Generalized Frobenius partitions, *k*-cores, *k*-quotients, and cranks

by

LOUIS WORTHY KOLITSCH (Martin, Tenn.)

1. Introduction. In 1900 Frobenius [3] introduced a symbol to represent an ordinary partition of an integer n. This symbol was a two-rowed array

$$\begin{pmatrix} a_1 & a_2 & \dots & a_r \\ b_1 & b_2 & \dots & b_r \end{pmatrix}$$

where the entries in each row were distinct nonnegative integers arranged in decreasing order and

$$n = \sum_{i=1}^{r} (a_i + b_i + 1).$$

Each partition has a unique representation as a Frobenius symbol. This representation was obtained from the Ferrar's graph of the partition for n by deleting the r nodes on the diagonal and defining a_i (b_i) as the number of nodes to the right of (below) the *i*th diagonal node. Frobenius used these symbols in his study of the representations of the symmetric groups.

More than three quarters of a century later Andrews [1] laid the foundation for the study of generalized Frobenius partitions (F-partitions). These combinatorial objects are also two-rowed arrays of nonnegative integers with varying restrictions placed on the entries in the top and bottom rows. The study of F-partitions arose out of the identities associated with Regime III of Baxter's Hard Hexagon Model [2] and have ties to ordinary partitions and their properties [7].

In this paper we will concentrate on F-partitions with k colors where a nonnegative integer can be repeated at most k times in each row as long as each repetition is a different color. We will denote our k available colors numerically by $0, 1, 2, \ldots, k-1$ and the color of an integer will be indicated by a numerical subscript. For example, the F-partitions with 2 colors of two

are

$$\begin{pmatrix} 0_1 & 0_0 \\ 0_1 & 0_0 \end{pmatrix}, \quad \begin{pmatrix} 1_1 \\ 0_1 \end{pmatrix}, \quad \begin{pmatrix} 1_1 \\ 0_0 \end{pmatrix}, \quad \begin{pmatrix} 1_0 \\ 0_1 \end{pmatrix}, \quad \begin{pmatrix} 1_0 \\ 0_0 \end{pmatrix}, \\ \begin{pmatrix} 0_1 \\ 1_1 \end{pmatrix}, \quad \begin{pmatrix} 0_1 \\ 1_0 \end{pmatrix}, \quad \begin{pmatrix} 0_0 \\ 1_1 \end{pmatrix} \text{ and } \quad \begin{pmatrix} 0_0 \\ 1_0 \end{pmatrix}.$$

A direct connection between F-partitions with k colors and ordinary partitions will be made through a bijection between the set of ordinary partitions and the set of F-partitions with k colors. In fact, it will be shown that an F-partition with k colors is simply a representation of an ordinary partition which can be used to keep track of certain pieces of information associated with the ordinary partition.

2. The bijection. We define a map ϕ from the set of generalized Frobenius partitions with k colors to the set of ordinary partitions as follows:

Let λ be an F-partition with k colors. Each entry a_i (where a is a nonnegative integer and $0 \leq i \leq k-1$) on the top row is replaced by ka+i. Each entry b_j (where b is a nonnegative integer and $0 \leq j \leq k-1$) on the bottom row is replaced by k(b+1) - j - 1. The new array is read as the Frobenius symbol representing an ordinary partition, $\phi(\lambda)$.

Clearly this is a bijective map between the set of F-partitions with k colors and the Frobenius symbols representing ordinary partitions (and thus the ordinary partitions themselves). Note that this bijection does not preserve the size of the integer being partitioned and two F-partitions of the same integer may be mapped to ordinary partitions of different integers.

 $\begin{pmatrix} 0_4\\ 0_1 \end{pmatrix}$ and $\begin{pmatrix} 0_3\\ 0_2 \end{pmatrix}$ are F-partitions of 1 using, for example, k = 7 colors. We could view these as F-partitions with any $k \ge 5$ colors. Now,

$$\phi\left(\begin{pmatrix} 0_4\\ 0_1 \end{pmatrix}\right) = \begin{pmatrix} 4\\ 5 \end{pmatrix},$$

representing an ordinary partition of 10 while

$$\phi\left(\begin{pmatrix} 0_3\\ 0_2 \end{pmatrix}\right) = \begin{pmatrix} 3\\ 4 \end{pmatrix},$$

representing an ordinary partition of 8.

We now look at the generating functions associated with this bijection. The generating function for F-partitions with k colors is the coefficient of z^0 in $\prod_{j=0}^{k-1} \prod_{i=0}^{\infty} (1+zt^jq^i)(1+z^{-1}t^{-j}q^{i+1})$ where the parameter t is used to keep track of the difference in the colors on the top and bottom rows. The bijection defined above can be fulfilled by replacing q by q^k and t by q.

This results in the generating function

$$\prod_{j=0}^{k-1} \prod_{i=0}^{\infty} (1+zq^{ki+j})(1+z^{-1}q^{k(i+1)-j}) = \prod_{n=0}^{\infty} (1+zq^n)(1+z^{-1}q^{n+1}).$$

The coefficient of z^0 in this last product is the generating function for the Frobenius symbols representing ordinary partitions.

3. The generating function identity. Let $c\phi_k(n,m)$ denote the number of generalized Frobenius partitions of n with k colors such that $\sum_{j=0}^{k-1} jd(j) = m$ where d(j) is the number of appearances of color j on the top row minus the number of appearances of color j on the bottom row. The discussion in Section 2 implies $\sum_{n=0}^{\infty} \sum_{m=-\infty}^{\infty} c\phi_k(n,m)q^n t^m$ is the coefficient of z^0 in $\prod_{j=0}^{k-1} (-zt^j;q)_{\infty}(-z^{-1}t^{-j}q;q)_{\infty}$ where $(A;B)_{\infty} = \prod_{n=0}^{\infty} (1-AB^n)$.

Using Jacobi's triple product identity we have

$$\sum_{n=0}^{\infty} \sum_{m=-\infty}^{\infty} c\phi_k(n,m) q^n t^m = \frac{1}{(q;q)_{\infty}^k} \prod_{j=0}^{k-1} \sum_{n=-\infty}^{\infty} q^{\binom{m-1}{2}} t^{mj} z^m.$$

It is not difficult to see that the coefficient of z^0 is

$$\frac{1}{(q;q)_{\infty}^{k}}\sum_{\substack{\mathbf{m}\in\mathbb{Z}^{k}\\\mathbf{m}\cdot\mathbf{1}=0}}q^{\frac{1}{2}|\mathbf{m}|^{2}}t^{\mathbf{b}\cdot\mathbf{m}}$$

where $\mathbf{b} = (0, 1, 2, \dots, k-1)$ and $\mathbf{1} = (1, 1, 1, \dots, 1)$. Replacing q by q^k and t by q we have

$$\sum_{n=0}^{\infty} p(n)q^n = \frac{1}{(q^k;q^k)_{\infty}^k} \sum_{\substack{\mathbf{m}\in\mathbb{Z}^k\\\mathbf{m}\cdot\mathbf{1}=0}} q^{\frac{k}{2}|\mathbf{m}|^2 + \mathbf{b}\cdot\mathbf{m}} \,.$$

This is the generating function identity presented in [6] which arises from a bijection between an ordinary partition and its k-core and k-quotient. It would seem reasonable that a generalized Frobenius partition with k colors, λ , is a representation of an ordinary partition, $\phi(\lambda)$, which keeps track of the underlying k-core and k-quotient of $\phi(\lambda)$. In the next section we explore how this information is accounted for in λ .

4. *k*-cores and *k*-quotients. Examining the bijections presented in [6] we see that the vector **m**, where the (i + 1)st component represents the difference in the number of appearances of color *i* on the top and bottom rows, is the vector associated with the *k*-core for $\phi(\lambda)$. The biinfinite words, $w_0, w_1, \ldots, w_{k-1}$, associated with the *k*-quotient for $\phi(\lambda)$ are given by

(1) for j > 0, the *j*th letter of w_i is E if $(j-1)_i$ is a part on the top row of λ and is N otherwise,

(2) for $j \leq 0$, the *j*th letter of w_i is N if $(-j)_i$ is a part on the bottom row of λ and is E otherwise.

The observation in [6] that a partition is a k-core if and only if each w_i is an infinite sequence of E's followed by an infinite sequence of N's gives us an easy way to determine whether or not $\phi(\lambda)$ is a k-core by looking at λ .

THEOREM 1. $\phi(\lambda)$ is a k-core if and only if λ satisfies the condition that if a_i appears on one row of λ then $(a-1)_i, \ldots, 1_i, 0_i$ also appear on that row and no entries of color i appear in the other row.

Thus given a vector \mathbf{m} in \mathbb{Z}^k with $\mathbf{m} \cdot \mathbf{1} = 0$, it is a trivial task to reconstruct the corresponding k-core:

(1) If the (i + 1)st component of **m** is 0, then parts of color *i* do not appear in λ , the F-partition with *k* colors representing the ordinary partition which is a *k*-core.

(2) If the (i + 1)st component of **m** is n > 0 then $0_i, 1_i, \ldots, (n - 1)_i$ appear on the top row of λ .

(3) If the (i + 1)st component of **m** is -n < 0 then $0_i, 1_i, \ldots, (n - 1)_i$ appear on the bottom row of λ .

(4) $\phi(\lambda)$ is the k-core associated with **m**.

We can use the technique outlined in [6] to construct the k-quotient for $\phi(\lambda)$ from the binfinite words $w_0, w_1, \ldots, w_{k-1}$. However, Olsson's work [8] presents another way of constructing the k-quotient for $\phi(\lambda)$ from λ using what he calls Frobenius symbols associated with cuts in a partition sequence. For a specific color j the (j + 1)st component of the k-quotient for $\phi(\lambda)$ is the partition with Frobenius symbol associated with a cut, (X|Y), where the elements in the set X are the entries on the top row of λ of color j and the elements in the set Y are the entries on the bottom row of λ of color j.

5. An application to cranks. In [6] Garvan presented a crank for ordinary partitions of kn + r for (k, r) = (5, 4), (7, 5),and (11, 6). A *crank* is a statistic which divides the partitions of kn + r into k classes of equal size. The cranks presented in Theorem 2 of [6] are defined as modulo k linear combinations of the components of the vector **m** associated with the k-core of the partition:

- $(k=5) \qquad 4m_0 + m_1 + m_3 + 4m_4,$
- $(k=7) \qquad 4m_0 + 2m_1 + m_2 + m_4 + 2m_5 + 4m_6,$
- $(k = 11) \quad 4m_0 + 9m_1 + 5m_2 + 3m_3 + m_4 + m_6 + 3m_7 + 5m_8 + 9m_9 + 4m_{10}.$

Frobenius partitions

In this paper we have seen that the (i + 1)st component of the vector **m** associated with the k-core of a partition is the difference in the number of appearances of color i on the top and bottom rows of its F-partition with k colors representation. In terms of the Frobenius symbol for the partition this translates into the difference in the number of parts on the top row congruent to i modulo k and the number of parts on the bottom row congruent to -(1+i) modulo k. Because of the symmetry in the cranks given above we have the following new interpretation of the cranks.

THEOREM 2. A crank statistic for partitions of kn + r for (k, r) = (5, 4), (7, 5), and (11, 6) is given by the modulo k linear combinations

$$(k=5) \qquad 4a_0 + a_1 + a_3 + 4a_4,$$

 $(k=7) \qquad 4a_0 + 2a_1 + a_2 + a_4 + 2a_5 + 4a_6,$

 $(k = 11) \quad 4a_0 + 9a_1 + 5a_2 + 3a_3 + a_4 + a_6 + 3a_7 + 5a_8 + 9a_9 + 4a_{10},$

where a_i equals the difference in the number of parts on the top and bottom rows congruent to *i* modulo *k* in the Frobenius symbol for the partition.

In correspondence with Garvan [5] he indicated that the above theorem could be restated as follows.

COROLLARY. A crank statistic for partitions of kn + r for (k, r) = (5,4), (7,5), and (11,6) is given by the modulo k linear combination $\sum_{j=1}^{(k-1)/2} j^{k-3}b_j$ where b_j equals the difference in the number of parts on the top and bottom rows congruent to $\pm j + ((k-1)/2)$ modulo k in the Frobenius symbol for the partition.

6. Some other observations. From the generating function identity presented in Section 3 we have

THEOREM 3. For $s \ge 1, k \ge 2$,

$$p(s) = \sum_{n,m \in \mathbb{Z}, kn+m=s} c\phi_k(n,m)$$

In [4] Garvan presented several congruences for $a_k(n)$, the number of ordinary partitions of n which are k-cores (and the coefficient of q^n in $\sum_{\mathbf{m}\in\mathbb{Z}^k,\mathbf{m}\cdot\mathbf{1}=0}q^{(k/2)|\mathbf{m}|^2+\mathbf{b}\cdot\mathbf{m}}$), for $5 \leq k \leq 23$ and k prime. The next theorem looks at the parity of $a_k(n)$.

THEOREM 4. $a_k(n) \equiv 0 \pmod{2}$ unless n has an odd number of representations as $\alpha = \lfloor k/2 \rfloor$ summands of the form

(1)
$$(km_1^2 + m_1) + (km_2^2 + 3m_2) + \ldots + (km_\alpha^2 + (k-1)m_\alpha)$$
 for k even,

(2)
$$(km_1^2 + 2m_1) + (km_2^2 + 4m_2) + \ldots + (km_\alpha^2 + (k-1)m_\alpha)$$
 for k odd.

Since $\mathbf{m} \cdot \mathbf{1}$ must be 0 in our sum it is easy to see that the value of $(k/2)|\mathbf{m}|^2 + \mathbf{b} \cdot \mathbf{m}$ is the same for the vectors $(m_0, m_1, \ldots, m_{k-1})$ and $(-m_{k-1}, \ldots, -m_1, -m_0)$ with $\sum_{i=0}^{k-1} m_i = 0$. Thus the parity of $a_k(n)$ is the same as the number of ways n can be expressed as $n = (k/2)|\mathbf{m}|^2 + \mathbf{b} \cdot \mathbf{m}$ with $\mathbf{m} \cdot \mathbf{1} = 0$ and the vector $\mathbf{m} = (m_0, m_1, \ldots, m_{k-1})$ is the same as the vector $(-m_{k-1}, \ldots, -m_1, -m_0)$. This translates into the condition stated in Theorem 4.

As an immediate consequence of this theorem we see that $a_2(n) \equiv 0 \pmod{2}$ provided n is not of the form $2m^2 + m$ for any integer m, and $a_3(n) \equiv 0 \pmod{2}$ provided n is not of the form $3m^2 + 2m$ for any integer m.

References

- G. E. Andrews, Generalized Frobenius partitions, Mem. Amer. Math. Soc. 301 (1984).
- [2] —, The hard-hexagon model and Rogers-Ramanujan type identities, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 5290–5292.
- [3] F. G. Frobenius, Über die Charactere der symmetrischen Gruppe, Preuss. Akad. Berlin, 1900, 516–534.
- [4] F. G. Garvan, Some congruences for partitions that are p-cores, to be published.
- [5] —, personal letter, April 1991.
- [6] F. G. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990), 1-17.
- [7] L. W. Kolitsch, A relationship between certain colored generalized Frobenius partitions and ordinary partitions, J. Number Theory 33 (1989), 220–223.
- [8] J. Olsson, Frobenius symbols for partitions and degrees of spin characters, Math. Scand. 61 (1987), 223-247.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE THE UNIVERSITY OF TENNESSEE AT MARTIN MARTIN, TENNESSEE 38238 U.S.A.

Received on 8.10.1991

(2183)