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1. Introduction. In this paper, we generalize the current results on
the p-Eisenstein behavior of first and higher order Bernoulli polynomials
[4], [6–9], using the machinery of [1]. In so doing, we provide a broader
framework for the known results, all of which are either immediate conse-
quences or special cases of our more general results. Because of an explicit
formula for the coefficients in terms of falling factorials established in [1],
the polynomials An(x,−k) which we consider here are actually translates
of the standard higher order Bernoulli polynomials B

(ω)
n (x), but all of our

significant results apply equally well to the standard polynomials and their
ordinary coefficients, with ω = n− k + 1. The main results are summarized
using standard notations in the research announcement [2].

Our approach differs from the usual one in that we make no use of
congruence properties of the Bernoulli numbers, and in particular do not
use the von Staudt–Clausen Theorem, which is an essential ingredient of
the usual approach. Instead we characterize the behavior of the p-adic poles
of the coefficients in terms of the base p expansion of n. The p-Eisenstein
situation occurs when the highest order pole is simple.

The Bernoulli polynomials Bn(x) are defined by (cf. [11, 12])

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
.

The arbitrary order Bernoulli polynomials B
(ω)
n (x) are defined by(

t

et − 1

)ω

ext =
∞∑

n=0

B(ω)
n (x)

tn

n!
,

which are called higher order, or more precisely first or higher order, if
ω ∈ {1, 2, . . . , n}. They are monic degree n rational polynomials.

In [4], Carlitz showed that if n = k(p−1)pr where 0 < k < p, then Bn(x)
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is irreducible (always with respect to Q unless otherwise indicated), namely
that pBn(x) is p-Eisenstein. He also showed that if 2m + 1 = k(p − 1) + 1
where p is an odd prime and 1 ≤ k ≤ p, then B2m+1/x(x − 1

2 )(x − 1) has
an irreducible factor of degree ≥ 2m + 1− p.

Let S(n) = S(n, p) be the p-adic digit sum of n, i.e., if n =
∑

nip
i is the

base p expansion, where all digits satisfy 0 ≤ ni ≤ p− 1, then S(n) =
∑

ni.
McCarthy showed in [7] that pB2m(x) is p-Eisenstein iff S(2m) = p− 1.
In [6], Kimura defined a function N(n, p), determined by the base p

expansion of n, which he used to strengthen the results of Carlitz and
McCarthy; namely, he showed that if S(n, p) ≥ p − 1, then Bn(x) has an
irreducible factor of degree ≥ N(n, p).

We will generalize Kimura’s and McCarthy’s results and determine all
instances of even partial p-Eisenstein behavior of the first and higher order
Bernoulli polynomials. Our main tool is an analysis of the nature of the
p-adic poles of the coefficients, which turns out to be remarkably regular
and uniform.

In the notation of [1], the polynomials we actually consider are

An(x, s) = n!An(x, 0, s) ,

with exponential generating function

(1 + t)x

(
ln(1 + t)

t

)s

=
∞∑

n=0

An(x, s)
tn

n!
.

These are the Narumi polynomials [12, p. 127].
It has been shown that An(x, s) = B

(n+s+1)
n (x + 1), so in particular,

An(x,−n) = Bn(x + 1) for first order, with s ∈ {−1, . . . ,−n} for ω ∈
{1, . . . , n}. To establish the boundaries of our study, it should be noted
that An(x, 0) = (x)n and An(x,−(n+1)) = (1+x)n. We will show that the
Kimura bound [6, Theorems 1, 2], although sharp for s = −n, is far from
best for the full range s ∈ {−1, . . . ,−n}.

Finally, it has been shown that if n is odd then 2x− (n+s−1) |An(x, s)
and it was proved in [1] that An(x, s) is absolutely irreducible for n even
> 0, and that the above linear factor is the only non-trivial factor for n odd.
The results in this paper enable us to determine the instances of p-Eisenstein
behavior leading to rational irreducibility of this type.

2. Preliminaries. Throughout this paper, p will be a fixed but ar-
bitrary prime, and all numbers are assumed to be positive integers, unless
otherwise indicated.

νp = p-adic valuation of Q, i.e. νp(m) = highest power of p |m if m ∈ Z
and νp(m/n) = νp(m) − νp(n), with νp(0) = ∞. If b > 0, we say r has a
pole of order b if νp(r) = −b.
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We say that f(x) =
∑n

i=0 aix
n−i ∈ Q[x] is p-Eisenstein down to degree

d if

(∗)
νp(a0) = 1, νp(ai) > 0 if 0 < i < n− d ,

νp(an−d) = 0, and νp(ai) ≥ 0 for i > n− d .

We refer to this as (partial) p-Eisenstein behavior ; f(x) is said to be
p-Eisenstein if it is p-Eisenstein to degree 0.

The following are standard and/or easy to demonstrate (cf. [10, Ch. 4]).

(1) If f(x) is p-Eisenstein down to degree d and c ∈ Z, then so is f(x+c).
(2) If f(x) is p-Eisenstein down to degree d, then f(x) has an irreducible

factor of degree ≥ n− d. (In particular, p-Eisenstein implies irreducible.)
(3) If f(x) =

∑n
i=0 bi(x)n−i in terms of the falling factorials, the coeffi-

cients (ai) of f(x) satisfy (∗) iff the coefficients (bi) satisfy (∗).
We also need some standard results about νp of factorials and binomial

coefficients, where [x] = integer part of x and dxe = least integer ≥ x.

(a) νp(n!) =
∞∑

e=1

[
n

pe

]
=

n− S(n)
p− 1

, whence νp(n!) ≤
⌈

n

p− 1

⌉
− 1

if n > 0 .

(b) νp

(
n + m

n

)
=

S(n) + S(m)− S(n + m)
p− 1

.

(In particular, S(n + m) ≤ S(n) + S(m).)

(c) νp

(
n + m

n

)
= # of carries in base p addition of n and m .

(d) p -
(

n

m

)
iff ni ≥ mi for all digits of the p-adic expansions

(Lucas’s Theorem).

It is convenient to introduce some non-standard notations, namely

m ≺ n if p -
(

n

m

)
and m ⊥ δ if m ≺ m + δ, i.e. p -

(
m + δ

m

)
.

By (d), ≺ is a partial order, and clearly m ≺ n implies m ≤ n. Obviously
if m and m′ have non-zero digits in different places, then (m + m′) ≺ n iff
m ≺ n and m′ ≺ n. (Observe that n > m iff ni > mi for the largest i such
that ni 6= mi.) Also by (c), m ⊥ δ iff S(m + δ) = S(m) + S(δ). Finally,
since (

−k

m

)
= (−1)m

(
k + m− 1

m

)
,
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we have

p -
(
−k

m

)
iff k − 1 ⊥ m .

The following lemma can be proved without too much difficulty.

Lemma 2.1. Let n > 0 and suppose that p − 1 |n. Let q = n/(p− 1) =∑s
i=r qip

i, with qr 6= 0. The following are equivalent :

(i) p -
(
−n

q

)
.

(ii) qr > qr+1 ≥ qr+2 ≥ . . . ≥ qs.
(iii) S(n) = p− 1.

P r o o f.

n− 1 + q = pq − 1 =
s∑

i=r+1

qip
i+1 + (qr − 1)pr+1 + (p− 1)

r∑
i=0

pi .

The equivalence of (i) and (ii) follows immediately by Lucas’s Theorem.

n = (p− 1)q =
s+1∑

i=r+2

(qi−1 − qi)pi + (qr − qr+1 − 1)pr+1 + (p− qr)pr .

It follows that if (ii) holds, then S(n) = p − 1, by telescoping the digit
sum. Suppose on the other hand that (ii) fails. If qr ≤ qr+1, then S(n) ≥
p + qr − qr+1 − 1 + p− qr = p− qr+1 + p− 1 > p− 1, while if qr > qr+1 and
f is the lowest place where qf−1 < qf , the same argument shows S(n) ≥
p− qf + p− 1 > p− 1.

R e m a r k 1. The preceding lemma shows that if S(n) = p − 1 then
n/(p− 1) has non-zero digits in all places below the top digit of n, down to
the bottom non-zero digit of n. (It has a non-zero digit in the place of the
top digit iff n = (p− 1)pr.)

We now turn to Kimura’s function N(n, p) = N(n) which we will use
only when S(n) ≥ p−1. In this case, N(n) = the smallest t such that t ≺ n
and S(t) ≥ p−1. This is equivalent to N(n) = smallest t > 0 such that t ≺ n
and p− 1 | t, which is essentially Kimura’s definition [6, Lemma 4]. Thus if
n =

∑m
i=0 nip

i is the base p expansion and r is such that
∑r

i=0 ni ≤ p − 1
while

∑r+1
i=0 ni > p− 1, then

N(n) =
r∑

i=0

nip
i +
(
p− 1−

r∑
i=0

ni

)
pr+1 ,

so that S(N(n)) = p− 1.
The next lemma follows easily from (c).

Lemma 2.2. Suppose that p− 1 | δ and δ ⊥ δ/(p− 1). Then δ = 0.
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P r o o f. Observe that δ + δ/(p− 1) = δp/(p− 1). Hence if δ 6= 0 and f
is the lowest place where the digit qf 6= 0, then there is a carry in place f
for the base p sum.

We can deduce the following lemma, characterizing N(n).

Lemma 2.3. Suppose N(n) ≺ t ≺ n and p − 1 | t. Then p -
(
−n

t
p−1

)
iff

t = N(n).

P r o o f. If δ = t−N(n), then

n− 1 +
t

p− 1
=
(

N(n)− 1 +
N(n)
p− 1

)
+
(

δ +
δ

p− 1

)
.

Since there is no carry in the sum of the top digit of N(n) and the bottom
digit of δ, and otherwise the two summands have non-zero digits in different
places, this lemma follows from the previous two.

3. p-adic analysis of the higher order Bernoulli polynomials.
Recall that from [1, 3.1ii and 3.2ii],

An(x, s) =
n∑

i=0

bi(s)(x)n−i ,

where

|bi(s)| =
∑

w(u)=i

(n)i

(
s

d(u)

)(
d(u)

u1u2 . . .

)
1

2u13u2 . . .
,

where the sum is over all sequences (u) = (u1, u2, . . .) = (r1−r2, r2−r3, . . .)
of non-negative integers, eventually zero, with weight w(u) =

∑
juj = i

and arbitrary degree d(u) =
∑

uj .
It is convenient to abbreviate the term

τu = (n)w(u)

(
s

d(u)

)(
d(u)

u1u2 . . .

)
1

2u13u2 . . .
= (n)w(u)

(s)d(u)

u!∧u
,

and to take w(u) as the weight of τu.
We say that (u) or τu is concentrated in place p − 1 if uj = 0 for all

j 6= p− 1. Fix k ∈ {1, . . . , n} and let s = −k.
Clearly if w(u) < p − 1, then νp(τu) ≥ 0 since p first occurs in the

denominator when j = p− 1, whereas if w(u) = i and (u) is concentrated in
place p− 1, then p− 1 | i and

νp(τu) = νp

(
(n)i

(
−k

i
p−1

))
− i

p− 1
= νp

(
n!

(n− i)!

)
− i

p− 1
+ νp

(
−k

i
p−1

)
=

S(n− i)− S(n)
p− 1

+ νp

(
−k

i
p−1

)
.
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The following lemma shows that the terms concentrated in place p − 1
determine the pole structure.

Lemma 3.1. If (u) is not concentrated in place p−1, then τu dominates a
term of lower weight , i.e. there exists (u′) with w(u′) < w(u) and νp(τu) ≥
νp(τu′), whence τu dominates a term of lower weight concentrated in place
p− 1.

P r o o f. C a s e 1. Suppose there exists i < p− 1 with ui > 0. Construct

(u′) by replacing ui by 0 and increasing up−1 by
⌈

ui

p− 1

⌉
− 1. This clearly

decreases degree and weight, and since νp(ui!) ≤
⌈

ui

p− 1

⌉
− 1, we get the

desired domination.
C a s e 2. Suppose there exists i > p− 1 with ui > 0. Construct (u′) by

replacing ui by 0 and increasing up−1 by ui. This clearly preserves degree
and decreases weight. Since

νp((up−1 + ui)!) ≥ νp(up−1!) + νp(ui!) ,

the domination is obvious unless i = kpα − 1, α > 1, where (k, p) = 1. In
this case,

w(u)− w(u′) = ui(kpα − p) ≥ ui(α− 1)p .

Hence

νp(∧u) = νp(∧u′
) + ui(α− 1)

and

νp((n)w(u)) ≥ νp((n)w(u′)) + ui(α− 1) ,

since for any m, νp((m)rp) ≥ r. This again establishes the domination.
Now, if (u′) is not concentrated in place p−1, repeat the argument with

(u) replaced by (u′). Since the weights are decreasing, eventually we get a
term concentrated in place p− 1 dominated by τu.

Let a ∈ {0,−1,−2, . . .}. We then deduce immediately from the preceding
lemma and remarks, using standard properties of valuations of sums,

Corollary 3.2. If t is the smallest i such that νp(bi) < a, then

(i) p − 1 | t, and if τu is concentrated in place p − 1 and has weight t,
then νp(τu) < a,

(ii) νp(τu) ≥ a for all (u) with w(u) ≤ t except for the term τu in (i),

(iii)
S(n− t)− S(n)

p− 1
+ νp

(
−k

t
p−1

)
< a and

S(n− i)− S(n)
p− 1

+ νp

(
−k

i
p−1

)
≥ a if i < t and p− 1 | i,
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(iv) if i < t, p− 1 | i, p -
(

n

i

)
and

S(i)
p− 1

> −a, then p |
(
−k

i
p−1

)
.

The last condition follows from the second part of the previous one.
It is not hard to further describe and indeed characterize t by a theorem

which implies that the first pole is simple, the second higher pole has order 2,
etc., and which enables us to determine where they occur from the base p
expansion of n. All subsequent results of this paper follow fairly easily from
this theorem. Let a ∈ {0,−1,−2, . . .} as above.

We say that l is a segment of n, starting in place r, if n =
∑m

i=0 nip
i and

l =
∑s

i=r nip
i. (This includes l = 0 if s < r.) If r = 0, we call l a bottom

segment.

Theorem 3.3. If t is the smallest i such that νp(bi) < a, then

(i) p -
(
−k

t
p−1

)
,

(ii) p -
(

n

t

)
,

(iii)
S(n)− S(n− t)

p− 1
=

S(t)
p− 1

= 1− a,

(iv) νp(bt) = a− 1,
(v) the only digits of n that t and n − t can share are top digits of

segments of t divisible by p− 1,
(vi) t is the smallest i such that

p− 1 | i, p -
(

n

i

)
,

S(i)
p− 1

> −a and p -
(
−k

i
p−1

)
.

P r o o f. Assume that S(∆) = p− 1 and that ∆/(p− 1) ≺ t/(p− 1), e.g.
∆ = N(t). Let t1 = t−∆, so 0 ≤ t1 < t, p−1 | t1, and t1/(p− 1) ≺ t/(p− 1),
whence by (iii) of the preceding corollary,

a ≤ S(n− t1)− S(n)
p− 1

+ νp

(
−k
t1

p−1

)
=

S(n− t1)− S(n− t)
p− 1

+
S(n− t)− S(n)

p− 1
+ νp

(
−k
t1

p−1

)
≤ S(∆)

p− 1
+

S(n− t)− S(n)
p− 1

+ νp

(
−k
t1

p−1

)
≤ 1 +

S(n− t)− S(n)
p− 1

+ νp

(
−k

t
p−1

)
≤ a .
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Thus all the inequalities are actually equalities, so

νp(bt) =
S(n− t)− S(n)

p− 1
+ νp

(
−k

t
p−1

)
= a− 1 ,

νp

(
−k
t1

p−1

)
= νp

(
−k

t
p−1

)
,

and
S(n− t1) = S(∆) + S(n− t), i.e. n− t ⊥ ∆ .

It follows that νp

(
−k

t
p−1

)
= 0, since if not, and r is the lowest place where

there is a carry base p for k − 1 + t/(p− 1), i.e. (k − 1)r +
(

t

p− 1

)
r

≥ p,

and if ∆ =
(

t

p− 1

)
r

pr(p− 1), then t1/(p − 1) and t/(p − 1) agree in all

places except place r and
(

t1
p− 1

)
r

= 0, so

νp

(
−k
t1

p−1

)
< νp

(
−k

t
p−1

)
,

contradicting the above equation.

Next assume
(

t

p− 1

)
r

6= 0, and let ∆ = (p − 1)pr. Then n − t ⊥ ∆,

whence (n− t)r = 0.
Therefore n− t has non-zero digits only in the places where t/(p− 1) is

zero.
Now, let ∆0 = N(t). Then n− t ⊥ ∆0 and n− t has zero digits in all the

places of ∆0 except possibly the top place. Next consider ∆1 = N(t−∆0).
The same argument shows n− t ⊥ ∆1, and if ∆1 and ∆0 share a digit of n
in place r, then (n − t)r = 0. Continue the process. Since p − 1 | t, t is the
sum of these ∆i, so n− t ⊥ t, and the theorem follows.

We can deduce easily from the preceding theorem and Lemmas 2.2
and 2.3

Corollary 3.4. Let l be a bottom segment of n with S(n− l) ≥ p− 1.
Let k = n − l. Then t = N(n − l) is the smallest i such that νp(bi) < 0,
νp(bt) = −1, and νp(bi) ≥ −1 for all i.

P r o o f. Observe that t = ∆ = N(n − l), following the notation of the
previous proof.

If l′ < l is any smaller segment of n, then k− 1 has all digits p− 1 in the

places of l, so p |
(

−k
N(n−l′)

p−1

)
. Since p -

(
−k

N(n−l)
p−1

)
and p |

(
−k

N(n−l−l1−N(n−l))
p−1

)
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if l1 is a bottom segment of n− l−N(n− l) by the lemmas, the result follows
immediately.

R e m a r k 2. Let tj be the smallest i such that νp(bi) < −j for j =
0, 1, . . . ,−a. Then νp(bi) = −j − 1 if i = tj by (iv), so there are no gaps
in the orders of the poles. We can use (v) to construct t as follows: there
is a (unique) sequence l0, l1, . . . , l−a of segments of n− t such that lj+1 is a
bottom segment of n− tj −

∑j
λ=0 lλ and

tj+1 − tj = N
(
n− tj −

j+1∑
λ=0

lλ

)
= Nj+1 .

Thus the higher order poles come in the natural order. In particular, t0 =
N(n− l0) = N0 gives the first pole (simple), where l0 is a bottom segment
of n, and t1 = t0 + N(n − t0 − l0 − l1) gives the first higher pole (double),
where l1 is a bottom segment of n − t0 − l0. Hence tj =

∑j
λ=0 Nλ, where

S(Nλ) = p − 1, and the Nλ give the degree differences for the successively
higher order poles. The sequences (tj) and (lj) can be determined recursively
together from n and k as follows: lj+1 is the smallest segment l of n − tj
starting in the place of the highest digit of tj such that

p -

(
−k

N(n−tj−
∑j

λ=0
lλ−l)

p−1

)
,

and tj+1 − tj = N(n− tj −
∑j+1

λ=0 lλ), with initial condition t−1 = 0.
It follows that k = 1 gives the biggest possible pole, which has order[

S(n)
p− 1

]
, with all lj = 0. In particular, there are no poles if S(n) < p− 1.

It is not hard to show that we can turn around the preceding construc-
tion, namely if t is constructed as in the preceding paragraph, then there
exists k such that tj =

∑j
λ=0 Nλ is the first i such that νp(bi) < −j for

j = 0, 1, . . . ,−a, and νp(bi) ≥ a − 1 for all i. Thus t exhibits the complete
singularity pattern for such k. It can be seen that one way to choose k is to
start with n − l0, subtract all the Nλ for λ > 0 and also the highest place
contribution of N0 if N0 and N1 share a digit of n.

The case p = 2 is simplest to describe since S(N) = p − 1 iff N is a
2-power, and there is no sharing of digits. In this case, N0, N1, . . . , N−a are
just successively higher powers of 2 that occur in the base 2 expansion of n,
and k = n− l0 −

∑−a
λ=1 Nλ = n− l0 − (t−a − t0).

Now we turn to the p-Eisenstein behavior of these polynomials. When
we say that An(x,−k) is p-Eisenstein down to degree d, we actually refer
to pAn(x,−k). The condition that we need is a simple highest order pole,
which by the above analysis is equivalent to having a (simple) pole, but no
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pole of order two, i.e.

νp(b0) = 0, νp(bi) ≥ 0 for i < n− d, νp(bn−d) = −1, νp(bi) ≥ −1 all i .

If S(n) < p − 1, then (S(n − i) − S(n))/(p − 1) > −1 for all i, so
as previously noted there is no p-Eisenstein behavior. The next theorem,
which establishes all instances of p-Eisenstein behavior follows immediately
from the preceding discussion.

Theorem 3.5. If An(x,−k) is p-Eisenstein down to degree d, then d =
n − N(n − l) for some bottom segment l of the p-adic expansion of n with
S(n− l) ≥ p− 1. Conversely , if d = n−N(n− l), then An(x,−(n− l)) is
p-Eisenstein down to degree d; furthermore, An(x,−k) is p-Eisenstein down
to degree d iff the following three conditions hold :

(i) p |
(

−k
N(n−l′)

p−1

)
for all bottom segments l′ of n such that l′ < l,

(ii) p -
(

−k
N(n−l)

p−1

)
, and

(iii) p |
(

−k
N(n−l−l1−N(n−l))

p−1

)
if l1 is any bottom segment of n−l−N(n−l).

(This condition assumes S(n− l)− S(l1)− (p− 1) ≥ p− 1, so it is vacuous
if S(n− l) < 2(p− 1).)

The case p = 2 of this theorem is particularly easy to state: If An(x,−k)
is 2-Eisenstein down to degree d, then d = n − 2f for some power 2f in
the base 2 expansion of n. Furthermore, An(x,−k) is 2-Eisenstein down to

degree n−2f iff 2 -
(
−k

2f

)
and 2 |

(
−k

2g

)
for all other powers 2g in the base 2

expansion of n iff the base 2 expansion of k− 1 contains all the 2g but does
not contain 2f iff n − 2f ≺ k − 1 iff k − 1 = n − 2f + m, where m is any
sum of lower powers of 2 not in the base 2 expansion of n. (Observe that
k = n− l if m is all these lower powers, where l is the bottom segment of n
below 2f .)

The following corollaries are special cases. Take l = 0 to get the first
three corollaries, and l = n0 to get the last three.

Corollary 3.6 (Kimura). An(x,−n) is p-Eisenstein down to degree
n−N(n).

R e m a r k 3. It follows immediately that if p−1 ≤ S(n) < 2(p−1), then

An(x,−k) is p-Eisenstein down to degree n−N(n) iff p -
(
−k

N(n)
p−1

)
.

Since N(n) = n iff S(n) = p− 1, for our restricted use of N(n), we get

Corollary 3.7 (McCarthy). An(x,−n) is p-Eisenstein iff S(n) = p−1.
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We can sharpen this as follows:

Corollary 3.8. The following are equivalent :

(i) S(n) = p− 1.
(ii) There exists k ∈ {1, . . . , n} such that An(x,−k) is p-Eisenstein.
(iii) An(x,−n) is p-Eisenstein.
(iv) An(x,−1) is p-Eisenstein.

Furthermore, if these conditions hold , An(x,−k) is p-Eisenstein iff

p -
(
−k
n

p−1

)
.

R e m a r k 4. It follows that if n = (p− 1)pr and k ≤ n, then An(x,−k)
is p-Eisenstein. In particular, if n = 2r and k ≤ n, then An(x,−k) is 2-
Eisenstein. In fact, it is easy to deduce that An(x,−k) is p-Eisenstein for all
k ∈ {1, . . . , n} iff n = (p−1)pr, r ≥ 0. (If n 6= (p−1)pr and nf is the lowest
non-zero digit, then let k − 1 = (p − 1)pf , so k ≤ n and k − 1 6⊥ n

p− 1
.)

More generally, if n = m(p− 1)pr with 1 ≤ m < p, then 0 < k ≤ (p−m)pr

and n ≥ k > (m−1)pr+1 each imply that An(x,−k) is p-Eisenstein, namely
n = (m − 1)pr+1 + (p −m)pr, so S(n) = p − 1, and each condition implies
that k − 1 ⊥ n/(p− 1). Compare this with [8, Theorems 1, 2, 4] and [9,
Theorems 1, 2].

Corollary 3.9 (where l = n0). Suppose that n = m+ l where l > 0 and
p - (n)l. Then the following are equivalent :

(i) S(m) = p− 1 and p |m.
(ii) There exists k ∈ {1, . . . , n} such that An(x,−k) is p-Eisenstein down

to degree l.
(iii) An(x,−m) is p-Eisenstein down to degree l.

Furthermore, if these conditions hold , An(x,−k) is p-Eisenstein down

to degree l iff p -
(
−k
m

p−1

)
and p |

(
−k

N(n)
p−1

)
.

P r o o f. Observe that the conditions p - (n)l and p |n − l are equivalent
to l = n0. The result thus follows immediately from the theorem.

Corollary 3.10 (where l = n0 = 1). Suppose that p |n−1 and S(n−1) =
p − 1. Then An(x,−(n − 1)) is p-Eisenstein down to degree 1 (so there is
an irreducible factor of degree n− 1). Also An(x,−k) is p-Eisenstein down

to degree 1 iff p -
(
−k
n−1
p−1

)
and p |

(
−k
n−i
p−1

)
, where i is the largest p-power < n

(so N(n) = n− i).
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We have not seen anything like the following simple corollary in the
literature.

Corollary 3.11 (where l = n0 = 1, p = 2). If n = 2r + 1, with r > 0,
then An(x,−k) is p-Eisenstein down to degree 1 iff k is even. (This is

equivalent to 2 -
(
−k

2r

)
and 2 |

(
−k

1

)
.)

These corollaries give the irreducibility of certain instances of
An(x,−k)/(2x − (n − k − 1)) for n odd. We give some additional illus-
trative computations beyond the case n = 2r + 1, where the Kimura bound
only gives the trivial result that there is an irreducible factor of degree ≥ 1,
since N(n) = 1.

Examples. (1) Let n = 13, p = 3, l = 1. Then S(12) = 2 = p − 1 and
p |n−1, from which it follows that An(x,−k) is p-Eisenstein down to degree
1 for k = 2, 3, 11, 12, whence An(x,−k)/(2x− (n− k− 1)) is irreducible for
these values.

Since N(13) = 4, Kimura’s analysis only gives an irreducible factor of
degree ≥ 4, and McCarthy’s higher order theorem [8, Theorem 3], with
p = 5, only gives an irreducible factor of degree ≥ 8.

The preceding analysis can also be useful when n is even, e.g.

(2) n = 14, p = 3, l = 2. Then A14(x,−k) is 3-Eisenstein down to
degree 2 if k = 3 or 12, so there is an irreducible factor of degree ≥ 12. On
the other hand, N(14) = 2, so Kimura’s bound only gives an irreducible
factor of degree ≥ 2. It is of course known that B14(x) is irreducible [5].

(3) Finally, we consider the “exceptional case” n = 11, where there is an
additional irreducible quadratic factor for k = 11 (cf. [3]).

With p = 2, N(11) = 1 and N(10) = 2, which do not help much, but
N(8) = 8, so A11(x,−8) has an irreducible factor of degree ≥ 8.

All of the p-Eisenstein results for higher order Bernoulli polynomials
which we have seen in the literature can be readily derived from Theorem 3.5
and its corollaries, usually considerably strengthened. As an example, con-
sider the following theorem of McCarthy, with notations slightly changed to
conform with our usage.

Theorem M [8, Theorem 3]. Let p be an odd prime, and assume that
n = r(p− 1) + 1 where 0 ≤ r − 1 ≤ p− α. Then B

(α)
n (x) has an irreducible

factor of degree ≥ n− p.

We actually prove a stronger if and only if theorem, which contains the
preceding result as one direction of the special case where α < p.
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Theorem M′. Let p be an odd prime and 1 ≤ α ≤ n. Assume that
p − 1 |n − 1 and 2 ≤ (n− 1)/(p− 1) ≤ p. Then B

(α)
n (x) is p-Eisenstein

down to degree p iff
n− p

p− 1
≤
⌈

α

p

⌉
p− α .

P r o o f. Let r = (n− 1)/(p− 1), so n = r(p−1)+1 and (n− p)/(p− 1)
= r−1. (Thus if α < p, Theorem M follows from our Theorem 3.5; the case
r = 1 is trivial since then n = p and Theorem M is vacuous.)

Let q =
⌈

α

p

⌉
, so 0 ≤ qp − α < p. Since rp ≥ n ≥ α, we have r ≥ q.

But n = (r − 1)p + (p − r + 1) so S(n) = p by our hypotheses, whence
p− 1 ≤ S(n) < 2(p− 1) since p is odd.

Thus if k = n + 1 − α, then B
(α)
n (x) is p-Eisenstein down to degree

n−N(n) iff p -
(
−k

N(n)
p−1

)
.

Since N(n) = n−p = (r−1)(p−1), we must determine when p -
(
−k

r − 1

)
,

i.e. when k − 1 ⊥ r − 1. But k − 1 + r − 1 = rp− α = (r − q)p + (qp− α)
and 0 ≤ r− q, r− 1, qp− α ≤ p− 1, so the result follows immediately from
Lucas’s Theorem.
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