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1. Introduction. Let p be a fixed prime and f(x1, . . . , xs) a polynomial
with coefficients in Zp, the p-adic integers. Let cn denote the number of
solutions of f = 0 over the ring Z/pnZ, with c0 = 1. Then the Poincaré
series Pf (t) is the generating function

Pf (t) =
∞∑

n=0

cntn .

This series was introduced by Borevich and Shafarevich [1, p. 47], who
conjectured that Pf (t) is a rational function of t for all polynomials. This
was proved by Igusa in 1975 in a more general setting, by using a mixture
of analytic and algebraic methods [5, 6]. Since the proof is nonconstructive,
deriving explicit formulas for Pf (t) is an interesting problem. In this di-
rection Goldman [2, 3] treated strongly nondegenerate forms and algebraic
curves all of whose singularities are “locally” of the form αxa = βyb, while
polynomials of form

∑
xdi

i with p - di were investigated earlier by E. Steven-
son [7], using Jacobi sums. In [8] explicit formulas for Pf (t) were derived for
diagonal forms. This paper generalizes the results of [8] to algebraic number
fields.

Let F be a finite extension of the rational field, and P a prime ideal of
F with norm N(P ) = q which is a rational prime power. Using the previous
notations, we let cn denote the number of solutions of the congruence

(1) a1x
d1
1 + . . . + asx

ds
s ≡ 0 (mod Pn) ,

where d1, . . . , ds are positive integers, a1, . . . , as are integers of F prime to
P , and write P (t) =

∑∞
n=0 cntn.

It is clear that cn = qn(s−1) if di = 1, for some i, 1 ≤ i ≤ s. Therefore
we assume that d1, . . . , ds are all integers greater than 1.
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Throughout this paper, we set d = lcm{d1, . . . , ds}, fi = d/di, r = f1 +
. . . + fs and cn = q−n(s−1)cn.

2. Exponential sums. For the prime ideal P of F , choose an ideal C
of F such that (P,C) = 1 and PC = (θ) is principal. Then we may assume
that any integer u in F is of the form

u = θjξ (j ≥ 0, (ξ, P ) = 1) .

In this case we write ordP u = j. Let D represent the different of F (see
[4, Ch. 36]), and choose B, (B,P ) = 1 such that (ζ) = B/PnD is principal.
We set ζm = ζθn−m, 0 ≤ m ≤ n, such that ζ = ζn, and define further

em(u) = e2πi tr(uζm) ,

where the symbol tr(γ) denotes the trace in F . The function em(u) defines
an additive character (mod Pm) and has the following simple properties:

e0(u) = 1, em(u) = em(u′) if u ≡ u′ (mod Pm) ,(2)
em(uθj) = em−j(u) (0 ≤ j ≤ m) ,(3) ∑

z (mod P m)

em(uz) =
{

qm if u ≡ 0 (mod Pm),
0 otherwise.

(4)

For k ≥ 1, we define

Sm(u, k) =
∑

z (mod P m)

em(uzk) , S0(u, k) = 1 .

It is clear that if m ≥ j ≥ 0, then

(5) Sm(uθj , k) = qjSm−j(u, k) .

The following lemmas are useful in the proof of the main theorem.

Lemma 1. For any positive integer k , there is an integer a ≥ k such that
whenever m ≥ a, then

(6) Sm(u, k) = qk−1Sm−k(u, k), (u, P ) = 1 .

P r o o f. Suppose ordP k = l. Then take a to be a positive integer which
is greater than k and all of i(l + 1)/(i− 1), i = 2, . . . , k. Thus, when m ≥ a
we have

(7) i(m− l − 1) ≥ m , i = 2, . . . , k .

From this it follows that m ≥ l + 1 and

{z (mod Pm)} = {y + xθm−l−1 | y (mod Pm−l−1), x (mod P l+1)} .

Using the binomial theorem and (7) we have

(y + xθm−l−1)k ≡ yk + kyk−1xθm−l−1 (mod Pm) ,
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and

Sm(u, k) =
∑

y (mod P m−l−1)

em(uyk)
∑

x (mod P l+1)

el+1(ukyk−1x) .

Since ordP k = l, by (4), the inner sum is 0 unless y ≡ 0 (mod P ),
in which case it has the value ql+1. Hence we have, by setting y = y1θ,
y1 (mod Pm−l−2),

Sm(u, k) = ql+1
∑

y1 (mod P m−l−2)

em−k(uyk
1 ) = qk−1Sm−k(u, k) .

Let a(k) be the least positive integer such that (6) holds when m ≥ a(k),
and write

(8) % = max{a(d1), . . . , a(ds)} .

Lemma 2. Put Tm = q−ms
∑

(v,P m)=1 Sm(va1, d1) . . . Sm(vas, ds). Then
Td+j = qd−rTj for j ≥ %− 1.

P r o o f. Since j ≥ %−1 and di ≥ 2, we have di + j ≥ a(di). By Lemma 1
one gets

Sd+j(u, di) = qfi(di−1)Sj(u, di) , i = 1, 2, . . . , s .

Therefore,

Td+j = q−(d+j)s
∑

(v,P d+j)=1

Sd+j(va1, d1) . . . Sd+j(vas, ds)

= q−(d+j)s
∑

(v,P d+j)=1

s∏
i=1

qfi(di−1)Sj(vai, di) = qd−rTj .

3. Main results

Theorem. Let % be as in (8). We have

(i) recursion: for n ≥ %,

cn+d = c + qd−rcn ,

(ii) the Poincaré series is given by

P (t) =
(1− qs−1t)(

∑%+d−1
i=0 cit

i − qds−r
∑%−1

i=0 citd+i) + cq(%+d)(s−1)t%+d

(1− qs−1t)(1− qds−rtd)
,

where c = c%+d−1−qd−rc%−1 is a constant depending only upon the diagonal
form as in (1).
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P r o o f. (i) From (4) we have

cn = q−n
∑

x1,...,xs (mod P n)

∑
u (mod P n)

en(u(a1x
d1
1 + . . . + asx

ds
s ))

= q−n
∑

u (mod P n)

Sn(ua1, d1) . . . Sn(uas, ds) .

In the summation over u (mod Pn), we may set u = vθn−m, 0 ≤ m ≤ n,
v (mod Pm) and (v, Pm) = 1. From (5) one has

cn = qn(s−1)
n∑

m=0

q−ms
∑

(v,P m)=1

Sm(va1, d1) . . . Sm(vas, ds)

= qn(s−1)
n∑

m=0

Tm .

Set n = % + l, l ≥ 0. By Lemma 2, we have

cn+d =
n+d∑
m=0

Tm =
%+d−1∑
m=0

Tm +
l∑

m=0

T%+d+m = c%+d−1 +
l∑

m=0

qd−rT%+m

= c%+d−1 + qd−r(cn − c%−1) = c + qd−rcn .

(ii) Put qs−1t = t1. Then

P (t) =
∞∑

n=0

cntn =
%+d−1∑

i=0

cit
i +

∞∑
n=%

cn+dt
n+d

=
%+d−1∑

i=0

cit
i +

∞∑
n=%

cn+dt
n+d
1 =

%+d−1∑
i=0

cit
i +

∞∑
n=%

(c + qd−rcn)tn+d
1

=
%+d−1∑

i=0

cit
i + ct%+d

1 (1− t1)−1 + qd−rtd1

(
P (t)−

%−1∑
i=0

cit
i
)

.

This gives the result of the theorem.
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