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Definitions. Let L be a lattice in R® (that is, a discrete subgroup of
maximal order) and let o be an element of R®; («, L) is said to be a minimal
couple if for every nonzero linear form ¢ on R® such that ¢(L) is included
in Z, ¢(a) is not in Z.

We define the rotation T on the set X = R*/L by Tz = x+ a mod L; it
preserves the Lebesgue measure A on X, and («, L) is minimal if and only if
T is minimal, that is, has dense orbits; in particular, L and « must generate
RS, If & = (aq,...,as) and L is Z°, this is equivalent to (1, aq,...,as)
being rationally independent.

A set A in R® is L-simple if whenever x € A, y € A, x —y € L, then
T =1y.

Let A be a subset of X; we say A is a bounded remainder set (BRS) if
there exist real numbers a and C' such that for every integer n and A-almost
every = in X,

‘anlA(Tpx) —na| < C.
p=1

This definition also applies to L-simple subsets of R®, which we shall
always identify with their projection on X.

It is a well-known result, which can for example be derived from the
Markov—Kakutani fixed point theorem, that if A is measurable, then A is a
BRS if and only if there exists a bounded function F' such that

ly—a=F—-TF,

and in that case a can only be A(A).

For a set A of strictly positive measure and a point x in A, we denote
by 7(z) the return time of x in A (that is, the least strictly positive integer
n such that T"z is in A) and by Sz = T7®)z the induced map of T on A,
which exists by the Poincaré recurrence theorem.
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Known results about BRS. If s = 1 and A is an interval, A is a BRS
if and only if its length belongs to Z(«) (Kesten [1]); a similar result holds
when A is a finite union of intervals (Oren [3]).

If s > 2, there are no nontrivial rectangles which are BRS (Liardet [2]);
it seems difficult to find nontrivial examples of BRS when s > 2; Sziisz ([6])
had one example of nontrivial parallelogram.

Rudolph [private communication| showed that whenever there exists a
BRS of measure a > 0, the BRS are dense among the sets of measure a; this
is true for every ergodic transformation.

Rauzy’s sufficient condition

Let S be the induced map of T on A. If there exists a lattice M and
an element 3 of R® such that (8, M) is a minimal couple and Sx = = +
B mod M, then A is a BRS (even if B is not measurable).

This criterion enabled Rauzy to find nonmeasurable examples of BRS
in dimension s = 1 ([4]), and new nontrivial examples (parallelograms) in
higher dimensions ([5]); however, this condition is not necessary, as can be
seen in dimension 1 with the interval [0, 2a], though in this counter-example
the set A breaks into a finite union of subsets which satisfy Rauzy’s criterion.
We can now give a

Necessary and sufficient condition generalizing Rauzy’s crite-
rion

Let A be a subset of R®, L-simple, measurable and with nonempty inte-
rior. Then A is a BRS if and only if there exist a lattice M' in R*T! and
a bounded function n from A to N such that, if ¥ is the function from A to
R+ defined by (x) = (x,n(x)), and if Q is the translation of R*+t1/M’
defined by Q(z) = z+ (0,...,0,1), then ¥(A) is a fundamental domain for
Q, that is, for every z in ¥ (A), there exists a unique z' in ¥(A) such that
2/ =Qzmod M’'. Thus we can define Q@ as a mapping from {(A) to Y (A),
and we have

S=4"'Qy
(this last equality being defined A-almost everywhere).

Proof of the condition. In all what follows, T', S and X will be
as defined above and A will be a measurable L-simple set with nonempty
interior.

Let W be a fundamental domain for the rotation 7', containing the set A;
for an element x in W, we denote by z’ its projection on X. As a mapping
from W to W, T can be viewed as a finite exchange of pieces (an exchange

of two intervals if s = 1). The same is true for S, as a mapping from A to
A, ACW:
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LEMMA 1. There exists a finite partition of A into sets A;, and a finite
number of elements e;, 1 <1i < r, such that,

Sr=x+e  whenever x is in A;.

Proof. A must contain an open set 2. By Kronecker’s theorem and
compactness,

+o0 N
X=Jrme=J1r0,
n=1 n=1

for some finite N. Hence the return time 7(x) is bounded by N, and so
takes only a finite number of values.

Now, for every =,
St =z+71(x)a+g(x),
g(x) being the element of L such that x + 7(z)a + g(x) belongs to W. Then
g(x) must be bounded, and hence takes a finite number of values.

Now, if we partition A according to the values of 7(z) and g(z), and if
we define e; = 7;a + g4, we get our lemma.

Proof that the condition is necessary. We suppose A is a
BRS. Then

(1) 1a(y) —MA) =F(y) — F(Ty) for almost every y in X .

This implies

2T 12miE — 2mAA) almost everywhere .

Hence F' and A(A) are an eigenvector and an eigenvalue for an ergodic
rotation, and so there exist a linear form ¢ on R® such that ¢(L) C Z, an
integer p and a measurable bounded integer function n such that

(2) A(A) = ¢(a) +p,
(3) F(z') = ¢(2') + n(a’)  for almost all z in W .

The second equation lifts to W yielding
(4) F(z) = ¢(x) + n(z),

with some (bounded) modifications of the integer function n; and it would
lift in the same way (with different functions n) to any other fundamental
domain.

From ergodicity, we have

T 7'7;—1

w=J J14.

i=1 j=1
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Following Rauzy, we define a new fundamental domain by

r T;—1

Y:U U(Ai+j04)~

i=1 j=1
The sets A; + ja can be seen as levels of a tower; on them, T is defined
in the following manner: on the levels other than the top levels (that is,
when j < 7;), Tx = x + «; on the top levels, Tz = x + a + g;.
Now, if we write (4) for our new fundamental domain Y, and, together
with (2) and the new expression for 7', insert it into (1), we get

1a(z) = ¢(a) —p = ¢(x) — ¢(Tx) + n(z) —n(Tz),
hence, as ¢ is linear, we get finally
la(z) —p=mn(z) —n(z+«) if z is not in a top level ,
la(x) —p=n(z) —n(z+a+g;) —¢(g;) if zisin a top level above A; .
Suppose we already know n(x) on the basis A; this defines n on the whole
tower, by n(z+a) = n(x)+p—1 on the first floor, n(x+2a) = n(z)+2p—1
on the second floor, and so on as long as we do not reach the top. We just
have to write the compatibility relation at the top:
n(z) —nx+a)=1-p,
n(x + o) —n(z+2a) = —p,
n(x+ (r, — Da) —n(z+na+g,) =—p+ o(g),
hence
n(z) —n(Sz) =1—pr; + ¢(g9;) whenever x € A; .
Let m;,1 < i < r, be the integer pr; — ¢(g;); these integers satisfy the

following property: if (¢;,1 < i < r) is an r-uple of integers such that
> qie; =0, then

(5) Z qgm; =0.

This is easy to see, since if > ¢;e; = 0, then > ¢;7; =0 and >_ ¢;g; = 0,
hence also ¢(>_ ¢;9;) =0 and so Y g;m; = 0.
Also,

(6) m; =1+ n(Sz) —n(x) for almost all x in A;.
Let now M be the set (> g;e;, for all r-uples of integers ¢; such that

M is a lattice: it is clear that M is a discrete subgroup of R?; so it
suffices to show that its dimension as a Q-vector space is exactly s.

Consider the mapping @ from Q" to R® given by ®(q1,...,q,) = Y. gi€i;
its image is contained in Q(a) + Q(L), so must be of dimension at most
s+ 1; but since S, being the induced map of a minimal map on a set with
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nonempty interior, has dense orbits in an open set, dim Im @ must be exactly
s+ 1; hence Ker @ is of dimension r — s — 1.

Consider now the set B = (> ¢;m; = 0); as the m; are not all zero (they
have average one), B is of dimension 1, and contained in Ker @ by (5); hence
&(B) is of dimension s.

Now choose k such that my, is not zero, and put 3 = ex/my; we have

(7) e; =m;Bmod M  for all i.

As we have Sx = x +m; mod M, and as S has dense orbits in an open
set, (8, M) must be a minimal couple.

So we have already an intermediate form of the mecessary condition:
there exist a lattice M in R?®, an element § of R®, a bounded function n
from A to Z, and a partition A; of A, such that

(6, M) is minimal,
m; =1+ n(Sz) —n(x) when z € A;,
Sr=x+m;Bmod M whenzxcA;.
Note that A is not necessarily M-simple; it suffices that some m; is zero,

tohave x € A, Sz € A, S = x mod M but z # Sz.
We now define M’ C R¥*! (viewed naturally as R® x R) as the set &' (Z"),

where
P (q1,---59r) = (Z q4iCi, — Z Qimi> :

In Q", Ker®’ = Ker @ (by (5)), so dim Q(M’) = s+1 and M’ is a lattice.

For all 4, (e;, —m;) is in M, hence (z + €;,0) = (x,m;) mod M’, hence
for almost all x

(x +€;,0) = (x,n(x) — n(Sz) + 1) mod M’
thus
(Sz,0) = (x,n(x) —n(Sz) + 1) mod M’
therefore
(Sz,n(Sz)) = (z,n(x) + 1) mod M',
or in other terms .S = Q.

P(A) is M'-simple: if (z,n(z)) = (2/,n(z’)) mod M’ then =z’ = = +
> qie; = ¢+ ca+ d, ¢ being an integer and d an element of L; so z’ is
some T°r, and, as x and 2’ are in A, 2’ is some S’z, hence (z,n(z)) =
(Sbx,n(S%r)) = (z,n(x) +b) mod M’; hence (0,b) is in M’, thus 0 = > gse;
and b= )" ¢;m;, and so b =0 by (5), and = = z'.

Hence Q(z,n(x)) = (Sx,n(Sx)) is a representation of the rotation @ as
a mapping from 1(A) to ¥(A), and we can write S = ¢p~1Qv. This yields
the necessity of our condition (since n is bounded and is a coboundary, we
can make it positive by adding some constant).
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Note that ((0,...,0,1), M’) is not a minimal couple.

Proof that the condition is sufficient. For this direction,
we do not need the assumption of measurability of A. We suppose A satisfies
the assumptions of our condition. By Lemma 1, A is partitioned into r sets
by the different forms of S. We partition it further according to the finite
set of values taken by the function m(z) = n(x) — n(Sz) + 1. This gives us
t different couples (ej,m;). We define a mapping ¢ from Q' to R**! by

D (qr, .. q) = (Z%’ei, —quh') :

From ¢S = Qv, we deduce that M’ must contain all the (e;, —m;),
and so must contain ¢”(Q?). As Ker®” = ((¢;) such that Y g;e; = 0 and
>~ qim; = 0), we have dim @”(Q!) > s+ 1, with equality if and only if (5) is
satisfied.

But, since we know M’ is a lattice, we conclude simultaneously that
M' = &"(Q') and that (5) is satisfied (with ¢-uples instead of r-uples of
integers). In particular, e; = e; must imply m; = m; and in fact t = r.

Now, the 7; and g; being defined as in the proof of Lemma 1, we shall
construct a linear map ¢ from R® to R, and a rational number p, such that

#(g;) = pry —my; foralli.

We know from minimality that the vector space Q(e;), 1 < i < r, is of
dimension s + 1. We choose a basis for it, for example ey,...,es11. The
remaining e; satisfy rational relations of the form

ej =aji1e1+ ...+ ajs41€541, S+2<j<r.
By minimality of (o, L), these imply also

Tj=aj1T1+ ... +0js41Ts41, S+2<j<r,

95 = @191+ ...+ ajs419s41, S+H2< ST,
and so

mj =ajimi+...+aqjs41Msy1, S+2<j7<7r.

So the g;, 1 <i < s+ 1, must generate Q(L); thus we can choose s of them
to form a basis of Q(L), for example the first s. This means we have

gs+1 = blgl +...+ bsgs 5
while
Tsr1 Z 0171+ ...+ bsTs

since the e; generate a space of dimension s + 1.
We define

p=(msr1 — (bymi+ ... +bsmy))/(Ts41 — (b171 + ... + bsTs)) .
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Then we define ¢ by
d(gi) =pri —m; for1 <i<s.

This relation will remain true also for i = s+ 1, and for s +2 < ¢ < r. This
defines ¢ on the R-vector space generated by the g;, which is R?.

Then we can define a function F' from the new fundamental domain Y
(defined as in the first part of the proof) to R by

Fly) = o(y) +n(y) if y is in A,
o(y)+n(y)+jp—1 if yisin some A; + ja, j > 1.
It is easy to check that F' is bounded and that
1a—MNA) =¢(y) — ¢(Ty) for A-almost all y in Y,

which implies

‘ E 14(TPy) — na‘ < C for almost all y in Y,
p=1
and so

‘ Z 14(TPx) — na) < C  for almost every x in X ;

p=1
which means A is a BRS, and also (which was not in any way implied by
the computations) that p is an integer and F' factorizes to X. (These last
assertions are also consequences of a deep result of Rauzy, which is true even
if A is not a BRS: minimality implies not only Q(e;) = Q(a) + L, but also
Z(e;) = Z(a) + L.)

Another form of the necessary and sufficient condition

A measurable set A with nonempty interior is a BRS iff there exist a
lattice M in R®, an element B of R®, a partition of A into sets B;, 1 <1i < u,
such that, if we denote by S; the map induced by T (or S) on B;, then

(8, M) is minimal
Sr—xe€ZB+ M for almost all x,
Six =z +kBmod M  whenever S; = S*.

Proof. This is easily deduced from what we called the intermediate
form of the condition by partitioning A according to the values of n(zx).

In the other direction, if we are given the sets B;, it is easy to build a
function n. This is done step by step, for example taking n = 0 in By, then
extending it to SBy by the relation n(z) — n(Sz) = m; — 1, and so on, the
relations above guaranteeing there is no compatibility problem.

Note that, in contrast to A, the B; are M-simple: if x = y mod M, with
x and gy in the same B;, then y must be some Tz, hence some S{“x, and
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hence y = « 4+ [ mod M, with [ a sum of k strictly positive terms; hence
l=0,k=0and x =y.

A by-product of the proof

If A and B are subsets of R, if C = A x B C R? is a BRS for the
rotation by o = (a1, ag) modulo Z, with \(A) # 1 and \(B) # 1, then there
exists a relation

paias +qag +ras+s=0, p,qr,se’.

In particular, when oy is fived, there exists only a denumerable set of as
such that there can exist non-trivial product BRS; this set is empty if oy is
algebraic of degree 2.

Proof. Note simply that if C' is a BRS, A and B must also be BRS.
The first part of the proof shows that we must have

AMA)=ear+ f, ANB)=gazs+h, MNAAB)=d¢(ar,a)+1,

e, f, g, h, | being integers and ¢ a linear form with integer coeflicients;
hence the relation follows (algebraicity of degree 2 is excluded because of
the minimality of the rotation).

Thus we can exclude “most” of the rectangles.

References

[1] H.Kesten, On a conjecture of Erdos and Szisz related to uniform distribution mod 1,
Acta Arith. 12 (1966), 193-212.

[2] P.Liardet, Regularities of distribution, Compositio Math. 61 (1987), 267-293.

[3] I Oren, Admissible functions with multiple discontinuities, Israel J. Math. 42 (1982),
353-360.

[4] G. Rauzy, Ensembles a restes bornés, Séminaire de théorie des nombres de Bor-
deaux, 1983-1984, exposé 24.

[6] —, Des mots en arithmétique, preprint.

[6] R.Sziisz, Uber die Verteilung der Vielfachen einer komplexen Zahl nach dem Modul
des Finheitsquadrats, Acta Math. Acad. Sci. Hungar. 5 (1954), 35-39.

CNRS, URA 225

163 AVENUE DE LUMINY

F-13288 MARSEILLE CEDEX 9, FRANCE
E-mail: FERENCZIQLUMIMATH.UNIV-MRS.FR

Received on 23.1.1991 (2114)



