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Lehmer’s semi-symmetric cyclotomic sums

by

Andrew J. S. Lazarus (Davis, Calif.)

To the memory of Derrick Henry Lehmer

At the 1991 West Coast Number Theory Conference, Emma Lehmer
asked for proofs of the formulas on semi-symmetric cyclotomic sums that
appeared without proof in D. H. Lehmer’s last notebook. This note is the
result. Furthermore, we show how to determine signs which Lehmer had
left ambiguous.

Classical cyclotomy defined the cyclotomic classes of degree e and prime
conductor p = ef + 1 to be

(1) C(g)
j = {get+j mod p : t = 0, . . . , f − 1}, j = 0, . . . , e− 1 ,

where g is any primitive root mod p. Here C(g)
0 contains the eth-power

residues, but, as the notation emphasizes, the indexing of the other classes
depends upon the choice of g. If g′ ∈ C(g)

k is another generator, then

(2) C(g′)
j = C(g)

jk .

(Indices are taken mod e here and throughout.)
The Gaussian periods are defined by

ηj =
∑
h∈Cj

ζh
p , j = 0, . . . , e− 1 ,

where a choice of g has been fixed and ζp = exp(2πi/p). The indexing of
the periods other than η0 also depends on g. By ζn we will always mean the
specific root of unity exp(2πi/n).

The principal period η0 = TrQ[ζp]
K ζp where K is the unique field of con-

ductor p and degree e over Q. The other ηj , j = 1, . . . , e− 1, are its Galois
conjugates.
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Lehmer investigated the semi-symmetric functions of the periods

Se(m, j) =
e−1∑
h=0

ηm
h ηh+j .

1. e = 3. Since p ≡ 1 mod 6, we have the well-known decomposition
4p = L2 + 27M2. We will use Hasse’s normalization L ≡ 2 mod 3. We can
specify how to choose M , and then impose a condition on the primitive root
g used in (1), or we may choose g and then determine M from congruence
conditions, but we cannot normalize both M and g in advance. The choices
are tied together by the lemma:

Lemma 1 ([4, Proposition 1]). Let g be an arbitrary primitive root mod p
and let p = (L + 3

√
3iM)/2 be a complex prime lying over p. Then the

complex residue symbol (
g

p

)
3

def= g(p−1)/3 mod p

is equal to ζ3 if and only if

(3) g(p−1)/3 ≡ (L + 9M)/(L− 9M) mod p .

R e m a r k. A general procedure for obtaining results of this type for
prime e appears in [4].

Theorem 2.

(4) 18S3(2, j) = p(L + (−1)j9M)− 2, j = 1, 2 ,

where L ≡ 2 mod 3 and either

(a) g is chosen so that

(5)
(

g

p

)
3

= ζ3, p = (L + 3
√

3iM)/2, M > 0 ,

or
(b) g is arbitrary and M is such that (3) holds.

P r o o f. Lehmer obtained a formula equivalent to (4), except his L ≡
1 mod 3 (i.e., replace L by −L in (4)) and ±M is undetermined. We will,
however, give the proof ab initio, using Hasse [3, §1–2] and his normalization.

Assume normalization (a). The field Q[ζp] contains as a subfield the
unique cubic field K of conductor p. There are two cubic characters “be-
longing” to this field, and they coincide with the cubic residue symbols for

the primes lying over p in Q[ζ3], viz.,
(

g

p

)
3

and
(

g

p

)
3

. Let χ be the
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character associated with p and let

t = −τ(χ) = −
p−1∑
j=0

χ(j)ζj
p ,

the negative of the Lagrange resolvent (sometimes called a Gauss sum).
Hasse wrote elements of K in the form [x, y] with x ∈ Q, y ∈ Q[ζ3], repre-
senting the number (x + yt + yt)/3. Elements written in this form can be
added coordinate-wise and multiplied according to the scheme

tt̄ = p, t2 = pt̄ .

The resolvents τ(χ) are connected to the Gaussian periods through the
inversion relation

(6) ηj = e−1
e−1∑
h=0

ζ−hj
p τ(χh) ,

which implies, since τ(χ3) = Möbius µ(p) = −1, that

η0 = [−1,−1], η1 = [−1,−ζ−1
3 ], η2 = [−1,−ζ3] .

The theorem follows from a calculation in Hasse’s ordered pair basis which
was implemented in the Maple computer algebra language.

The truth of the theorem for normalization (b) follows from the lemma.

Normalize g and p by (5). If, for arbitrary g′,

(
g′

p

)
3

= ζ3, the proof for

normalization (a) holds with g replaced by g′. If not, then
(

g′

p

)
3

= ζ3, and

(3) gives M < 0, i.e., the opposite normalization to (5). The negative value
for M is correct in (4) because, from (2), C(g)

j = C(g′)
3−j , and η1 and η2 are

likewise exchanged.

2. e = 4. Because the Lehmers were interested in both cyclotomy
and units, they considered only the real fields where p ≡ 1 mod 8. (The
unit groups of the imaginary quartic fields are generated, up to torsion, by
quadratic units.) Here we will use the normalization

p = a2 + b2, a ≡ 1 mod 4, b ≡ 0 mod 4 .

The analogue to Lemma 1 is:

Lemma 3. If g is a generator mod p and p = a + bi is a prime of Q[i]
lying over p, then(

g

p

)
4

def= g(p−1)/4 mod p = i if and only if g(p−1)/4 ≡ a + b

a− b
mod p .
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P r o o f. Write G for g(p−1)/4.(
g

p

)
4

= i ⇔ p |G− i ⇔ p | p̄(G− i) .

Considering real and imaginary parts gives p | (aG − b) and p | (a + bG),
whence G(a− b) ≡ (a + b) mod p. Hence the lemma.

R e m a r k. It is easy to see that (a+ b)/(a− b) and its reciprocal are the
square roots of −1 mod p.

Theorem 4.
16S4(2, j) = −1− p(1− 2a + (−1)(j−1)/24b), j = 1, 3 ;
16S4(2, 2) = 2pa− p− 1 ;

64S4(3, j) = 1− 7p2 + 6p− (−1)(j−1)/24bp(3 + a), j = 1, 3 ;

64S4(3, 2) = −3p2 + (6− 4a2)p + 1

where either

(a) g is chosen so that(
g

p

)
4

= i, p = a + bi, b > 0 ,

or
(b) g is arbitrary and b is such that g(p−1)/4 ≡ (a + b)/(a− b) mod p.

P r o o f. These formulas appear in Lehmer’s notebook up to sign. As-
sume normalization (a), which is from Hasse [3, §7–8]. Let χ be the character
associated with p belonging to the quartic field, and set t equal to the re-
solvent τ(χ). Hasse wrote elements of the quartic field K of conductor p in
the 4-tuple [x0, x1, y0, y1], xi, yi ∈ Q, representing the number

1
4 (x0 − x1

√
p + (y0 + iy1)t + (y0 − iy1)t̄) .

Since τ(χ4) = µ(p) = −1 and Gauss showed that τ(χ2) =
√

p, we have,
from (6),

η0 = [−1,−1, 1, 0], η1 = [−1, 1, 0,−1],
η2 = [−1, 1,−1, 0], η3 = [−1,−1, 0, 1] .

Multiplication of elements in Hasse’s basis is accomplished through the re-
lations

tt̄ = p, t2 = −p
√

p,
√

pt = −pt̄ .

This scheme was implemented in Maple and the various S4’s were calculated
with the results shown in the theorem.

The truth of the theorem for normalization (b) proceeds from Lemma 3
in the same fashion as the end of the proof of Theorem 2.

Corollary 5. S4(3, 1) = S4(3, 3) = −(7p+1)(p−1) whenever a = −3.



Lehmer’s cyclotomic sums 225

3. e = 5. Dickson [2] decomposed primes p ≡ 1 mod 5 as

16p = x2 + 50u2 + 50v2 + 125w2,

subject to xw = v2 − 4uv − u2, x ≡ 1 mod 5 .

If (x, u, v, w) is one solution to this system, the others are (x,−v, u,−w),
(x, v,−u,−w) and (x,−u,−v, w). If g is a primitive root mod p, Katre and
Rajwade proved in [5] that (x, u, v, w) can be defined unambiguously—given
g—by the additional condition

g(p−1)/5 ≡ (a− 10b)/(a + 10b) mod p ,(7)

a = x2 − 125w2, b = 2xu− xv − 25vw .

R e m a r k. Another expression for primitive fifth roots mod p was ob-
tained by Emma Lehmer in [6]. Her expression was more complicated and
evaluated to 0/0 when u = −2v.

The author is not aware of special bases for quintic fields in the literature,
but S5(m, j) can be evaluated with the cyclotomic numbers (h, k). These
are defined (for fixed g) by

(h, k) = #{ν ∈ (Z/pZ)∗ : ν ∈ C(g)
h , ν + 1 ∈ C(g)

k } .

There are a number of well-known general formulas satisfied by the cyclo-
tomic numbers (see, e.g., [1, 7]), including

ηaηa+k = ε(k)f +
e−1∑
h=0

(h, k)ηa+h,(8)

ε(k) =
{

1 k = 0, f even or k = e/2, f odd,
0 otherwise.

For p ≡ 1 mod 5, obviously f is even.
The quintic cyclotomic numbers were established in principle by Dick-

son [2] and made unambiguous (as a function of g) in [5] by (7):

(9)

(00) = (p− 14 + 3x)/25 ,

(01) = (10) = (44) = (4p− 16− 3x + 50v + 25w)/100 ,

(02) = (20) = (33) = (4p− 16− 3x + 50u− 25w)/100 ,

(03) = (30) = (22) = (4p− 16− 3x− 50u− 25w)/100 ,

(04) = (40) = (11) = (4p− 16− 3x− 50v + 25w)/100 ,

(12) = (21) = (34) = (43) = (14) = (41) = (2p + 2 + x− 25w)/50 ,

(13) = (31) = (23) = (32) = (24) = (42) = (2p + 2 + x + 25w)/50 .
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The Lehmer results are

Theorem 6.

100S5(2, 1) = −4− 8p− 3px + 50pv + 25pw ,

104S5(3, 1) = 80 + 720p− 320p2 − 60px− 45px2 − 625pw2 − 1500pw

− 3000pv + 500pxv + 250pxw − 2500pv2 − 5000puw

+ 2500pvw ,

106S5(4, 1) = 80000 p2v − 9600 p2x + 40000 p2w − 675 px3 + 8750 px2v

+ 4375 px2w − 25000 pxu2 − 25000 pxuw − 37500 pxv2

+ 12500 pxvw − 40000 pxv − 15625 pxw2 − 20000 pxw

+ 12000 px + 250000 pu2v + 125000 pu2w − 100000 pu2

+ 250000 puvw − 125000 puw2 + 400000 puw + 375000 pv3

+ 62500 pv2w + 100000 pv2 + 843750 pvw2 − 200000 pvw

+ 120000 pv + 78125 pw3 + 60000 pw − 32000 p− 1600 .

P r o o f. We will illustrate the proof for S5(2, 1); the same technique
is used for the other formulas but the calculations (which were done by
machine) are much messier. Using (8) and the identities involving the (h, k)
in (9) we have

η2
0η1 = (01)f(10)

+ [(03)(13) + (00)(01) + (01)(04) + (02)(12) + (04)(12)]η0

+ [f + (00)(04) + (03)(02) + (04)(03) + (00)(01) + (01)(02)]η1

+ [(00)(12) + (04)(13) + (02)(04) + (03)(12) + (01)2]η2

+ [(03)2 + (00)(13) + (02)(12) + (04)(13) + (01)(02)]η3

+ [(02)(13) + (00)(12) + (01)(03) + (03)(13) + (02)(04)]η4 .

Noting that S5(2, 1) = TrK
Q η2

0η1, and that TrK
Q ηj = −1, we can obtain an

expression for S5(2, 1) in terms of cyclotomic numbers by multiplying the
rational term in (10) by 5 and subtracting the coefficients of the η’s. This
yields

S5(2, 1) = 5(01)f − (00)(04)− 2(02)(12)− 2(02)(04)− (02)(13)

− (03)(02)− (03)(12)− (03)2 − (04)(12)− (04)(03)
− 2(04)(13)− 2(03)(13)− 2(01)(02)− (01)(03)

− (01)2 − (01)(04)− (00)(13)− 2(00)(12)− 2(00)(01)− f .

The theorem now follows by substituting in the values of (h, k) in (9) and
simplifying.
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Corollary 7. S5(m, j), j = 2, 3, 4, are obtained by substituting σ2 =
(x,−v, u,−w), σ3 = (x, v,−u,−w), and σ4 = (x,−u,−v, w) respectively for
σ1 = (x, u, v, w) in S5(m, 1).

P r o o f. Theorem 2 of [5] implies that a generator g′ is in C(g)
j whenever

g satisfies (7) and g′ will satisfy (7) after the substitution σj is made. The
corollary follows from (2). (The substitution σj is related to the automor-
phism of Q[ζ5] given by ζ5 7→ ζj

5 .)

R e m a r k. Lehmer also investigated a variation on the Sn in which the
Gaussian periods η were replaced by the so-called reduced Gaussian periods
x = eη+1. The corresponding minimal polynomials have simpler coefficients
and may be obtained in exactly the same ways.
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