On the irreducibility of a class of polynomials, IV

by

K. Győry (Debrecen)

To the memory of Z. Z. Papp

1. Introduction. In this paper, we continue our investigations (cf. [5], [6], [9]) concerning reducibility of polynomials of the form $g(f(x))$ over \mathbb{Q}, where $g(x)$ is a monic irreducible polynomial in $\mathbb{Z}[x]$ and $f(x)$ is a monic polynomial in $\mathbb{Z}[x]$ with distinct zeros in \mathbb{Q} or, more generally, in a given algebraic number field K. We assume throughout this paper that the splitting field of $g(x)$ over \mathbb{Q} is a CM-field, i.e., a totally imaginary quadratic extension of a totally real algebraic number field. In this case we say that $g(x)$ is of CM-type. For example, cyclotomic polynomials and quadratic polynomials of negative discriminant are of CM-type. If $g(f(x))$ is reducible for some $f(x)$ then so are $g(f(x+a))$ for all $a \in \mathbb{Z}$. Polynomials $f(x)$ and $f(x+a)$ are called \mathbb{Z}-equivalent or simply equivalent. In part I of this paper (cf. [5]) we proved that for given $g(x)$, there are only finitely many pairwise inequivalent monic polynomials $f \in \mathbb{Z}[x]$ with distinct zeros in \mathbb{Q} for which $g(f(x))$ is reducible. In parts II and III (cf. [6], [9]), this result was extended to polynomials $f(x)$ having all their zeros in a given totally real algebraic number field K. It turned out that in this more general situation there can exist infinitely many pairwise inequivalent exceptions $f(x)$ for which $g(f(x))$ is reducible for a suitable $g(x)$ (cf. Lemma 2 in the present paper). However, the characterization of these exceptions led to a hard diophantine problem concerning certain arithmetic graphs.

Using some recent results on unit equations ([2], [4]), we solved in [10] (see also [11]) the diophantine problem in question. This enables us to give a precise description of the exceptional polynomials $f(x)$ mentioned above. Let K be a totally real algebraic number field, and $g \in \mathbb{Z}[x]$ a monic irreducible polynomial of CM-type. We shall prove that the exceptions $f(x)$

Research supported in part by Grant 1641 from the Hungarian National Foundation for Scientific Research.
have the following properties:

\[f \in \mathbb{Z}[x] \text{ is a monic quartic polynomial with distinct zeros in } K \]

such that \(f = f_1 f_2 \) with some monic polynomials \(f_1, f_2 \) for which

\[f_i(x) - f_i(0) \in \mathbb{Z}[x], \quad i = 1, 2, \quad f_1(0) \text{ and } f_2(0) \text{ are rational integers or conjugate quadratic integers}, \]

\[f_1(x) - f_2(x) = \gamma \text{ for some } \gamma \in K \text{ with } \left| N_{K/Q}(\gamma) \right| \leq (2n (0)^{1/n}) |K:\mathbb{Q}| \quad (n = \deg(g)), \]

and if \(\beta \) is a zero of \(g(x) \) then

\[\beta = \delta (\delta - \gamma) \]

for some non-zero integer \(\delta \) in \(\mathbb{Q}(\beta, \gamma) \) with \(f_2(0) + \delta \in \mathbb{Q}(\beta) \).

In this case we have

\[f(x) - \beta = (f_1(x) - \delta)(f_2(x) + \delta) \]

over \(\mathbb{Q}(\beta) \) and hence, by Capelli’s theorem (cf. Lemma 3), \(g(f(x)) \) is reducible over \(\mathbb{Q} \).

It is easy to see that if \(K \) has a quadratic subfield then there are infinitely many pairwise inequivalent \(f(x) \) satisfying (1) for a suitable \(g(x) \) of CM-type. Indeed, if \(\sqrt{d} \in K \) for some square-free positive integer \(d \) then there are infinitely many \(a, b \in \mathbb{Z} \) with \(a^2 - db^2 = 1 \); in this case the polynomials \(f(x) = (x^2 - 2ax + 1)(x^2 - 2ax) \) and the minimal polynomial \(g(x) \) of \(i(i-1) \) have the required properties. In this example, every polynomial \(f(x) \) has a factorization \(f = f_1 f_2 \) having the property (1) with \(f_1(0), f_2(0) \in \mathbb{Z} \).

We now give another example where \(f_1(0) \) and \(f_2(0) \) are not rational. Let \(K \) be a totally real number field containing \(\sqrt{3} \pm \sqrt{7} \). There are infinitely many \(a, b, c \in \mathbb{Z} \) with \(a^2 - 2b^2 = 1, \quad a > 0, \quad b < 0 \text{ and } c = 3 - 4b(a - 3b) \). It is easy to check that the polynomials

\[f(x) = (x^2 - (c + \sqrt{7}))(x^2 - (c - \sqrt{7})) \in \mathbb{Z}[x] \]

and the minimal polynomial \(g(x) \) of \((1+i)((1+i)-2\sqrt{7})\) satisfy the properties listed in (1).

Theorem. Let \(g \in \mathbb{Z}[x] \) be a monic irreducible polynomial of CM-type. Apart from the possible exceptions \(f(x) \) described in (1), there are only finitely many pairwise inequivalent monic polynomials \(f \in \mathbb{Z}[x] \) with distinct zeros in \(K \) for which \(g(f(x)) \) is reducible over \(\mathbb{Q} \).

In the case when \(K \) is a quadratic number field, our Theorem implies an ineffective version of Theorem 1b of [6]. Further, our Theorem provides a more precise characterization of the exceptions \(f(x) \) occurring in Theorem 1 of [9]. We should, however, remark that Theorem 1 of [9] has been established over an arbitrary totally real number field instead of \(\mathbb{Q} \). Further, in contrast with the results of [6] and [9], our Theorem is ineffective, i.e., its
Proof does not make it possible to determine all \(f(x) \) for which \(g(f(x)) \) is reducible over \(\mathbb{Q} \) for a given \(g(x) \). This is due to the fact that the proof of our Lemma 5 (cf. [10], [11]) depends on the above-mentioned finiteness theorems on unit equations [2], [4] which are ineffective.

Corollary 1. Let \(g \in \mathbb{Z}[x] \) be a monic irreducible polynomial of CM-type. There are only finitely many pairwise inequivalent monic polynomials \(f \in \mathbb{Z}[x] \) of degree other than 4 and with distinct zeros in \(K \) such that \(g(f(x)) \) is reducible over \(\mathbb{Q} \).

This is an immediate consequence of our Theorem. The following corollary can also be easily deduced from the above Theorem.

Corollary 2. Let \(g \in \mathbb{Z}[x] \) be a monic irreducible polynomial of CM-type, and suppose that \(K \) has no quadratic subfield. Then there are only finitely many pairwise inequivalent monic polynomials \(f \in \mathbb{Z}[x] \) with distinct zeros in \(K \) for which \(g(f(x)) \) is reducible over \(\mathbb{Q} \).

For \(K = \mathbb{Q} \), this gives an ineffective version of Theorem 5 of [5].

As is shown by the following example, our results do not remain valid for any monic irreducible polynomial \(g \in \mathbb{Z}[x] \) and for any number field \(K \).

Let \(K \) be an arbitrary (not necessarily totally real) algebraic number field having infinitely many units, \(f \in \mathbb{Z}[x] \) a monic polynomial whose zeros are distinct units in \(K \) and \(g(x) = x - f(0) \). Then the degree of \(f \) can be arbitrarily large and \(g(f(x)) \) is divisible by \(x \) over \(\mathbb{Q} \).

2. **Proof of the Theorem.** To prove our Theorem we need several lemmas.

Lemma 1. Let \(g \in \mathbb{Z}[x] \) be a monic irreducible polynomial of CM-type. There are only finitely many pairwise inequivalent monic polynomials \(f(x) \in \mathbb{Z}[x] \) with degree \(\leq 3 \) and with distinct real zeros for which \(g(f(x)) \) is reducible over \(\mathbb{Q} \).

Proof. This is a consequence of Theorem 2b of [6] which was proved in [6] in an effective way.

For a polynomial \(f \in \mathbb{Z}[x] \), we denote by \(H(f) \) the height of \(f \), i.e., the maximum absolute value of the coefficients of \(f \). Further, for any algebraic number field \(M \), \(O_M \) will denote the ring of integers of \(M \), and \(O_M^\times \) the unit group of \(O_M \). Let \(K \) be a totally real algebraic number field of degree \(k \). We may assume without loss of generality that \(K \) is a normal extension of \(\mathbb{Q} \).

Lemma 2. Let \(g(x) \in \mathbb{Z}[x] \) be a monic irreducible polynomial of CM-type with degree \(n \), and let \(f(x) \in \mathbb{Z}[x] \) be a monic polynomial of degree \(m \geq 2 \) with distinct zeros in \(K \) such that \(g(f(x)) \) is reducible over \(\mathbb{Q} \). There is a number \(C_1 = C_1(K, g) \) such that \(m \leq C_1 \). Further,
(i) $f(x)$ is equivalent to a polynomial $f^*(x)$ with $H(f^*) \leq C_2(K, g, m)$, or

(ii) m is even, and f, g have the following properties:

$$f(x) = f_1(x)f_2(x)$$

for some monic polynomials f_1, f_2 for which

$$f_1(x) - f_2(x) = \gamma$$

with some non-zero integer γ in K with degree

$$\leq 2$$

over \mathbb{Q} such that $|N_{K/\mathbb{Q}}(\gamma)| \leq (2g(0)^{1/n})^k$, $f_i(x) - f_i(0) \in \mathbb{Z}[x]$ and $f_i(0) \in O_{\mathbb{Q}(\gamma)}$ for $i = 1, 2$, and each zero β of $g(x)$ satisfies

$$\beta = \delta - \gamma$$

with some non-zero $\delta \in O_{\mathbb{Q}(\beta, \gamma)}$ for which

$$\delta + f_2(0) \in O_{\mathbb{Q}(\beta)}.$$

Proof. This is an immediate consequence of Theorem 1 in [9]. We note that in [9], C_1 and C_2 are given explicitly. For some improvements of that C_1, see [3] and [10].

We remark that for $m = 4$, the properties of f, g listed in (ii) coincide with those occurring in (1). In the remainder of the proof it suffices to restrict ourselves to polynomials $f(x)$ of bounded degree. Further, it is enough to prove that if f, g satisfy the assumptions listed in (ii) of Lemma 2 and if the degree of f is greater than 4, then $f(x)$ is equivalent to a polynomial of bounded height.

Lemma 3 (Capelli). Let $f, g \in \mathbb{Z}[x]$ be monic polynomials, $g(x)$ irreducible over \mathbb{Q} and β one of the zeros of $g(x)$. If

$$f(x) - \beta = \prod_{i=1}^{s} (\pi_i(x))^{k_i}$$

is the irreducible factorization of $f(x) - \beta$ over $\mathbb{Q}(\beta)$ then

$$g(f(x)) = \prod_{i=1}^{s} (N(\pi_i(x)))^{k_i} \quad (N \text{ denotes the norm } N_{\mathbb{Q}(\beta)/\mathbb{Q}(\alpha)})$$

is the irreducible factorization of $g(f(x))$ over \mathbb{Q}.

Proof. See [15] or [14]. We remark that Capelli proved this theorem in a less general form (cf. [15]).

Lemma 3 reduces the question of reducibility of polynomials $g(f(x))$ over \mathbb{Q} to that of reducibility of polynomials of the form $f(x) - \beta$ over $\mathbb{Q}(\beta)$.

Let M be an arbitrary algebraic number field, and let $\mathcal{A} = \{\alpha_1, \ldots, \alpha_m\}$ be a finite, non-empty subset of O_M. For given $N \geq 1$, we denote by $\mathcal{G} = \mathcal{G}_M(\mathcal{A}, N)$ the simple graph whose vertex set is \mathcal{A} and whose edges are the unordered pairs $[\alpha_i, \alpha_j]$ having the property

$$|N_{M/\mathbb{Q}}(\alpha_i - \alpha_j)| > N.$$

Lemma 4. Let M be a CM-field, $\mathcal{A} = \{\alpha_1, \ldots, \alpha_m\}$ a finite set of real integers in M and β a non-real integer in M. If the graph $\mathcal{G}_M(\mathcal{A}, N_{M/\mathbb{Q}}(2\beta))$
has a connected component of order \(s \geq 2 \) then \(F(x) = (x - \alpha_1) \ldots (x - \alpha_m) - \beta \) has no irreducible factor of degree less than \(s \) over \(M \). If in particular \(s > \deg(F)/2 \) then \(F \) is irreducible over \(M \).

Proof. This is in fact Lemma 7 in [6]. As was pointed out in [5] and [6], it is not valid for arbitrary number fields \(M \). Further, the estimate given for the degrees of the irreducible factors of \(F \) is in general best possible (cf. [6]).

Let again \(M \) be an arbitrary algebraic number field, and let \(\mathcal{N} \) be a finite, non-empty subset of non-zero integers of \(M \). For each pair of distinct positive integers \(i, j \) we select an element of \(\mathcal{N} \), denoted by \(\delta_{i,j} \), such that \(\delta_{i,j} = \delta_{j,i} \). For any finite ordered subset \(\mathcal{A} = \{\alpha_1, \ldots, \alpha_m\} \) of \(O_M \) with \(m \geq 3 \), we denote by \(\mathcal{H}(\mathcal{A}, \mathcal{D}) \), or simply by \(\mathcal{H}(\mathcal{A}) \), the simple graph with vertex set \(\mathcal{A} \) whose edges are the unordered pairs \([\alpha_i, \alpha_j]\) for which \(\alpha_i - \alpha_j \not\in \delta_{i,j} O_M^* \).

Here \(\mathcal{D} \) denotes the \(\binom{m}{2} \)-tuple \((\delta_{i,j})_{1 \leq i, j \leq m} \).

The ordered subsets \(\mathcal{A} = \{\alpha_1, \ldots, \alpha_m\} \) and \(\mathcal{A}' = \{\alpha'_1, \ldots, \alpha'_m\} \) of \(O_M \) are called \(O_M^* \)-equivalent if \(\alpha'_i = \varepsilon \alpha_i + \beta \) for some \(\varepsilon \in O_M^* \) and \(\beta \in O_M \), \(i = 1, \ldots, m \). It is obvious that the graphs \(\mathcal{H}(\mathcal{A}) \) and \(\mathcal{H}(\mathcal{A}') \) are then isomorphic.

The following lemma is the crucial new element in the proof of our Theorem.

Lemma 5. Let \(m \geq 3 \) be an integer different from 4. Then for all but at most finitely many \(O_M^* \)-equivalence classes of ordered subsets \(\mathcal{A} = \{\alpha_1, \ldots, \alpha_m\} \) of \(O_M \), the graph \(\mathcal{H}(\mathcal{A}) \) has a connected component of order at least \(m - 1 \).

Proof. This is an immediate consequence of Theorem 1 of [10]. In fact, Theorem 1 of [10] gives a more precise description of the graphs \(\mathcal{H}(\mathcal{A}) \) under consideration. The proof of Theorem 1 in [10] depends among other things on a finiteness result of Evertse and Györy [2] on unit equations in several unknowns. We note that Lemma 5 can also be proved by using the finiteness of the number of solutions of unit equations in two unknowns and the sharp upper bound derived in [4] for the number of solutions of such equations. Further, we remark that using an explicit bound of Schlickewei [12] for the number of solutions of unit equations, we obtained in [11] a refined and quantitative version of our Lemma 5. Together with quantitative versions of our other lemmas, this would enable one to establish a quantitative version of our Theorem. We shall not work this out here.

Lemma 6. There are only finitely many pairwise inequivalent monic polynomials in \(\mathbb{Z}[x] \) with a given non-zero discriminant.
Proof. This was proved in [7] in an effective way. For an explicit version, see also [8]. In [1], an explicit upper bound was given for the number of equivalence classes consisting of such polynomials which have all their zeros in a given number field.

Proof of the Theorem. Let again K be a totally real algebraic number field with degree k, and suppose that K/Q is normal. Let $g(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial of CM-type with degree n, let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree m with distinct zeros in K, and suppose that $g(f(x))$ is reducible over Q. As was mentioned above, in view of Lemmas 1 and 2 it suffices to deal with the case when m is even and greater than 4, $m \leq C_1$ (with the bound C_1 occurring in Lemma 2) and f, g have the properties specified in (2).

Let β be a fixed zero of $g(x)$. Then, by Lemma 3, $f(x) - \beta$ is reducible over the number field $M := K(\beta)$. The field M is also of CM-type. Denote by $\mathcal{A} = \{\alpha_1, \ldots, \alpha_m\}$ the set of zeros of $f(x)$. It follows from Lemma 4 that the graph $\mathcal{G}_M(\mathcal{A}, N_{M/Q}(2\beta))$ has no connected component of order greater than $m/2$.

We note that

$$(N_{M/Q}(2\beta))^{1/[M:K]} = (N_{Q/(\beta)/Q}(2\beta))^{1/[M:Q(\beta)]/[M:K]} = 2^k g(0)^{k/n}. \tag{3}$$

Denote by \mathcal{N} a maximal set of pairwise non-associate elements in O_K whose norms in absolute value do not exceed $2^k g(0)^{k/n}$. Then $|\mathcal{N}|$, the cardinality of \mathcal{N}, can be explicitly estimated from above in terms of K and g (see [13] and [9]). For each pair of distinct positive integers i, j with $1 \leq i, j \leq m$, we select an element of \mathcal{N}, denoted by $\delta_{i,j}$, for which $\delta_{i,j} = \delta_{j,i}$. In this way, we get a set, say \mathcal{C}, of $\binom{m}{2}$-tuples $(\delta_{i,j})_{1 \leq i,j \leq m}$ whose cardinality is $|\mathcal{N}|^{\binom{m}{2}}$.

For a fixed $\binom{m}{2}$-tuple $\mathcal{D} = (\delta_{i,j})_{1 \leq i,j \leq m}$ and for a subset $\mathcal{B} = \{\beta_1, \ldots, \beta_m\}$ of O_K, consider the graph $\mathcal{H}(\mathcal{B}) = \mathcal{H}(\mathcal{B}, \mathcal{D})$ defined above. We recall that \mathcal{B} denotes the vertex set of $\mathcal{H}(\mathcal{B})$, and its edge set consists of those unordered pairs $[\beta_i, \beta_j]$ for which

$$\beta_i - \beta_j \notin \delta_{i,j} O_K^\times.$$

If $[\alpha_i, \alpha_j]$ is an edge of the complement of $\mathcal{G}_M(\mathcal{A}, N_{M/Q}(2\beta))$ then, by (3),

$$|N_{K/Q}(\alpha_i - \alpha_j)| \leq 2^k g(0)^{k/n}. \tag{4}$$

Hence $\alpha_i - \alpha_j$ is an associate of one of the elements of \mathcal{N}. Together with the fact that $\mathcal{G}_M(\mathcal{A}, N_{M/Q}(2\beta))$ has no connected component of order $> m/2$, this implies that for at least one suitable $\binom{m}{2}$-tuple $\mathcal{D} = (\delta_{i,j})_{1 \leq i,j \leq m}$ of \mathcal{C}, the connected components of the graph $\mathcal{H}(\mathcal{A})$ have orders at most $m/2$. It follows now from Lemma 5 that there is a finite subset \mathcal{M} of m-tuples in O_K, which depends only on K and g, such that \mathcal{A} is O_K^\times-equivalent to one of the elements of \mathcal{M}, say to $\mathcal{A}' = \{\alpha'_1, \ldots, \alpha'_m\}$. In other words, we have

$$\alpha_i = \varepsilon \alpha'_i + g, \quad i = 1, \ldots, m,$$
for some $\varepsilon \in O_K^*$ and $\varrho \in O_K$. Thus we have

$$|D(f)|^2 = |N_{K/Q}(D(f))| = \prod_{1 \leq i < j \leq m} |N_{K/Q}(\alpha_i' - \alpha_j')|^2 \neq 0.$$

This implies that $D(f)$ can assume only finitely many values. Consequently, it follows from Lemma 6 that up to \mathbb{Z}-equivalence, there are only finitely many possibilities for $f(x)$. This completes the proof of our Theorem. ■

References

MATHEMATICAL INSTITUTE
KOSZTAL LÁJOS UNIVERSITY
H-4010 DEBRECEN, HUNGARY

Received on 25.2.1992 (2232)