
irrational number.

Here and in the sequel we maintain the convention of [Bad] that all se-
ries which appear are supposed to be convergent. Moreover, (an) and (bn),
n ≥ 1, always denote sequences of positive integers. Also, for the sake of
brevity, we simply say “the series

∑∞
n=1 bn/an is irrational” instead of “the

sum of the series
∑∞

n=1 bn/an is an irrational number”.
We note that Theorem A is, in a certain sense, best possible. Indeed,

for a given sequence (bn) of positive integers and a given positive integer t,
we define the sequence (wn), wn = wn(bn, t), by w1 = 1 + tb1 and wn+1 =
1 + tbn+1w1 . . . wn for n ≥ 1. By induction one easily checks that the
following equalities are true:

wn+1 =
bn+1

bn
w2

n −
bn+1

bn
wn + 1 ,(1.2)

b1

w1
+ . . . +

bn

wn
=

1
t
− bn+1

wn+1 − 1
.(1.3)
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The last equality shows that
∑∞

n=1 bn/wn = 1/t. Thus the sequences (bn)
and (wn) satisfy (1.1) with the equality sign and the sum of

∑∞
n=1 bn/wn

is rational. This extends an example given in [Bad] for the case bn = 1,
n ≥ 1, t = 1, when the recurrence relation becomes wn+1 = 1 + w1 . . . wn.
It may be worthwile to mention that this particular sequence appears in
many different contexts (see for example [ErG], [Han], and the references
cited in [DaS]).

The aim of the present note is to prove a theorem on irrationality of
infinite series of positive rational terms which extends Theorem A, and to
present some applications of Theorem A and its generalizations. The paper
is organized in the following manner. In the next section we prove the gen-
eral theorem which emphasizes the relationship between the (ir)rationality of
convergent infinite series of positive rationals and some (in)equalities among
its terms. The applications (Section 3) include some results on the irrational-
ity of the sum of reciprocals of certain recurrence generated sequences, an
improvement of an old result of W. Sierpiński [Sie1] and a generalization of
a theorem due to A. Oppenheim [Opp2] concerning the algorithms which
are now [Gal] called Oppenheim expansions.

2. The main theorem. For fixed sequences (an) and (bn), n ≥ 1, and
for an increasing sequences N = n(k), k ≥ 1, of positive integers, we define

(2.1) Sk(N) = an(k)+1 . . . an(k+1)

and

(2.2) Rk(N) =
d(k)∑
j=1

Sk(N)bn(k)+j/an(k)+j ,

where d(k) = n(k + 1) − n(k). For the sequence N1 given by n(k) = k,
these new sequences reduce to Sk(N1) = ak+1 and Rk(N1) = bk+1. The
relationship between Sk(N), Rk(N) and the irrationality of the sum of the
series

∑∞
n=1 bn/an is given in the following theorem.

Theorem 2.1. If (an), (bn), Sk(N) and Rk(N) are as above with∑∞
n=1 bn/an convergent , then at least one of the following three situations

occurs:

(i) the series
∑∞

n=1 bn/an is irrational ;
(ii) for every increasing sequence N we have

(2.3) Sk+1(N) < Rk+1(N)(Rk(N))−1Sk(N)(Sk(N)− 1) + 1

for infinitely many values of k;
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(iii) there exists an increasing sequence N such that

(2.4) Sk+1(N) = Rk+1(N)(Rk(N))−1Sk(N)(Sk(N)− 1) + 1

for all sufficiently large integers k.

In fact, we shall prove the following result.

Theorem 2.1′. Suppose that
∑∞

n=1 bn/an is rational and there exists an
increasing sequence N such that

(2.5) Sk+1(N) ≥ Rk+1(N)(Rk(N))−1Sk(N)(Sk(N)− 1) + 1

for all sufficiently large k. Then in (2.5) we have equality from some k on.

P r o o f. We assume that the conditions of Theorem 2.1′ are satisfied but
the inequality in (2.5) is strict for infinitely many values of k. We have

p/q = lim
n→∞

An/Pn = lim
k→∞

An(k)/Pn(k) ,

where p/q is the sum of the series
∑∞

n=1 bn/an and

Pr = a1a2 . . . ar, Ar =
r∑

j=1

bjPr/aj .

First we derive a recurrence relation for An(k). We have

An(k+1) −An(k) = (an(k)+1 . . . an(k+1))An(k)

+ (bn(k)+1an(k)+2 . . . an(k+1) + . . .

+ bn(k+1)an(k)+1 . . . an(k+1)−1)Pn(k)

yielding

(2.6) An(k+1) = Sk(N)An(k) + Rk(N)Pn(k) .

We define
vk = (An(k+1) −An(k))/(Pn(k+1) − Pn(k)) .

Then
vk = ((Sk(N)− 1)An(k) + Rk(N)Pn(k))P−1

n(k)(Sk(N)− 1)−1

= An(k)P
−1
n(k) + Rk(N)(Sk(N)− 1)−1

and therefore
vk+1 − vk = An(k+1)P

−1
n(k+1) −An(k)P

−1
n(k)

+ Rk+1(N)(Sk+1(N)− 1)−1 −Rk(N)(Sk(N)− 1)−1 .

Using again the recurrence relation (2.6) we get

An(k+1)P
−1
n(k+1) −An(k)P

−1
n(k) = (An(k+1) − Sk(N)An(k))P−1

n(k+1)

= Rk(N)(Sk(N))−1 .
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Hence

vk+1 − vk = Rk+1(N)(Sk+1(N)− 1)−1 −Rk(N)(Sk(N)(Sk(N)− 1))−1

and (2.5) and our assumptions imply that vk+1 ≤ vk for all sufficiently large
k and vk+1 < vk for infinitely many k. We express this by saying that (vk)
is almost strictly decreasing .

On the other hand, we can write

(2.7) vk = An(k+1)P
−1
n(k+1)Sk(N)(Sk(N)−1)−1−An(k)P

−1
n(k)(Sk(N)−1)−1 .

The sequence (Sk(N)), k ≥ 1, is unbounded. Indeed, if Sk(N) < M for
all k, then

1 ≤ Rk(N) =
d(k)∑
j=1

Sk(N)bn(k)+j/an(k)+j < M

d(k)∑
j=1

bn(k)+j/an(k)+j ,

which is a contradiction since the right-hand side of the above sequence of
(in)equalities tends to zero as k tends to infinity. Thus there is a subsequence
Sk(i)(N), i ≥ 1, which tends to infinity. Using this and (2.7) it follows that

(2.8) lim
i→∞

vk(i) = p/q .

Since the sequence (vk), k ≥ 1, is almost strictly decreasing, the subsequence
(vk(i)), i ≥ 1, has the same property. Making use of this in (2.8) we get
vk(i) > p/q, which implies

(2.9) pPn(k(i)+1) − qAn(k(i)+1) < pPn(k(i)) − qAn(k(i))

for all i ≥ 1. But (An/Pn), n ≥ 1, is an increasing sequence and thus
An/Pn < p/q for all n. Hence

(2.10) pPn − qAn > 0 .

Now the relations (2.9) and (2.10) give us an infinite decreasing sequence of
positive integers. This contradiction proves Theorem 2.1′.

The following consequence for n(k) = k plays a special role in our appli-
cations and generalizes Theorem A.

Corollary 2.2. If the sum of the series
∑∞

n=1 bn/an is rational and

(2.11) an+1 ≥
bn+1

bn
a2

n −
bn+1

bn
an + 1 ,

then

(2.12) an+1 =
bn+1

bn
a2

n −
bn+1

bn
an + 1

for all sufficiently large n.

See also [ErS] and [Opp1] for related results.
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3. Applications. In this section we show how the above results may
be used to obtain some irrationality assertions. For the sake of brevity in
computations, only Corollary 2.2 instead of Theorem 2.1′ will be used.

3.1. On two problems of Erdős and Graham. As was noted in 1976 by
I. Good, P. Bruckman, V. E. Hoggatt, Jr. and M. Bicknell and in 1982
by R. Cuculière [Cuc] (see [Bad] for exact references and the solution of
Cuculière’s problem), for the Fibonacci sequence Fn defined by F0 = 1,
F1 = 1, Fn+2 = Fn+1 + Fn, n ≥ 0, we have

∞∑
n=0

1/F2n = (7−
√

5)/2 .

Thus the sum of the above series is an irrational (but algebraic) number.
The transcendence of the series

∑∞
n=0 1/(n!F2n) was proved independently

in [Mig1] and [Mah]. P. Erdős and R. L. Graham [ErG, pp. 64–65] have
raised the following problems.

A. What is the character of the sum of the series
∞∑

n=1

1/F2n+1 and
∞∑

n=1

1/L2n ,

where Ln = Fn−1 + Fn+1, n ≥ 1, is the sequence of Lucas?

B. Is it true that if (n(k)), k ≥ 1, is a sequence of positive integers such
that there exists a constant c > 1 with n(k + 1)/n(k) ≥ c for every k, then
the sum of the series

∑∞
k=1 1/Fn(k) is irrational?

Problem A has been solved by the author in [Bad], where it was shown
that both series have irrational sums. In what follows, we apply our re-
sults to obtain the corresponding affirmative answer of Problem A for the
sequence (xn), n ≥ 0, given by x0 = 0, x1 = 1 and xn+2 = axn+1 + bxn,
n ≥ 0, a and b being two fixed positive integers. We define (yn), n ≥ 1, by
yn = xn−1 + xn+1. Then (yn) satisfies the same recurrence relation as (xn),
while y1 = a and y2 = 1 + a2 + b. Clearly, if a = b = 1 then xn = Fn and
yn = Ln. Recently, André-Jeannin [AnJ2] proved similar results for some
generalized Lucas sequences with a direct proof.

The following identities for the sequence (xn) are surely known. For
completeness, a simple proof by matrix methods is given.

Lemma 3.1. The sequence (xn) satisfies

(i) x2n+1 = x2
n+1 + bx2

n,
(ii) xn+1xn−1 − x2

n = −(−b)n−1

for every positive integer n.
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P r o o f. We define the matrix

A =
(

a b
1 0

)
.

Using the recurrence relation for (xn) we get

An = −
(

xn+1 xn

xn xn−1

) (
−1 0
0 −b

)
.

Now (i) follows from the identity A2n = AnAn while (ii) from det(An) =
(det(A))n.

Now we can state

Corollary 3.2. Let n(k), k ≥ 1, be a sequence of positive integers such
that

(3.1) n(k + 1) ≥ 2n(k)− 1

for all sufficiently large k. Then
∑∞

k=1 1/xn(k) is irrational.

For a = b = 1 and n(k) = 2k + 1 (which satisfies (3.1) with equality)
we obtain the solution of the first part of Problem A. At the same time, we
get an affirmative answer to Problem B in the case c ≥ 2. For b = 1 and
n(k) = s ·2k, s being a positive integer, we obtain the result proved in [Kui].
We also note that this irrationality result was used in [Lao] to produce a
counterexample to a conjecture of W. M. Schmidt.

P r o o f o f C o r o l l a r y 3.2. Lemma 3.1(i) implies that we have x2n−1

≥ x2
n for all n and therefore

xn(k+1) ≥ x2n(k)−1 ≥ x2
n(k)

for all sufficiently large k. Since xn(k) > 1 for all large k, we arrive at

xn(k+1) > x2
n(k) − xn(k) + 1

for every sufficiently large k, which completes the proof in view of Corol-
lary 2.2.

R e m a r k 3.3. One may prove Corollary 3.2 directly from Corollary 2.2,
thus avoiding the use of Lemma 3.1. Indeed, we have the following explicit
form for xn:

xn = (a2 + 4b)−1/2{[(a + (a2 + 4b)1/2)/2]n − [(a− (a2 + 4b)1/2)/2]n} .

Hence
xn ∼ (a2 + 4b)−1/2[a + (a2 + 4b)1/2]n/2n , n →∞ ,

and thus

x2n+d/x2
n ∼ (a2 + 4b)1/2[a + (a2 + 4b)1/2]d2−d , n →∞ .
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Since a, b ≥ 1, the right-hand part of the above asymptotic estimate is
greater than 1 for d ≥ −1. Thus x2n−1 > x2

n − xn + 1 for all sufficiently
large n.

For the second part of Problem A we have

Corollary 3.4. Let n(k), k ≥ 1, be a sequence of positive integers such
that

(3.2) n(k + 1) ≥ 2n(k)

for all sufficiently large k. Then
∑∞

k=1 1/yn(k) is irrational.

P r o o f. It is sufficient to prove that, for all large p, we have

(3.3) y2p > y2
p − yp + 1

or, equivalently,

x2p+1 + x2p−1 > x2
p+1 + x2

p−1 + 2xp+1xp−1 − xp+1 − xp−1 + 1 .

Using Lemma 3.1(i) this is equivalent to

(b + 1)x2
p + (b− 1)x2

p−1 + xp+1 + xp−1 > 1 + 2xp−1xp+1 .

Now Lemma 3.1(ii) yields the equivalence of (3.3) to

(3.4) (b− 1)(x2
p + x2

p−1) + xp+1 + xp−1 > 1− 2(−b)p−1 .

Using the explicit form of the xn’s given in Remark 3.3 we get

x2
p ∼ (a2 + 4b)−1[(a + (a2 + 4b)1/2)2/4]p , p →∞ ,

yielding

x2
p/bp+1 ∼ b−1(a2 + 4b)−1[(a + (a2 + 4b)1/2)2/(4b)]p .

It is easy to prove that for a, b ≥ 1 one has (a + (a2 + 4b)1/2)2 > 4b, which
shows that x2

p/bp+1 > 2(b−1)−1 for all sufficiently large p. Thus (b−1)x2
p >

2bp+1 ≥ −2(−b)p−1 for these values of p. From this inequality it follows that
(3.4) holds for all sufficiently large p. The proof is now complete.

We note that recently André-Jeannin [AnJ1] proved the irrationality of∑∞
n=1 pn/wn, where p is an integer and (wn) is a certain sequence of in-

tegers, satisfying the same recurrence relation as (xn) and (yn). His result
includes the irrationality of

∑∞
n=1 1/Fn and

∑∞
n=1 1/Ln. This also indicates

that Problem B may have an affirmative answer also for 1 < c < 2. For
some results concerning the transcendence of series involving some recur-
rence generated sequences, we refer to [Mig2], [BuP].

3.2.On a result of W. Sierpiński. In 1911, W. Sierpiński [Sie1] (see also
[Sie2], [Sch]) proved that if an+1≥an(an+1), then

∑∞
n=1(−1)n+1/an is irra-

tional, in the context of representing irrational numbers as sums of infinite al-
ternating series of the above form. Recently, Sándor [Sán2] gave a generaliza-
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tion of this irrationality assertions to series of the form
∑∞

n=1(−1)n+1bn/an.
We now show that Corollary 2.2 yields an improvement of Sierpiński’s result.

Corollary 3.5. Let (bn/an), n ≥ 1, be an decreasing sequence of posi-
tive rationals such that

(3.5) a2k+1a2k+2 ≥ 1 + a2k−1a2k(a2k−1a2k − 1)(b2k+1a2k+2

−b2k+2a2k+1)(b2k−1a2k − b2ka2k−1)−1

for every k. If
∑∞

n=1(−1)n+1bn/an is rational , then in (3.5) we have equal-
ity for all sufficiently large n.

P r o o f. We have
∞∑

n=1

(−1)n+1bn/an =
∞∑

k=1

(b2k−1a2k − b2ka2k−1)/(a2k−1a2k)

and since the sequence (bn/an) is decreasing, the last series has positive
terms. Thus we can apply Corollary 2.2 to obtain the desired result.

We note in passing that, since we have

−b1/a1 + lim
n→∞

bn/an =
∞∑

n=1

(bn+1an − bnan+1)/(anan+1) ,

a condition similar to (3.5) occurs in the case of (ir)rationality of limits of
increasing sequences of positive rationals.

Now we are ready to prove our improvement of Sierpiński’s old result.

Corollary 3.6. Let (an), n ≥ 1, be a sequence of positive integers such
that

(3.6) a2k+1 ≥ a2ka2k−1(a2ka2k−1 − 1)(a2k − a2k−1)−1

for all sufficiently large k. Then
∑∞

n=1(−1)n+1/an is irrational.

P r o o f. The condition (3.6) implies that (1/an), n ≥ 1, is decreasing.
The inequality (3.5) with bk ≡ 1 is equivalent to

a2k+2a2k+1a2k − a2k+1a2k−1 − a2k−1a2k(a2k−1a2k − 1)
≥ −a2k−1a2ka2k+1(a2k−1a2k − 1) + a2k − a2k−1 .

The left-hand side of this inequality is nonnegative according to the hypoth-
esis, while the right-hand side is negative (for large k). Thus in (3.5) with
bk ≡ 1 we have a strict inequality and hence

∑∞
n=1(−1)n+1/an is irrational.

R e m a r k 3.7. Let as assume that (an) satisfies

an+1 ≥ an(an + 1) , n ≥ 1 .

Then (an) is increasing and so

(3.7) a2k+1(a2k − a2k−1) ≥ a2k(a2k + 1)(a2k − a2k−1) .
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But a2k + 1 > a2k−1(a2k−1 + 1), which implies a2
2k + a2k > a2ka2

2k−1 +
a2ka2k−1, yielding

(3.8) (a2k + 1)(a2k − a2k−1) > a2k−1(a2ka2k−1 − 1) .

Combining (3.7) and (3.8) we find that (an) also satisfies the inequality
(3.6). Hence Corollary 3.6 is an improvement of the result of W. Sierpiński.

3.3. Necessary conditions for rationality in Oppenheim expansions. Let
γj(n) = aj(n)/bj(n), j = 1, 2, . . . , be a sequence of rational functions of n,
where aj and bj are functions with values in the set of positive integers. We
assume that for n ≥ 2 we have

(3.9) hj(n) := γj(n)n(n− 1) ≥ 1 .

For a real number x, 0 < x < 1, we define the integers dj = dj(x) and the
reals xj , j = 1, 2, . . . , by the algorithm

(3.10)
x1 = x , di = 1 + [1/xi] ,
xi+1 = [xi − 1/di]/γi(di) .

Here [t] is the greatest integer no greater than t. Then the series

(3.11) 1/d1 + γ1(d1)/d2 + γ1(d1)γ2(d2)/d3 + . . .

always converges and its sum is just x [Gal, Theorem 1.8]. This is the
so-called Oppenheim expansion of x with the digits dj = dj(x). Assuming
that

(3.12) hj(dj) ∈ Z , j = 1, 2, . . . ,

A. Oppenheim [Opp2] has proved that if aj ≡ 1 and dj divides bj(dj) for
all sufficiently large j, then for a rational x its sequence (dj) of digits is
eventually periodic. This was generalized by J. Galambos [Gal, Th. 2.10]
to the class of those Oppenheim expansions for which hj(dj) divides dj − 1
for every sufficiently large j. For other classes, a necessary condition for the
rationality of x is

(3.13) di+1 − 1 = hi(di) = γi(di)di(di − 1)

for all large i. Two classes for which (3.13) is a necessary condition were in-
dicated again by Oppenheim [Opp2]. The first is that in which bj divides dj

for each j and includes important particular cases as Engel’s and Sylvester’s
series as well as Cantor’s product (see [Gal] for terminology). The second
one is

(3.14) b2i = a2i−1; a2i = b2i−1 = 1 (i = 1, 2, . . .) .

We note that in this case (3.12) is true.
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Corollary 3.8. Let hj(n), γj(n) be as above, satisfying (3.12) and also

(3.15) γ1(d1) . . . γk(dk) ∈ Z
for every k∈Z. Then, if x is rational , (3.13) holds for all sufficiently large i.

P r o o f. Using inequality (1.21) from [Gal, p. 14] and the condition (3.12)
we obtain di+1 ≥ 1 + hi(di) for all i ≥ 1. But

x =
∞∑

i=1

(γ1(d1) . . . γi−1(di−1))/di

is rational, so the desired conclusion follows from the same Corollary 2.2.

This corollary contains as particular cases the expansion (3.14) of Oppen-
heim and also the more classical ones of Sylvester series and Sylvester-type
series.
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