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1. Preliminaries. In [3], Honda proved that for any elliptic curve C

over Q, a formal completion Ĉ of C is isomorphic over Z to a formal group
whose invariant differential has the same coefficients as the zeta-function
of C, and his result was generalized to abelian varieties over Q with real
multiplication by Deninger and Nart in [1]. In this paper, we classify formal
groups which are obtained from some L-series associated with symmetric
powers.

Let p be a rational prime and let ap be a rational integer. Let Qp

and Zp denote the field of p-adic numbers and the ring of p-adic integers,
respectively. Consider an equation

(a) X2 − apX + pk−1 = 0 ,

where k ∈ N and k ≥ 2. Let αp, βp be roots of the equation (a) in Qp. Let
m ∈ N and consider a local Dirichlet series:

L(m)
p (s) =

1
(1− αm

p p−s)(1− αm−1
p βpp−s) . . . (1− αpβ

m−1
p p−s)(1− βm

p p−s)
.

Expanding it out, we have

L(m)
p (s) =

1
1 + cpp−s + pcp2p−2s + . . . + pmcpm+1p−(m+1)s

.

Lemma 1. For any ν, 1 ≤ ν ≤ m + 1, cpν ∈ Z.

P r o o f. This can be shown by easy calculations.

Now we put together all local Dirichlet series, and define the global
Dirichlet series:

L(m)(s) =
∏
p

L(m)
p (s) =

∏
p

(1 + cpp
−s + . . . + pmcpm+1p−(m+1)s)−1 ,
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where p runs over all rational primes. Put

L(m)(s) =
∞∑

n=1

Ann−s .

Then An ∈ Z, and Ann′ = AnAn′ = An′An if (n, n′) = 1.
This L-series is very important in number theory and algebraic geome-

try (cf. [5]). So it is interesting and meaningful to consider formal groups
obtained from this L-series. Put

f (m)(x) =
∞∑

n=1

n−1Anxn and F (m)(x, y) = f (m)−1
(f (m)(x) + f (m)(y)) .

Then by Theorem 8 in [4], F (m)(x, y) is a formal group over Z. For a rational
prime p, let F (m)∗(x, y) denote the reduction of F (m)(x, y) modulo p. For
b ∈ Zp, let [b]F (m)(x) = f (m)−1

(bf (m)(x)). Then [b]F (m)(x) ∈ Zp[[x]] and let
[b]∗

F (m) denote the reduction of [b]F (m) modulo p (cf. [2]). We use ordp for
the p-adic valuation of Zp normalized by ordp(p) = 1. Then we have the
following lemma.

Lemma 2. Let (ap, p) > 1 and ν ∈ N.

(1) For k = 2, we have

ordp(αν
p + βν

p ) ≥
{

ν/2 if ν is even,
(ν + 1)/2 if ν is odd.

(2) For k > 2, we have

ordp(αν
p + βν

p ) ≥ ν .

P r o o f. This is proved by induction on ν, using the identity

αν
p + βν

p = (αp + βp)(αν−1
p + βν−1

p )− αpβp(αν−2
p + βν−2

p ) .

2. The case of (ap, p) > 1. Let p be a rational prime, and let ap ∈ Z
such that p | ap. Let αp, βp, L

(m)
p (s), f (m)(x), F (m)(x, y) and F (m)∗(x, y) be

as in Section 1. If m = 1 and k = 2, f (1) is of type u = p + cpT + T 2 by
Theorem 8 in [4]. Hence F (1)∗ has height 2 by Proposition 3.5 in [4]. In fact,
it is associated with the elliptic curve which has Hasse invariant 0 (cf. [6]).
In other cases, we have the following results.

Proposition 1. If m = 1 and k ≥ 3, or m ≥ 2 and k ≥ 2, then F (m)∗

has infinite height.
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P r o o f. We only need to show that for ν ≥ 1, Apν ≡ 0 (mod pν). We
have

Apν =
∑

k1+k2+...+km+1=ν

(αm
p )k1(αm−1

p βp)k2 . . . (αpβ
m−1
p )km(βm

p )km+1

≡
ν∑

i=1
k1+km+1=i

(
(αm

p )k1(βm
p )km+1

×
( ∑

k2+...+km=ν−i

(αm−1
p βp)k2 . . . (αpβ

m−1
p )km

))
(mod pν) .

If i is even,

ordp

( ∑
k1+km+1=i

(αm
p )k1(βm

p )km+1

)
= ordp((αm

p )i + (βm
p )i + (αm

p )i−1βm
p + αm

p (βm
p )i−1 + . . . + (αm

p βm
p )i/2)

≥ min{ordp((αm
p )i + (βm

p )i), ordp((αm
p )i−1βm

p + αm
p (βm

p )i−1),

. . . , ordp((αm
p βm

p )i/2)}
≥ i by Lemma 2.

If i is odd,

ordp

( ∑
k1+km+1=i

(αm
p )k1(βm

p )km+1

)
= ordp((αm

p )i + (βm
p )i + (αm

p )i−1βm
p + αm

p (βm
p )i−1 + . . .

+(αm
p )(i−1)/2(βm

p )(i+1)/2 + (αm
p )(i+1)/2(βm

p )(i−1)/2)

≥ min{ordp((αm
p )i + (βm

p )i), ordp((αm
p )i−1βm

p + αm
p (βm

p )i−1), . . .

. . . , ordp((αm
p )(i−1)/2(βm

p )(i+1)/2 + (αm
p )(i+1)/2(βm

p )(i−1)/2)}
≥ i by Lemma 2.

On the other hand,

ordp

( ∑
k2+...+km=ν−i

(αm−1
p βp)k2 . . . (αpβ

m−1
p )km

)
≥ ν − i .

So we have ordp(Apν ) ≥ ν. Hence Apν ≡ 0 (mod pν).

3. The case of (ap, p) = 1. Let ap be a rational integer such that
p - ap. If m = 1 and k = 2, we know that F (1)∗ has height 1 by Lemma 6
in [3]. It is associated with the elliptic curve which has Hasse invariant 1
(cf. [6]). If m = 1 and k ≥ 3, then in the same way as in Lemma 6 of [3],
we have ht(F (1)∗) = 1. More generally, we get the height of F (m)∗ by direct
calculations.
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Proposition 2. F (m)∗ has always height 1.

P r o o f. We have

Ap = αm
p + αm−1

p βp + . . . + αpβ
m−1
p + βm

p

≡ αm
p + βm

p (mod p) ≡ am
p (mod p) 6≡ 0 (mod p) .

Since (ap, p) = 1, by Hensel’s lemma, αp and βp are elements in Zp. Let
αp be the unit solution and let βp be pk−1/αp.

In general, let R be a commutative ring with identity and let F and G
be formal groups over R. A formal power series ϕ(x) = a1x + . . . ∈ R[[x]] is
a homomorphism of F to G if ϕ(F (x, y)) = G(ϕ(x), ϕ(y)) and a1 6= 0. If a1

is a unit in R, the inverse power series ϕ−1 is a homomorphism of G to F .
In this case, we say that G is weakly isomorphic to F , denoted by F ∼ G.
In particular, if a1 = 1, we say that G is strongly isomorphic to F , denoted
by F ≈ G.

Proposition 3. The following assertions hold :

(1)
[

p

αm
p

]∗
F (m)

(x) = xp.

(2) F (m) ≈ F (m′) over Z if αp = 1 or αp = −1 and m ≡ m′ (mod 2).
Otherwise, F (m) 6∼ F (m′) over Z.

P r o o f. (1) Let π be the prime element such that [π]∗
F (m)(x) = xp. By

Corollary 2 of Theorem 8 in [4], we have

[p]∗F (m) +
m+1∑
ν=1

[cpν ]∗F (m) [π]∗νF (m) = 0 ,

that is, [p + cpπ + cp2π2 + . . . + cpm+1πm+1]∗
F (m) = 0. Since the map ∗ is

bijective, p + cpπ + cp2π2 + . . . + cpm+1πm+1 = 0. Put g(x) = p + cpx +
cp2x2 + . . .+ cpm+1xm+1. Then π is one of the solutions of g(x). Also, p/αm

p

is a solution of g(x). But, since g(x) ≡ x(cp +cp2x+ . . .+cpm+1xm) (mod p)
and cp 6≡ 0 (mod p), there is only one solution of g(x) which is divisible by
p. Hence π = p/αm

p .

(2) Since ht(F (m)∗) = 1, by Corollary of Theorem 2 in [3], p/αm
p =

p/αm′

p , that is, αp = 1 or αp = −1 and m ≡ m′ (mod 2) if and only if F (m)

and F (m′) are strongly isomorphic to each other. By Proposition 3.5 in [4],
weak isomorphisms are strong isomorphisms in this case.

It would be nicer to give the geometrical interpretation of these formal
groups F (m)(x, y), but it seems difficult for the time being.
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