Pairs of additive quadratic forms modulo one

by

R. C. Baker (Egham) and S. Schäffer (Löhne)

1. Introduction. Let $\|x\|$ denote the distance from x to the nearest integer. Let $\varepsilon>0$. A well-known theorem of Heilbronn [15] states that for $N>C_{1}(\varepsilon)$, and any real number α, we have

$$
\min _{1 \leq n \leq N}\left\|\alpha n^{2}\right\|<N^{-1 / 2+\varepsilon}
$$

Among many possible extensions, the following was considered by Danicic [9]. We seek a positive number $\alpha(s)$ with the following property:

Let $Q\left(x_{1}, \ldots, x_{s}\right)$ be a real quadratic form, then for $N>C_{2}(s, \varepsilon)$ we have

$$
\begin{equation*}
\left\|Q\left(n_{1}, \ldots, n_{s}\right)\right\|<N^{-\alpha(s)+\varepsilon} \tag{1.1}
\end{equation*}
$$

for some integers n_{1}, \ldots, n_{s},

$$
\begin{equation*}
0<\max \left(\left|n_{1}\right|, \ldots,\left|n_{s}\right|\right) \leq N \tag{1.2}
\end{equation*}
$$

Danicic was able to take $\alpha(s)=s /(s+1)$. An important step forward occurred when Schinzel, Schlickewei and Schmidt [18] showed the relevance of the following "discrete version" of the problem. We seek the least positive number $B_{s}(q)$ with the following property.

For any $K_{i}>0$ satisfying

$$
\left(K_{1} \ldots K_{s}\right)^{1 / s} \geq B_{s}(q),
$$

and any quadratic form Q with integer coefficients, the congruence $Q(\boldsymbol{x}) \equiv 0$ $(\bmod q)$ has a nonzero solution satisfying

$$
\left|x_{i}\right| \leq K_{i} \quad(1 \leq i \leq n) .
$$

Further work on this problem was done by Baker and Harman [6] and by Heath-Brown [14]. Heath-Brown showed that

$$
\begin{equation*}
B_{s}(q)<C_{3}(s, \varepsilon) q^{\beta(s)+\varepsilon} \tag{1.3}
\end{equation*}
$$

where $\beta(4)=5 / 8, \beta(6)=15 / 26, \beta(8)=6 / 11, \beta(10)=\beta(11)=8 / 15$ and $\beta(s)=1 / 2+3 / s^{2}$ for even $s \geq 12$. For $s=3,5,7$ the exponent
$\beta(s)=1 / 2+1 /(2 s)[6]$ remains the best known. By arguing as in [6], one can show that the exponent

$$
\alpha(s)=\frac{s}{2+s \beta(s)}
$$

is permissible in (1.1), whenever (1.3) holds.
Not surprisingly, one can do better for real additive quadratic forms. It is convenient for applications to seek solutions in a box rather than a cube.

Theorem 1. Suppose that (1.3) holds. Let $\sigma(1)=1 / 2, \sigma(2)=1$,

$$
\sigma(s)=\frac{s}{2+(s-2) \beta(s)} \quad(s \geq 3) .
$$

Let $Q\left(x_{1}, \ldots, x_{s}\right)$ be an additive quadratic form. Let $N>C_{4}(s, \varepsilon)$. Given positive N_{1}, \ldots, N_{s} with

$$
\begin{equation*}
N_{1} \ldots N_{s} \geq N^{s} \tag{1.4}
\end{equation*}
$$

there exist non-negative integers n_{1}, \ldots, n_{s} not all zero satisfying $n_{i} \leq N_{i}$ ($i=1, \ldots, s$) and

$$
\left\|Q\left(n_{1}, \ldots, n_{s}\right)\right\|<N^{-\sigma(s)+\varepsilon} .
$$

The case $s=2$ of Theorem 1 is a generalization of a theorem of Cook [7]. For $s \geq 3$, see [13] and [1] for earlier results along the lines of Theorem 1 .

In proving Theorem 1 we assume, as we may, that $1 / 2 \leq \beta(s) \leq 1 / 2+$ $1 /(2 s-4)$.

We apply Theorem 1 to pairs of additive forms.
Theorem 2. Define $\sigma(s)$ as above. Let $Q_{1}\left(x_{1}, \ldots, x_{s}\right), Q_{2}\left(x_{1}, \ldots, x_{s}\right)$ be additive quadratic forms. Then for $N>C_{5}(s, \varepsilon)$ we have

$$
\begin{equation*}
\max \left(\left\|Q_{1}(\boldsymbol{n})\right\|,\left\|Q_{2}(\boldsymbol{n})\right\|\right)<N^{-\tau(s)+\varepsilon} \tag{1.5}
\end{equation*}
$$

for some integers n_{1}, \ldots, n_{s} satisfying (1.2). Here

$$
\begin{gathered}
\tau(2)=1 / 3, \quad \tau(3)=3 / 7, \quad \tau(4)=1 / 2 ; \\
\tau(s)= \begin{cases}s \sigma(s) /(8 \sigma(s)+2 s-8) & \text { for } 5 \leq s \leq 7, \\
\sigma(s) /(1+\sigma(s)) & \text { for } s \geq 8 .\end{cases}
\end{gathered}
$$

Since $\sigma(s)$ has limit 2 as $s \rightarrow \infty$, we see that $\tau(s)$ has limit $2 / 3$. However, we can replace $\tau(s)$ by an exponent whose limit is 1 ; see Baker and Harman [5]. In fact, the method of [5] may be refined to give an improvement of Theorem 2 for $s \geq 24$.

For earlier results in a small number of variables along the lines of Theorem 2, see Liu [17] and Baker and Gajraj [4]. The exponent in [4] is much poorer, namely $-1 / 5+\varepsilon$ for $s \geq 2$. This is partly because we now have at our disposal the "lattice method" of Schmidt [19], whose result may be
stated as

$$
\tau(1)=1 / 6 .
$$

Weaker versions of this last result were found earlier by Danicic [8], [10] and Liu [16].

For arbitrary pairs of quadratic forms, the first results analogous to (1.5) were given by Danicic [11]. Recently Baker and Brüdern [3] improved these results. For example, the analogue of (1.5) for a pair of binary forms has $1 / 5$ in place of $\tau(2)$. Once again, [5] is stronger for large s.

Throughout the paper, implied constants depend at most on ε, s. We write $e(\theta)=e^{2 \pi i \theta}$. The cardinality of a finite set \mathcal{A} is denoted by $|\mathcal{A}|$.
2. Proof of Theorem 1. We require two lemmas from [2].

Lemma 1. Let $x_{j}(j=1, \ldots, N)$ be real numbers satisfying $\left\|x_{j}\right\| \geq M^{-1}$. Then

$$
\begin{equation*}
\sum_{m \leq M}\left|\sum_{n=1}^{N} e\left(m x_{n}\right)\right|>N / 6 . \tag{2.1}
\end{equation*}
$$

Proof. This is Theorem 2.2 of [2].
Lemma 2. Let $\delta>0$ and $N>C_{6}(\delta)$. Let α be real. Let L be a natural number such that

$$
\begin{equation*}
L^{\delta}<N \tag{2.2}
\end{equation*}
$$

If

$$
\begin{equation*}
\sum_{m=1}^{L}\left|\sum_{n=1}^{N} e\left(m \alpha n^{2}\right)\right|^{2}>A \tag{2.3}
\end{equation*}
$$

where $A \geq N^{1+\delta} L$, then there exist coprime integers r and s with $r \leq$ $L N^{2+\delta} A^{-1}$ and

$$
\begin{equation*}
|\alpha r-s|<N^{\delta} A^{-1} . \tag{2.4}
\end{equation*}
$$

Proof. This is given in all essentials in [2], although the condition (2.2) is weaker than the corresponding inequality in [2].

Our next step is to prove Theorem 1 under the additional restrictions

$$
\begin{equation*}
s \geq 2 ; \quad N_{j} \geq N^{\varepsilon / 4} \quad(j=1, \ldots, s) . \tag{2.5}
\end{equation*}
$$

Lemma 3. The assertion of Theorem 1 is true when (2.5) holds.
Proof. Suppose that the assertion is false. Then, by Lemma 1,

$$
\begin{equation*}
\sum_{m=1}^{M} T_{1}(m) \ldots T_{s}(m) \geq C_{7}(s) N_{1} \ldots N_{s} \tag{2.6}
\end{equation*}
$$

Here $M=1+\left[N^{\sigma(s)-\varepsilon}\right], Q(\boldsymbol{x})=\alpha_{1} x_{1}^{2}+\ldots+\alpha_{s} x_{s}^{2}$,

$$
T_{j}(m)=\left|\sum_{n \leq N_{j}} e\left(m \alpha_{j} n^{2}\right)\right| .
$$

The contribution from those m in (2.6) having $T_{j}(m)<N^{-2}$ for some index j is negligible. We cover $\left[N^{-2}, C_{7} N_{1} \ldots N_{s}\right]$ by $O(\log N)$ subintervals of the type $[A, 2 A)$. There must exist numbers $A_{j} \geq N^{-2}(j=1, \ldots, s)$ and a subset \mathcal{B} of $[1, M) \cap \mathbb{Z}$ having

$$
\begin{gather*}
A_{j} \leq T_{j}(m)<2 A_{j} \quad(j=1, \ldots, s), \\
\sum_{m \in \mathcal{B}} T_{1}(m) \ldots T_{s}(m) \gg N_{1} \ldots N_{s} /(\log N)^{s} . \tag{2.7}
\end{gather*}
$$

This implies

$$
\begin{equation*}
|\mathcal{B}|^{2} A_{1}^{2} \ldots A_{s}^{2} \gg N_{1}^{2} \ldots N_{s}^{2}(\log N)^{-2 s} . \tag{2.8}
\end{equation*}
$$

We may suppose ε is sufficiently small. Writing $\delta=\varepsilon^{2}$,

$$
\begin{equation*}
|\mathcal{B}|^{s} A_{1}^{2} \ldots A_{s}^{2} \geq|\mathcal{B}|^{s-2} N_{1}^{2} \ldots N_{s}^{2} N^{-\delta} . \tag{2.9}
\end{equation*}
$$

Choose $j, 1 \leq j \leq s$. The inequality

$$
\begin{equation*}
|\mathcal{B}| A_{j}^{2} \leq M N_{j}^{1+\delta} \tag{2.10}
\end{equation*}
$$

must be satisfied. Otherwise,

$$
\sum_{m=1}^{M} T_{j}(m)^{2} \geq M N_{j}^{1+\delta}
$$

Now $M^{\delta} \leq N^{\varepsilon / 4} \leq N_{j}$. Since N_{j} is large, Lemma 2 yields a natural number r such that

$$
\begin{gathered}
r \leq M N_{j}^{2+\delta}\left(M N_{j}^{1+\delta}\right)^{-1}=N_{j}, \\
\left\|\alpha_{j} r^{2}\right\| \leq r\left\|\alpha_{j} r\right\|<N_{j}^{1+\delta}\left(M N_{j}^{1+\delta}\right)^{-1}=M^{-1}
\end{gathered}
$$

contradicting our hypothesis. This proves (2.10).
From (2.10),

$$
\begin{equation*}
|\mathcal{B}|^{s} A_{1}^{2} \ldots A_{s}^{2} \leq M^{s}\left(N_{1} \ldots N_{s}\right)^{1+\delta} . \tag{2.11}
\end{equation*}
$$

Suppose first that $s=2$. Then

$$
|\mathcal{B}|^{2} A_{1}^{2} A_{2}^{2} \leq M^{2}\left(N_{1} N_{2}\right)^{1+\delta} .
$$

Combining this with (2.8), (1.4), we have

$$
\begin{gathered}
N_{1}^{2} N_{2}^{2}(\log N)^{-4} \ll M^{2}\left(N_{1} N_{2}\right)^{1+\delta}, \\
M^{2} \gg N^{2-2 \delta}(\log N)^{-4} .
\end{gathered}
$$

This contradicts the definition of M, and Lemma 3 is proved for $s=2$.

Suppose now $s>2$. We combine (2.9) and (2.11) to obtain an upper bound for $|\mathcal{B}|$:

$$
\begin{gather*}
|\mathcal{B}|^{s-2}\left(N_{1} \ldots N_{s}\right)^{2} N^{-\delta} \leq M^{s}\left(N_{1} \ldots N_{s}\right)^{1+\delta} \\
|\mathcal{B}|^{s-2} \leq M^{s}\left(N_{1} \ldots N_{s}\right)^{-1+\delta} N^{\delta} \leq\left(M N^{-1}\right)^{s} N^{(s+1) \delta} \tag{2.12}
\end{gather*}
$$

from (1.4).
Choose any $m \in \mathcal{B}$. For any $j \leq s$ for which

$$
\begin{equation*}
A_{j} \geq N_{j}^{1 / 2+\delta} \tag{2.13}
\end{equation*}
$$

we apply the case $L=1$ of Lemma 2 . This yields integers r_{j}, b_{j} satisfying

$$
\begin{align*}
1 & \leq r_{j} \leq\left(N_{j} / A_{j}\right)^{2} N_{j}^{\delta} \tag{2.14}\\
\left|m \alpha_{j} r_{j}^{2}-b_{j}\right| & \leq r_{j}\left\|m \alpha_{j} r_{j}\right\| \leq\left(N_{j} / A_{j}\right)^{4} N_{j}^{4 \delta-2} \tag{2.15}
\end{align*}
$$

If (2.13) fails, the last expression in (2.15) is at least 1 , and we can trivially satisfy (2.14) and

$$
\begin{equation*}
\left|m \alpha_{j} r_{j}^{2}-b_{j}\right| \leq\left(N_{j} / A_{j}\right)^{4} N^{4 \delta-2} \tag{2.16}
\end{equation*}
$$

By (2.9), (2.12) and (1.4),

$$
\begin{align*}
A_{1}^{2} \ldots A_{s}^{2}\left(N_{1} \ldots\right. & \left.N_{s}\right)^{-1-3 \delta}(m / M)^{s / 2} \tag{2.17}\\
& \geq|\mathcal{B}|^{-2} N^{-\delta}\left(N_{1} \ldots N_{s}\right)^{1-3 \delta}(m / M)^{s / 2} \\
& \geq N^{s-6 s \delta}\left(M N^{-1}\right)^{-2 s /(s-2)}(m / M)^{s / 2}
\end{align*}
$$

By the definition of M, the last expression in (2.17) is at least $m^{s \beta(s)+2 s \delta}$. Thus

$$
K_{1} \ldots K_{s} \geq C_{3}(s, \delta)^{s} m^{s \beta(s)+s \delta}
$$

where $K_{j}=A_{j}^{2} N_{j}^{-1-3 \delta}(\mathrm{~m} / M)^{1 / 2}$.
We apply (1.3). There are integers x_{1}, \ldots, x_{s}, not all zero, satisfying

$$
\begin{gather*}
\sum_{j=1}^{s} b_{j} x_{j}^{2} \equiv 0(\bmod m) \tag{2.18}\\
0 \leq x_{j} \leq K_{j} \quad(j=1, \ldots, s) \tag{2.19}
\end{gather*}
$$

Taking $n_{j}=r_{j} x_{j}$ we have, by (2.14) and (2.19),

$$
0 \leq n_{j} \leq\left(N_{j} / A_{j}\right)^{2} N_{j}^{\delta} A_{j}^{2} N_{j}^{-1-3 \delta}(m / M)^{1 / 2} \leq N_{j}
$$

Not all n_{j} are 0 . Moreover,

$$
\sum_{j=1}^{s} \alpha_{j} n_{j}^{2}=\sum_{j=1}^{s} x_{j}^{2} \alpha_{j} r_{j}^{2}=m^{-1} \sum_{j=1}^{s} b_{j} x_{j}^{2}+m^{-1} \sum_{j=1}^{s} x_{j}^{2}\left(\alpha_{j} m r_{j}^{2}-b_{j}\right)
$$

By (2.18), (2.19) and (2.16),

$$
\begin{aligned}
\left\|\sum_{j=1}^{s} \alpha_{j} n_{j}^{2}\right\| & \leq m^{-1} \sum_{j=1}^{s} x_{j}^{2}\left|\alpha_{j} m r_{j}^{2}-b_{j}\right| \\
& \leq m^{-1} \sum_{j=1}^{s} A_{j}^{4} N_{j}^{-2-6 \delta}(m / M) N_{j}^{2+4 \delta} A_{j}^{-4}<M^{-1},
\end{aligned}
$$

contradicting our initial hypothesis. This proves the lemma.
Proof of Theorem 1. We proceed by induction on s. Clearly Heilbronn's theorem is equivalent to Theorem 1 when $s=1$. Now suppose that $s>1$ and the result has been proved for forms in $s-1$ variables. It is easily verified that, since $1 / 2 \leq \beta(s) \leq 1 / 2+1 /(2 s-4)$, we have

$$
\begin{equation*}
\sigma(s) \leq 2 \quad \text { and } \quad \frac{s}{s-1} \sigma(s-1) \geq \sigma(s) \tag{2.20}
\end{equation*}
$$

If $N_{j}>N^{\varepsilon / 4}(j=1, \ldots, s)$, then the induction step follows from Lemma 3. Thus we may suppose $N_{j} \leq N^{\varepsilon / 4}$ for some index j, let us say $j=s$. Consequently,

$$
N_{1} \ldots N_{s-1} \geq N^{s-\varepsilon / 4} \geq\left(N^{s /(s-1)-\varepsilon / 4}\right)^{s-1}
$$

By the induction hypothesis there are integers n_{1}, \ldots, n_{s-1}, not all zero, satisfying

$$
\begin{gathered}
0 \leq n_{i} \leq N_{i} \quad(i=1, \ldots, s-1) \\
\left\|\alpha_{1} n_{1}^{2}+\ldots+\alpha_{s-1} n_{s-1}^{2}\right\|<N^{-(s /(s-1)-\varepsilon / 4)(\sigma(s-1)-\varepsilon / 4)} \leq N^{-\sigma(s)+\varepsilon}
\end{gathered}
$$

The last inequality follows from (2.20). This completes the induction step and proves Theorem 1.
3. The lattice method. We write $\boldsymbol{a b}$ for inner product in \mathbb{R}^{2} and $|\boldsymbol{a}|=(\boldsymbol{a} \boldsymbol{a})^{1 / 2}$. The area of the parallelogram spanned by \boldsymbol{a} and \boldsymbol{b} is denoted by $\operatorname{det}(\boldsymbol{a}, \boldsymbol{b})$. Let

$$
K_{0}=\left\{\boldsymbol{x} \in \mathbb{R}^{2}:|\boldsymbol{x}|<1\right\} .
$$

If $S, T \subset \mathbb{R}^{2}$ and $c \in \mathbb{R}$ then $c S$ denotes the set $\{c s: s \in S\}$, and $S+T=$ $\{\boldsymbol{s}+\boldsymbol{t}: \boldsymbol{s} \in S, \boldsymbol{t} \in T\}$.

To facilitate comparison with [19] and [2] we prove the following result in place of Theorem 2.

Proposition. Let $\varepsilon>0, s \geq 2, N>C_{5}(s, \varepsilon)$ and

$$
\lambda(s)= \begin{cases}1 / 2+2 / s & (s=2,3,4) \\ 4 / s+(1-4 / s) / \sigma(s) & (s=5,6,7) \\ 1 / 2+1 /(2 \sigma(s)) & (s \geq 8)\end{cases}
$$

Let Δ be a positive number satisfying

$$
\begin{equation*}
1<\Delta^{\lambda(s)+\varepsilon} \leq N \tag{3.1}
\end{equation*}
$$

and let $\Lambda=\Delta^{1 / 2} \mathbb{Z}^{2}$. Then for any $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{s} \in \mathbb{R}^{2}$ there are integers n_{1}, \ldots, n_{s} satisfying (1.2) and

$$
\begin{equation*}
n_{1}^{2} \boldsymbol{\alpha}_{1}+\ldots+n_{s}^{2} \boldsymbol{\alpha}_{s} \in \Lambda+K_{0} . \tag{3.2}
\end{equation*}
$$

To deduce Theorem 2, we first note that

$$
\lambda(s)=1 /(2 \tau(s)),
$$

as the reader may easily verify. Let $\Delta=N^{2(\tau(s)-\varepsilon)}$ so that (3.1) holds. Let $\boldsymbol{\alpha}_{j}=N^{\tau(s)-\varepsilon}\left(\alpha_{j}, \beta_{j}\right)$. Then (3.2) implies

$$
\left|N^{\tau(s)-\varepsilon}\left(n_{1}^{2} \alpha_{1}+\ldots+n_{s}^{2} \alpha_{s}\right)-N^{\tau(s)-\varepsilon} m\right|<1
$$

for some integer m, and similarly for the β_{j}. Now Theorem 2 follows at once.

In the same vein we have the following corollary of Theorem 1.
Corollary. Let $s \geq 1, \delta>0$ and $N>C_{4}(s, \delta)$. Suppose that N_{1}, \ldots \ldots, N_{s} satisfy (1.4). Let S be a one-dimensional subspace of \mathbb{R}^{2} and Λ_{1} a lattice in S generated by a point \boldsymbol{z} satisfying

$$
\begin{equation*}
|\boldsymbol{z}|<N^{\sigma(s)-\delta} . \tag{3.3}
\end{equation*}
$$

Then for any $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{s}$ in S there are non-negative integers n_{1}, \ldots, n_{s}, not all zero, satisfying $n_{i} \leq N_{i}$ and

$$
\begin{equation*}
n_{1}^{2} \boldsymbol{\alpha}_{1}+\ldots+n_{s}^{2} \boldsymbol{\alpha}_{s} \in \Lambda_{1}+K_{0} . \tag{3.4}
\end{equation*}
$$

In the remainder of the paper, Δ, Λ are as in the Proposition. Let Π be the polar lattice of $\Lambda, \Pi=\Delta^{-1 / 2} \mathbb{Z}^{2}$. Let Π^{*} be the set of primitive points of Π. Evidently

$$
\begin{equation*}
|\boldsymbol{p}| \geq \Delta^{-1 / 2} \quad\left(\boldsymbol{p} \in \Pi^{*}\right) . \tag{3.5}
\end{equation*}
$$

(Usually the lattice method is applied to general lattices in \mathbb{R}^{h}. The righthand side of (3.5) would then be, essentially, Δ^{-1}. The stronger bound (3.5) is crucial to our proof.)

Let $\boldsymbol{p} \in \Pi^{*}$ and let $\boldsymbol{p}^{\perp}=\left\{\boldsymbol{x} \in \mathbb{R}^{2}: \boldsymbol{x} \boldsymbol{p}=0\right\}$. Clearly $2 \Lambda \cap \boldsymbol{p}^{\perp}$ is a lattice in \boldsymbol{p}^{\perp} generated by a point \boldsymbol{z} having

$$
\begin{equation*}
|\boldsymbol{z}|=2 \Delta|\boldsymbol{p}| . \tag{3.6}
\end{equation*}
$$

In our application of the Corollary, we shall have $S=\boldsymbol{p}^{\perp}, \Lambda_{1}=2 \Lambda \cap \boldsymbol{p}^{\perp}$.
Lemma 4. (i) Let $\boldsymbol{p} \in \Pi^{*}$. Any point $\boldsymbol{a} \in \mathbb{R}^{2}$ may be written in the form

$$
\begin{equation*}
a=l+s+b \tag{3.7}
\end{equation*}
$$

where $\boldsymbol{l} \in \Lambda, \boldsymbol{s} \in \boldsymbol{p}^{\perp}$ and

$$
\begin{equation*}
|\boldsymbol{b}| \ll|\boldsymbol{p}|^{-1}\|\boldsymbol{p a}\| . \tag{3.8}
\end{equation*}
$$

(ii) Let $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ be linearly independent points of Π^{*}. There is a positive integer c,

$$
\begin{equation*}
c \ll \operatorname{det}\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right) \Delta, \tag{3.9}
\end{equation*}
$$

such that any $\boldsymbol{a} \in \mathbb{R}^{2}$ may be written in the form

$$
\begin{equation*}
\boldsymbol{a}=c^{-1}(\boldsymbol{k}+\boldsymbol{d}) \tag{3.10}
\end{equation*}
$$

where $\boldsymbol{k} \in \Lambda$ and

$$
\begin{equation*}
|\boldsymbol{d}| \ll \Delta \max \left(\left|\boldsymbol{p}_{1}\right|,\left|\boldsymbol{p}_{2}\right|\right) \max \left(\left\|\boldsymbol{p}_{1} \boldsymbol{a}\right\|,\left\|\boldsymbol{p}_{2} \boldsymbol{a}\right\|\right) . \tag{3.11}
\end{equation*}
$$

Proof. These are two special cases of Lemma 7.9 of [2].
Lemma 5. Let $\varepsilon>0, N>C_{8}(\varepsilon)$. Let \mathcal{A} be a subset of Π^{*} with $|\boldsymbol{p}| \leq N$ for all \boldsymbol{p} in \mathcal{A}. Suppose that any two vectors in \mathcal{A} have determinant $\leq Z$. Let $\boldsymbol{e} \in \mathbb{R}^{2}$. Let U, V be positive numbers such that for each \boldsymbol{p} in \mathcal{A} there are coprime integers $q(\boldsymbol{p}), w(\boldsymbol{p})$ having

$$
1 \leq q(\boldsymbol{p}) \leq U \leq N, \quad|q(\boldsymbol{p}) e \boldsymbol{p}-w(\boldsymbol{p})| \leq V .
$$

Suppose further that $\Delta \leq N^{2}$,

$$
\begin{equation*}
Z U^{2} V \Delta N^{\delta} \leq 1 \tag{3.12}
\end{equation*}
$$

Then there is an integer q and a subset \mathcal{C} of \mathcal{A} such that

$$
|\mathcal{C}| \geq|\mathcal{A}| N^{-\delta}, \quad q(\boldsymbol{p})=q \quad \text { for all } \boldsymbol{p} \in \mathcal{C}
$$

Proof. See [2], Lemma 7.6.
The starting point for the proof of the Proposition is the following variant of Lemma 1.

Lemma 6. Let $\delta>0, N>C_{9}(\delta)$. Let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$ be a sequence in \mathbb{R}^{2} with

$$
x_{n} \notin \Lambda+K_{0} \quad(n=1, \ldots, N) .
$$

Then

$$
\sum_{\boldsymbol{p} \in \Pi, 0<|\boldsymbol{p}|<N^{\delta}}\left|\sum_{n=1}^{N} e\left(\boldsymbol{p} \boldsymbol{x}_{n}\right)\right| \gg N .
$$

Proof. See [2], Lemma 7.4.
Proof of the Proposition. For brevity, write $\sigma=\sigma(s), \lambda=\lambda(s)$. We may suppose that $0<\varepsilon<1 / 2$. Let $\delta=\varepsilon / 40$, so that

$$
\begin{equation*}
\Delta^{\lambda} \leq N^{1-20 \delta} \tag{3.13}
\end{equation*}
$$

Suppose that no integers n_{1}, \ldots, n_{s} satisfy (1.2) and (3.2). By Lemma 6, we have

$$
\begin{equation*}
\sum_{0<|\boldsymbol{p}|<N^{\delta}, \boldsymbol{p} \in \Pi} T_{1}(\boldsymbol{p}) \ldots T_{s}(\boldsymbol{p}) \gg N^{s} \tag{3.14}
\end{equation*}
$$

where

$$
T_{i}(\boldsymbol{p})=\left|\sum_{n=1}^{N} e\left(n^{2} \boldsymbol{p} \boldsymbol{\alpha}_{i}\right)\right| .
$$

Since every $\boldsymbol{p} \in \Pi$ is an integer multiple of a primitive point, it follows that

$$
\sum_{|\boldsymbol{p}|<N^{\delta}, \boldsymbol{p} \in \Pi^{*}} S(\boldsymbol{p}) \gg N^{s}
$$

where

$$
S(\boldsymbol{p})=\sum_{t=1}^{\left[N^{\delta} /|\boldsymbol{p}|\right]} T_{1}(t \boldsymbol{p}) \ldots T_{s}(t \boldsymbol{p})
$$

We cover the interval $\left[\Delta^{-1 / 2}, N^{\delta}\right)$ with $O(\log N)$ intervals $[a, 2 a)$. In view of (3.5), there is an a satisfying

$$
\begin{align*}
& \Delta^{-1 / 2} \leq a<N^{\delta} \tag{3.15}\\
& \sum_{\boldsymbol{p} \in \Pi^{*}, a \leq|\boldsymbol{p}|<2 a} S(\boldsymbol{p}) \gg N^{s} / \log N .
\end{align*}
$$

There are $\ll \Delta a^{2}$ summands here, so that the contribution from \boldsymbol{p} with

$$
S(\boldsymbol{p})<N^{s}(\log N)^{-2} \Delta^{-1} a^{-2}
$$

is negligible. Covering $\left[N^{s}(\log N)^{-2} \Delta^{-1} a^{-2}, a^{-1} N^{s+\delta}\right]$ with $O(\log N)$ intervals $[B, 2 B)$, we see that there is a B with

$$
N^{s}(\log N)^{-2} \Delta^{-1} a^{-2} \leq B<a^{-1} N^{s+\delta}
$$

and a subset \mathcal{B} of Π^{*} with

$$
\begin{aligned}
a \leq|\boldsymbol{p}|<2 a, \quad B & \leq S(\boldsymbol{p})<2 B \quad \text { for } \boldsymbol{p} \in \mathcal{B} \\
\sum_{\boldsymbol{p} \in \mathcal{B}} S(\boldsymbol{p}) & \gg N^{s}(\log N)^{-2}
\end{aligned}
$$

It is convenient to write $X=N^{s} B^{-1}$, so that

$$
\begin{gather*}
X \leq \Delta a^{2} N^{\delta} \tag{3.16}\\
S(\boldsymbol{p}) \geq N^{s} X^{-1} \quad(\boldsymbol{p} \in \mathcal{B}) \tag{3.17}
\end{gather*}
$$

and clearly

$$
\begin{equation*}
|\mathcal{B}| \gg X N^{-\delta} \tag{3.18}
\end{equation*}
$$

Consider the following conditions:
(A) $\quad X \geq N^{5 \delta}$ and $\Delta a X^{2 / s-1 / 2} \leq N^{1-10 \delta}$;
(B) $\quad \Delta^{1 / \sigma} a^{-1+1 / \sigma} X^{2 / s} \leq N^{1-10 \delta} \quad$ if $s \geq 3 ; \quad X<N^{5 \delta} \quad$ if $s=2$.

We will first derive a contradiction provided that (A) or (B) holds. In conclusion we show that one of (A), (B) must be satisfied.

Suppose first that (A) is satisfied. Using $T_{1} \ldots T_{s} \leq T_{1}^{s}+\ldots+T_{s}^{s}$, (3.17) gives

$$
\begin{equation*}
\sum_{t \leq N^{\delta} a^{-1}} T_{i}(t \boldsymbol{p})^{s} \gg N^{s} X^{-1} \tag{3.19}
\end{equation*}
$$

for some index i depending on \boldsymbol{p}. There are only s possible i, and we may assume without loss of generality that (3.19) holds for $i=1$.

We use the inequality

$$
\left(b_{1}^{l}+\ldots+b_{m}^{l}\right)^{1 / l} \leq\left(b_{1}^{r}+\ldots+b_{m}^{r}\right)^{1 / r}, \quad 0<r \leq l,
$$

for positive numbers b_{j} ([12], p. 28). Thus

$$
\begin{equation*}
\sum_{t \leq N^{\delta} a^{-1}} T_{1}(t \boldsymbol{p})^{2} \gg N^{2} X^{-2 / s} \quad(\boldsymbol{p} \in \mathcal{B}) . \tag{3.20}
\end{equation*}
$$

We may apply Lemma 2 to the sum in (3.20). To see this,

$$
a^{-1} X^{2 / s} \leq \Delta^{2 / s} a^{2 / s-1} N^{2 \delta} \leq \Delta^{1 / s+1 / 2} N^{2 \delta} \leq \Delta^{\lambda} N^{2 \delta} \leq N^{1-3 \delta}
$$

from (3.16), (3.15), (3.13). Hence

$$
N^{2} X^{-2 / s} \geq N^{1+\delta}\left[a^{-1} N^{\delta}\right] .
$$

The lemma yields natural numbers $q(\boldsymbol{p})$ for each \boldsymbol{p} in \mathcal{B} satisfying

$$
\begin{gather*}
q(\boldsymbol{p}) \ll a^{-1} X^{2 / s} N^{2 \delta}, \tag{3.21}\\
\left\|q(\boldsymbol{p}) \boldsymbol{p} \boldsymbol{\alpha}_{1}\right\| \ll X^{2 / s} N^{-2+2 \delta} . \tag{3.22}
\end{gather*}
$$

The next step is to apply Lemma 5 to a suitable subset of \mathcal{B}. The (x, y) plane may be covered by $\ll|\mathcal{B}| N^{-2 \delta}$ angular sections centred at $\mathbf{0}$, of angle $|\mathcal{B}|^{-1} N^{2 \delta} \leq X^{-1} N^{4 \delta}$. Here we have used (3.18) and the hypothesis $X \geq$ $N^{5 \delta}$. One of these sections must contain $\gg N^{2 \delta}$ points of \mathcal{B}. Let \mathcal{A} be the set of points of \mathcal{B} lying in this section. In the notation of Lemma 5 , we may take

$$
\boldsymbol{e}=\boldsymbol{\alpha}_{1}, \quad Z=a^{2} X^{-1} N^{4 \delta}, \quad U \ll a^{-1} X^{2 / s} N^{2 \delta}, \quad V \ll X^{2 / s} N^{-2+2 \delta}
$$

in view of the definition of \mathcal{A}, (3.21) and (3.22). Moreover, by (3.16), (3.15) and condition (A),

$$
\begin{aligned}
Z U^{2} V \Delta N^{2 \delta} & \ll a^{2} X^{-1} N^{4 \delta}\left(a^{-1} X^{2 / s} N^{2 \delta}\right)^{2}\left(N^{-2+2 \delta} X^{2 / s}\right) \Delta N^{2 \delta} \\
& \ll X^{6 / s-1} \Delta N^{-2+12 \delta} \ll \begin{cases}\Delta^{6 / s} N^{-2+30 \delta} & (s \leq 6) \\
\Delta N^{-2+12 \delta} & (s>6)\end{cases} \\
& \ll \Delta^{2 \lambda} N^{-2+30 \delta} \ll 1 .
\end{aligned}
$$

We deduce from Lemma 5 that there is a subset \mathcal{C} of \mathcal{A} of cardinality $\gg N^{\delta}$, and a natural number q such that $q(\boldsymbol{p})=q$ for every \boldsymbol{p} in \mathcal{C}.

Let $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ be two linearly independent points in \mathcal{C}. We apply Lemma 4(ii) with \boldsymbol{a} replaced by $q \boldsymbol{\alpha}_{1}$. There is a natural number c such that

$$
\begin{gather*}
c \ll \operatorname{det}\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right) \Delta \leq a^{2} X^{-1} N^{4 \delta} \Delta \tag{3.23}\\
c q \boldsymbol{\alpha}_{1}=\boldsymbol{k}+\boldsymbol{d}, \quad \boldsymbol{k} \in \Lambda \\
|\boldsymbol{d}| \ll \Delta a X^{2 / s} N^{-2+2 \delta} \tag{3.24}
\end{gather*}
$$

Here we use once again the definition of \mathcal{A} and (3.22).
Now let $n=c q$. By (3.23), (3.21) and condition (A),

$$
1 \leq n \ll a^{2} X^{-1} N^{4 \delta} \Delta a^{-1} X^{2 / s} N^{2 \delta}=a X^{2 / s-1} \Delta N^{6 \delta} \ll N^{1-\delta}
$$

Moreover,

$$
\begin{aligned}
& n^{2} \boldsymbol{\alpha}_{1}=c q \boldsymbol{k}+c q \boldsymbol{d} \\
&|c q \boldsymbol{d}|=n|\boldsymbol{d}| \ll a X^{2 / s-1} \Delta N^{6 \delta} \Delta a X^{2 / s} N^{-2+2 \delta} \\
& \ll a^{2} X^{4 / s-1} \Delta^{2} N^{-2+8 \delta} \ll N^{-\delta}
\end{aligned}
$$

by (3.24) and condition (A). Thus $1 \leq n \leq N, n^{2} \boldsymbol{\alpha}_{1} \in \Lambda+K_{0}$. We have reached a contradiction when (A) holds.

Now suppose that condition (B) holds. We deal with the case $s \geq 3$ first. Fix any \boldsymbol{p} in \mathcal{B}. From (3.17),

$$
\sum_{t \leq a^{-1} N^{\delta}} T_{1}(t \boldsymbol{p}) \ldots T_{s}(t \boldsymbol{p}) \geq N^{s} X^{-1}
$$

As in the proof of (2.8), there must be A_{1}, \ldots, A_{s} in $\left[N^{-2}, N\right]$ and a set \mathcal{A} of t having

$$
\begin{gather*}
1 \leq t \leq a^{-1} N^{\delta} \quad(t \in \mathcal{A}) \tag{3.25}\\
A_{i} \leq T_{i}(t \boldsymbol{p})<2 A_{i} \quad(i=1, \ldots, s ; t \in \mathcal{A}) \tag{3.26}
\end{gather*}
$$

and

$$
\begin{equation*}
|\mathcal{A}|^{2} A_{1}^{2} \ldots A_{s}^{2} \gg N^{2 s-\delta} X^{-2} \tag{3.27}
\end{equation*}
$$

We may assume that

$$
\begin{equation*}
A_{1} \geq \ldots \geq A_{s} \tag{3.28}
\end{equation*}
$$

The next step, in which we deduce a good rational approximation to $\boldsymbol{\alpha}_{i} \boldsymbol{p}$, is different according as $i \leq 2$ or $i>2$. By (3.27) and (3.28),

$$
\begin{aligned}
|\mathcal{A}|^{2} A_{2}^{2(s-1)} & \geq N^{2(s-1)-2 \delta} X^{-2} \\
|\mathcal{A}|^{2 /(s-1)} A_{2}^{2} & \geq N^{2-2 \delta} X^{-2 /(s-1)}
\end{aligned}
$$

Since $s \geq 3$, this implies for $i=1,2$ that

$$
\begin{equation*}
\sum_{t \leq a^{-1} N^{\delta}} T_{i}(t \boldsymbol{p})^{2} \geq|\mathcal{A}| A_{i}^{2} \geq N^{2-2 \delta} X^{-2 /(s-1)} \tag{3.29}
\end{equation*}
$$

By (3.16), (3.15) and (3.13),

$$
\begin{aligned}
a^{-1} X^{2 /(s-1)} N^{4 \delta} & \leq \Delta^{2 /(s-1)} a^{2 /(s-1)-1} N^{6 \delta} \leq \Delta^{1 / 2+1 /(s-1)} N^{6 \delta} \\
& \leq \Delta^{\lambda} N^{6 \delta} \leq N
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
N^{1+\delta}\left[a^{-1} N^{\delta}\right] \leq N^{2-2 \delta} X^{-2 /(s-1)} \tag{3.30}
\end{equation*}
$$

In view of (3.30), we may apply Lemma 2 to (3.29), obtaining natural numbers q_{1}, q_{2} having

$$
\begin{gather*}
q_{i} \leq a^{-1} N^{2+2 \delta} A_{i}^{-2}|\mathcal{A}|^{-1} \tag{3.31}\\
\left\|q_{i}^{2} \boldsymbol{\alpha}_{i} \boldsymbol{p}\right\| \leq q_{i}\left\|q_{i} \boldsymbol{\alpha}_{i} \boldsymbol{p}\right\| \leq a^{-1} N^{2+3 \delta} A_{i}^{-4}|\mathcal{A}|^{-2} \tag{3.32}
\end{gather*}
$$

Now pick any $t \in \mathcal{A}$. If $A_{i} \geq N^{1 / 2+\delta}$ for an index $i \geq 3$, we may apply the case $L=1$ of Lemma 2 to $T_{i}(t \boldsymbol{p})$. This gives a natural number r_{i} with

$$
r_{i} \leq N^{2+\delta} A_{i}^{-2}, \quad\left\|r_{i} t \boldsymbol{\alpha}_{i} \boldsymbol{p}\right\| \leq A_{i}^{-2} N^{\delta}
$$

Writing $q_{i}=r_{i} t$, we then have, from (3.25),

$$
\begin{gather*}
q_{i} \leq a^{-1} N^{2+2 \delta} A_{i}^{-2} \tag{3.33}\\
\left\|q_{i}^{2} \boldsymbol{\alpha}_{i} \boldsymbol{p}\right\| \leq a^{-1} N^{2+5 \delta} A_{i}^{-4} \tag{3.34}
\end{gather*}
$$

Just as in (2.16), we can in fact find q_{i} satisfying (3.33), (3.34) for every $i=1, \ldots, s$.

Combining (3.31)-(3.34), we have

$$
\begin{gather*}
q_{i} \leq a^{-1} N^{2+2 \delta} A_{i}^{-2} C(i)^{-1} \tag{3.35}\\
\left\|q_{i}^{2} \boldsymbol{\alpha}_{i} \boldsymbol{p}\right\| \leq a^{-1} N^{2+5 \delta} A_{i}^{-4} C(i)^{-2} \tag{3.36}
\end{gather*}
$$

where $C(i)=|\mathcal{A}|$ for $i \leq 2, C(i)=1$ for $i>2$. Applying Lemma 4(i) and (3.36), we obtain

$$
\begin{equation*}
q_{i}^{2} \boldsymbol{\alpha}_{i}=\boldsymbol{l}_{i}+\boldsymbol{t}_{i}+\boldsymbol{b}_{i} \tag{3.37}
\end{equation*}
$$

where $\boldsymbol{l}_{i} \in \Lambda, \boldsymbol{t}_{i} \in \boldsymbol{p}^{\perp}$ and

$$
\begin{equation*}
\left|\boldsymbol{b}_{i}\right| \ll a^{-1} a^{-1} N^{2+5 \delta} A_{i}^{-4} C(i)^{-2} \ll a^{-2} N^{2+5 \delta} A_{i}^{-4} C(i)^{-2} \tag{3.38}
\end{equation*}
$$

Recalling (3.6), we apply the Corollary, taking $S=\boldsymbol{p}^{\perp}, \Lambda_{1}=2 \Lambda \cap \boldsymbol{p}^{\perp}$, and replacing $\boldsymbol{\alpha}_{j}$ by $2 \boldsymbol{t}_{j}$ and N by $N^{*}=(a \Delta)^{1 / \sigma} N^{2 \delta}$. We replace N_{i} by

$$
N_{i}^{*}=(a \Delta)^{1 / \sigma} A_{i}^{2} N^{-2+3 \delta} X^{2 / s} C(i)
$$

We must verify (1.4). From (3.27),

$$
N_{1}^{*} \ldots N_{s}^{*}=(a \Delta)^{s / \sigma}|\mathcal{A}|^{2} A_{1}^{2} \ldots A_{s}^{2} N^{-2 s+3 s \delta} X^{2} \geq\left(N^{*}\right)^{s}
$$

Thus there are non-negative integers m_{1}, \ldots, m_{s}, not all zero, satisfying

$$
\begin{gather*}
2 m_{1}^{2} \boldsymbol{t}_{1}+\ldots+2 m_{s}^{2} \boldsymbol{t}_{s} \in 2 \Lambda+K_{0} \tag{3.39}\\
m_{i} \leq N_{i}^{*} \quad(i=1, \ldots, s) \tag{3.40}
\end{gather*}
$$

Now let $n_{i}=q_{i} m_{i}$. Not all n_{i} are zero. Moreover, by (3.35), (3.40) and condition (B),

$$
\begin{aligned}
n_{i} & \leq a^{-1} N^{2+2 \delta} A_{i}^{-2} C(i)^{-1}(a \Delta)^{1 / \sigma} A_{i}^{2} N^{-2+3 \delta} X^{2 / s} C(i) \\
& =\Delta^{1 / \sigma} a^{1 / \sigma-1} X^{2 / s} N^{5 \delta} \leq N
\end{aligned}
$$

while

$$
\begin{aligned}
n_{1}^{2} \boldsymbol{\alpha}_{1}+\ldots+n_{s}^{2} \boldsymbol{\alpha}_{s}= & m_{1}^{2} \boldsymbol{l}_{1}+\ldots+m_{s}^{2} \boldsymbol{l}_{s}+m_{1}^{2} \boldsymbol{t}_{1}+\ldots+m_{s}^{2} \boldsymbol{t}_{s} \\
& +m_{1}^{2} \boldsymbol{b}_{1}+\ldots+m_{s}^{2} \boldsymbol{b}_{s} .
\end{aligned}
$$

Here $m_{1}^{2} \boldsymbol{l}_{1}+\ldots+m_{s}^{2} \boldsymbol{t}_{s} \in \Lambda+\frac{1}{2} K_{0}$ by (3.39). By (3.40), (3.38) and condition (B),

$$
\begin{aligned}
\left|m_{i}^{2} \boldsymbol{b}_{i}\right| & \ll(a \Delta)^{2 / \sigma} A_{i}^{4} N^{-4+6 \delta} X^{4 / s} C(i)^{2} a^{-2} N^{2+5 \delta} A_{i}^{-4} C(i)^{-2} \\
& =\Delta^{2 / \sigma} a^{2 / \sigma-2} X^{4 / s} N^{-2+11 \delta} \ll N^{-\delta} .
\end{aligned}
$$

We conclude that

$$
n_{1}^{2} \boldsymbol{\alpha}_{1}+\ldots+n_{s}^{2} \boldsymbol{\alpha}_{s} \in \Lambda+K_{0} .
$$

We have now reached a contradiction when condition (B) holds and $s \geq 3$.
Now let $s=2$. Pick any $\boldsymbol{p} \in \mathcal{B}$. From (3.17) and condition (B) we have

$$
\begin{gathered}
\sum_{t \leq a^{-1} N^{\delta}} T_{1}(t \boldsymbol{p}) T_{2}(t \boldsymbol{p}) \gg N^{2-5 \delta}, \\
\sum_{t \leq a^{-1} N^{\delta}} T_{i}(t \boldsymbol{p}) \gg N^{1-5 \delta} \quad(i=1,2) .
\end{gathered}
$$

From Cauchy's inequality,

$$
\sum_{t \leq a^{-1} N^{\delta}} T_{i}(t \boldsymbol{p})^{2} \gg\left(N^{1-5 \delta}\right)^{2}\left(a^{-1} N^{\delta}\right)^{-1} \gg N^{2-11 \delta} a .
$$

We may apply Lemma 2 , since

$$
N^{2-11 \delta} a\left(N^{\delta} a^{-1}\right)^{-1}=N^{2-12 \delta} a^{2} \gg N^{2-12 \delta} \Delta^{-1} \gg N^{1+\delta}
$$

from (3.15), (3.13). Thus there are natural numbers q_{1}, q_{2} satisfying

$$
\begin{gather*}
q_{i} \ll a^{-2} N^{13 \delta}, \tag{3.41}\\
\left\|q_{i}\left(\boldsymbol{\alpha}_{i} \boldsymbol{p}\right)\right\| \lll a^{-1} N^{-2+12 \delta} . \tag{3.42}
\end{gather*}
$$

By Lemma 4(i),

$$
q_{i}^{2} \boldsymbol{\alpha}_{i}=\boldsymbol{l}_{i}+\boldsymbol{s}_{i}+\boldsymbol{b}_{i},
$$

where $\boldsymbol{l}_{i} \in \Lambda, \boldsymbol{s}_{i} \in \boldsymbol{p}^{\perp}$ and
(3.43) $\left|\boldsymbol{b}_{i}\right| \ll a^{-1} q_{i}\left\|q_{i}\left(\boldsymbol{\alpha}_{i} \boldsymbol{p}\right)\right\| \ll a^{-1} a^{-2} N^{13 \delta} a^{-1} N^{-2+12 \delta}=a^{-4} N^{-2+25 \delta}$.

Here we used (3.41) and (3.42).
We apply the Corollary as above, this time replacing N, N_{1}, N_{2} by $\Delta a N^{2 \delta}$. There are non-negative integers m_{1}, m_{2}, not both zero, with

$$
\begin{gather*}
2 m_{1}^{2} s_{1}+2 m_{2}^{2} s_{2} \in 2 \Lambda+K_{0}, \tag{3.44}\\
m_{i} \leq \Delta a N^{2 \delta} \tag{3.45}
\end{gather*}
$$

Now let $n_{i}=m_{i} q_{i}$. Then

$$
\begin{gathered}
n_{i} \leq \Delta a N^{2 \delta} a^{-2} N^{14 \delta}=a^{-1} \Delta N^{16 \delta} \leq \Delta^{3 / 2} N^{16 \delta} \leq N, \\
\left|m_{i}^{2} \boldsymbol{b}_{i}\right| \ll \Delta^{2} a^{2} N^{4 \delta} a^{-4} N^{-2+25 \delta} \ll a^{-2} \Delta^{2} N^{-2+29 \delta} \ll \Delta^{3} N^{-2+29 \delta} \ll N^{-\delta}
\end{gathered}
$$

from (3.45), (3.43), (3.15) and (3.13). Just as above, we reach a contradiction when $s=2$ and condition (B) holds.

It remains to show that one of (A), (B) is satisfied. If $X<N^{5 \delta}$ we have, by (3.15) and (3.13),

$$
\Delta^{1 / \sigma} a^{-1+1 / \sigma} X^{2 / s} N^{10 \delta} \leq \Delta^{1 / 2+1 /(2 \sigma)} N^{15 \delta} \leq \Delta^{\lambda} N^{15 \delta} \leq N,
$$

so that (B) holds. If $X \geq N^{5 \delta}$ and $s=2$ then

$$
\Delta a X^{2 / s-1 / 2}=\Delta a X^{1 / 2} \ll \Delta^{3 / 2} a^{2} N^{\delta} \ll \Delta^{3 / 2} N^{3 \delta} \ll N^{1-11 \delta}
$$

from (3.16), (3.15), (3.13), so that (A) holds.
It remains to show that, for $s \geq 3$,

$$
\begin{equation*}
\min \left(\Delta a X^{2 / s-1 / 2} N^{10 \delta}, \Delta^{1 / \sigma} a^{-1+1 / \sigma} X^{2 / s} N^{10 \delta}\right) \leq N \tag{3.46}
\end{equation*}
$$

whenever $\Delta^{-1 / 2} \leq a \leq N^{\delta}, N^{5 \delta} \leq X \leq \Delta a^{2} N^{\delta}$.
If $s=3,4$, the left-hand side of (3.46) is
$\leq \Delta a X^{2 / s-1 / 2} N^{10 \delta} \leq \Delta^{1 / 2+2 / s} a^{4 / s} N^{11 \delta} \leq \Delta^{1 / 2+2 / s} N^{13 \delta} \leq \Delta^{\lambda} N^{13 \delta} \leq N$.
If $s=5,6,7$ the left-hand side of (3.46) is

$$
\leq\left(\Delta^{1 / \sigma} a^{-1+1 / \sigma}\right)^{1-4 / s}(\Delta a)^{4 / s} N^{10 \delta} .
$$

The exponent of a here is positive, so we obtain the bound

$$
\leq \Delta^{(1 / \sigma)(1-4 / s)+4 / s} N^{12 \delta}=\Delta^{\lambda} N^{12 \delta} \leq N .
$$

Finally, if $s \geq 8$, the left-hand side of (3.46) is

$$
\begin{aligned}
& \leq\left(\Delta a X^{2 / s-1 / 2}\right)^{1 / 2}\left(\Delta^{1 / \sigma} a^{-1+1 / \sigma} X^{2 / s}\right)^{1 / 2} N^{10 \delta} \\
& \leq \Delta^{1 / 2+1 /(2 \sigma)} a^{1 /(2 \sigma)} X^{2 / s-1 / 4} N^{10 \delta} \\
& \leq \Delta^{1 / 2+1 /(2 \sigma)} N^{11 \delta}=\Delta^{\lambda} N^{11 \delta} \leq N .
\end{aligned}
$$

This completes the proof of the Proposition.

References

[1] R. C. Baker, Small solutions of congruences, Mathematika 20 (1983), 164-188.
[2] -, Diophantine Inequalities, Oxford University Press, Oxford 1986.
[3] R. C. Baker and J. Brüdern, Pairs of quadratic forms modulo one, Glasgow Math. J., to appear.
[4] R. C. Baker and J. Gajraj, On the fractional parts of certain additive forms, Math. Proc. Cambridge Philos. Soc. 79 (1976), 463-467.
[5] R. C. Baker and G. Harman, Small fractional parts of quadratic and additive forms, ibid. 90 (1981), 5-12.
[6] —, —, Small fractional parts of quadratic forms, Proc. Edinburgh Math. Soc. 25 (1982), 269-277.
[7] R. J. Cook, The fractional parts of an additive form, Proc. Cambridge Philos. Soc. 72 (1972), 209-212.
[8] I. Danicic, Contributions to number theory, Ph.D. thesis, London 1957.
[9] -, An extension of a theorem of Heilbronn, Mathematika 5 (1958), 30-37.
[10] -, On the fractional parts of θx^{2} and ϕx^{2}, J. London Math. Soc. 34 (1959), 353357.
[11] -, The distribution (mod 1) of pairs of quadratic forms with integer variables, ibid. 42 (1967), 618-623.
[12] G. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, Cambridge 1967.
[13] G. Harman, Diophantine approximation and prime numbers, Ph.D. thesis, London 1982.
[14] D. R. Heath-Brown, Small solutions of quadratic congruences II, Mathematika 38 (1991), 264-284.
[15] H. Heilbronn, On the distribution of the sequence $\theta n^{2}(\bmod 1)$, Quart. J. Math. Oxford Ser. (2) 19 (1948), 249-256.
[16] M. C. Liu, On the fractional parts of θn^{k} and ϕn^{k}, ibid. 21 (1970), 481-486.
[17] —, Simultaneous approximation of two additive forms, Trans. Amer. Math. Soc. 206 (1975), 361-373.
[18] A. Schinzel, H. P. Schlickewei and W. M. Schmidt, Small solutions of quadratic congruences and small fractional parts of quadratic forms, Acta Arith. 37 (1980), 241-248.
[19] W. M. Schmidt, Small fractional parts of polynomials, CBMS Regional Conf. Ser. in Math. 32, Amer. Math. Soc., Providence 1977.

DEPARTMENT OF MATHEMATICS
AM PASTORENHOLZ 8
ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE
4972 LÖHNE
EGHAM
GERMANY
SURREY TW20 OEX, U.K.

Received on 24.6.1991
and in revised form on 26.7.1991

