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1. Introduction. Let N > 0 be a square-free integer throughout
and let 0 = 2 (respectively o = 1) if N = 1 (mod4) (respectively N =
2,3 (mod4)). Set w = (0 —1++/N)/o. The main purpose herein is to give a
complete description of all the reduced ideals which are in the principal class
of Q(v/N) whenever N is such that the norms of three or more consecutive
(as determined by the continued fraction expansion of w (see [13])) principal
reduced ideals are powers of a single given integer a > 1. This assumption
allows us to give a remarkable explicit formula for the period length of the
continued fraction expansion of w in terms of this phenomenon. Moreover,
we are also able to give an upper bound on the regulator of @(\/N ) in this
instance. Examples are also provided.

Shanks [11] has shown that the ordering of the reduced principal ideals in
a real quadratic field K (as determined by the continued fraction algorithm)
conforms to a certain structure within the principal ideal class. He called this
structure the “infrastructure” of the class. Because of the importance of this
continued fraction ordering scheme, we will employ it here and, throughout
the paper, use terms like “consecutive” or “in a row” with reference to this
particular ordering. We point out that the assumption that the norms of less
than three comsecutive reduced principal ideals be powers of a single integer
a > 1, provides us with very little information concerning the set of reduced
principal ideals. It is therefore rather remarkable how the simple assumption
that 3 consecutive norms in a row are powers of a > 1 allows us to determine
so completely the principal period of reduced ideals of K = Q(\/N ) including
a simple formula for the period length.

There are two cases, one of which we show will allow for at most 4
consecutive norms in a row being powers of a. The complete description
is given in Section 3. We are also able in both cases to give a remarkable
explicit formula for the period length of the continued fraction expansion of
w. Examples to illustrate the major theorems are also presented.

In Section 6 we give an upper bound on the regulator of Q(\/N ), when
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the aforementioned phenomenon of at least 3 norms in a row occur as powers
of a. Section 7 contains only the proofs of the 10 lemmas in Sections 3-5,
acting therefore as an appendix.

This continues work in [7]-][9] as well as related work by Levesque et al.
in [5], [6], Bernstein [1], [2] and Hendy [4].

2. Continued fractions. We will need some basic facts concerning
continued fractions given below. For a more detailed presentation of this
material the reader is referred to [3] or [10]. Let N > 0 be a positive square-
free integer and let

_[2 if N=1(mod4),
11 if N=2,3 (mod4).

Set w = (6 —14++v/N)/o. Then w = {(qo,q1,---, Gx) is the continued fraction
expansion of w with period length . Here ¢p = |w] and ¢; = | (P;+V/N)/Q; |
for i > 1 where | | denotes the greatest integer function; and (Py, Qo) =
(0 —1,0) with Py = ¢;Q; — P; for t > 0 and Q;41Q; = N—PfJrl for 1 > 0.
It can be shown that ¢; < qo for 7 > i > 1; while P, < V/N, Q; < 2v/N,
and —1 < (P; —v/N)/Q; < 0 for i > 1. Moreover, if N =1 (mod 4) then

w = <QO7QI7QZ7 s 7%—172% - 1> .
If N =2,3 (mod4) then

W= <QO,Q1a(I2a “ee 7Q7r7172q0> .

Also, we note the symmetry properties of the continued fraction expansion
of w, viz.
Py =P fori>1,
Qi =Qn—;, fori>0andfori>1,

qi = dn—i -

3. Consecutive powers of the @Q;/Qy’s. In what follows we wish
to investigate the conditions for the existence of at least three consecutive
Q;/Qo’s in a row being the power of a single integer a > 1 in the continued
fraction expansion of w. We will (see below) have an overriding hypothesis
throughout (unless specified otherwise).

Also, the sequence of reduced ideals which belong to the principal class
is given by Iy, o, ..., Ii,... where

I; =(Q;/0)Z + (P; +VN)/o)Z where j =1,2,...

We have I, = I and the norm of Iy, denoted by N (I), is Qx /0 = Qi /Qo.
Thus if N(I;), N(I;i4+1), N(I;+2) are powers of a then Q;/Qo, Qi+1/Qo,
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Qi12/Qo are powers of a. From this we also see that 7 is the least positive

value of i for which Q;/Qo = 1.

AssUMPTION. We assume that m > 3, that a is an integer greater than 1,

and that Q;/Qo = a", Q;+1/Qo = a® and Q;12/Qo = a’ for positive integers
r,s and t, where ¢ > 1 and i + 2 < 7.

Remark 3.1. We may assume without loss of generality that r < ¢,
for if r > t then by putting j = 7 — i we get Q;/Qo = a”, Q;—1/Qo = a°
and Q;_2/Qo = a', by the symmetry properties of the continued fraction
expansion.

Remark 3.2. We need several lemmas, mostly of a technical nature.
Therefore, in order to improve the flow and readability of the paper we have
put the proofs of all the lemmas from this section into Section 7.

The notation from above will remain in force.

LeEmMA 3.1. ged(a,N) = 1.

LEMMA 3.2. ¢;41 = 0 (moda”), and if g1 = m = a"q then ga” > a* > 1
wheren=r+s andk=t—7r>0.

Remark 3.3. In [7] and [8] we classified completely those forms for
which all Q;/Q¢’s are powers of a single integer (including the case where
m < 3). Therein we found that this will occur if and only if n = 0 (mod k).
We have m = 1+ 2n/k if k > 0, while 7 = 1 if k£ = 0. Thus, for 7 > 3 the
results of [7] and [8] can be considered as special cases of the results given
here.

Remark 3.4. Now we wish to detail the form of the continued fraction
expansion of w so that we may specify where, when, and how blocks of
consecutive powers of a (3 or more) occur as Q;/Qq’s. First we observe that
if n = k then Q3 = 0 so m# = 3, contradicting our assumption. Thus we
assume in the sequel that n # k. Moreover, since gcd(a, N) = 1, by Lemma
3.1 we have k # 0. Furthermore, if n = 0 then @)1 = o, which implies that
m = 1, contradicting our assumption. Thus, we may also assume in the
sequel that k£ # 0 and n > 0.

Moreover, from Lemmas 3.1 and 3.2 we see that in order to have at least
three );/0’s in a row as powers of a single integer we must have

(3.1) N = (o(ga™ + (a* — 1)/q)/2)* + o®a".

4. Preliminary results. Before proceeding with our classification we
need some definitions and technical data as machinery for the task. The
first concept we need is:
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DEFINITION 4.1 (The Euclidean Algorithm). Set t_o =gand t_; ==
> 0. Then

t_o = uot—1 + 1o for 0 <tg<t_q,

t_1 = pito +1t1 for 0 < t1 < ty,
t0:H2t1+t2 fOI‘O<t2<t1,

ti—o = fiti—1 +t; for 0 <t; <t;_q,

tm—2o = mtm—1 +t,m witht,, =0.

We now modify this algorithm slightly when m is odd only. In this case
we replace the value of m by that of m + 1 which is now even. Having
done this we set p,,—1 equal to the former p,, less 1, and put p,, = 1. If
ged(q,x) = 1 we have t,,_1 = 1, so in the case under discussion we have
tim—1 = tm—2 = 1. For a fixed ¢ we denote by p(x) this value of m.

DEFINITION 4.2. Let A o =0=B_1; B.o=1=A_; and A,,+1 =
Nn+1An +An_1; Bny1 = pni1Bn + By_1.

Remark 4.1. Tt is easily shown that (—1)**t, = Ay B,, — A,,,B.. If
we assume that x > 0 and ged(q,z) = 1, then A,, = ¢ and B,,, = x. Also,

tjis3Aj_ o+ Aj 3tj o=t o=A,=q
and
ti_3Bj_o+ Bj_stj_ o=t =1.
These results are needed in the sequel.
DEFINITION 4.3.
Aj =gk —lkj/nln, e =|(G+Dk/n] = jk/n],
vy = jn— ng/klk,  my =G+ Dn/k) — nj/k],
d = ged(n, k).

Observe that v; and 7, are respectively the same as A; and ¢; with the
values of k£ and n reversed.

Now we need some technical lemmas related to Definition 4.3.
LEMMA 41. 0< \j <nand 0 <v; <k.

LEMMA 4.2. (1) A\; =0 if and only if j =0 (modn/d).

(2) v; =0 if and only if j =0 (mod k/d).

LEMMA 4.3. (1) A\jy1 =X +k—¢jn.

(2) vj1 = vj + 1 —nik.
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LeEMMA 4.4. (1) If n > k > 0 then g; € {0,1}.
(2) If k >n >0 then n; € {0,1}.
LEMMA 4.5. (1) If n > k > 0 then
. :{1 if and only if \; > n —k,
J 0 if and only if \j <n —k.
(2) If k > n > 0 then
1 if and only if v; > k —n,
i = {O if and only if v; <k —n.
DEFINITION 4.4. When n > k set
0j =k —n+ X =X\,
oj=n—Aj=k—Xj41 wheneg;=1.
When n < k set
0j =2k —n—vj=k—vj1,
oj=n—k+v;=vj41 whenn; =1.
If n; = 0, then put
0j=k—n—v;=k—vj,
oj=k+vi=vj.
DEFINITION 4.5. With notation as above
Cij=a%t;j+(=1)'A;;, Dij=a%A;;+ (1),
where t_; ; = a% = ™% (modq) and 0 < t_;; < ¢q. The A4;; and t;;

are then computed as described in Definition 4.1 with = t_;;,4;; =
Ajtig =t; and p 5 = ;.

Remark 4.2. If m = p(t_lyj) we get BmJ‘ = t_Lj,th = 0, Amyj =4q,
tm—1,; = 1 (since ged(g,a) = 1). (Henceforth ged(, ) = (, ) will be used.)
Since By, jAm—1,; — Am jBm-1,; = 1, we get

A1, =a% (modgq).
Furthermore,
Diy1j = piv1,5Dig+ Dicrjy  Cicrg = prir1,Cij + Ciga -
Now
Dogj=t2;=¢>0,
Doyj=a%—t1;20,
DOJ‘ = Clngo,j + t()yj > 0.
Hence Di—i—l,j > ,ui_,_l,]—DiJ (Z > *1) Thus, Di,j > 0 unless ¢ = —1 when it
is possible for D; ; = 0. This can occur only when a% < q.
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Since
Cm—2j=0%tm-2;+ Am-2; >0,
Cm—1,j=0"tm_1; —Am_1=0"7 —Ap_1,; >0,
Cm,j=q,
we get Ci—1; > pi+1,;Ci; (1 <m—1). Thus, C;; > 0 unless i = m — 1

when it is possible for C; ; = 0. This can only occur when a? < g. We also
note that C; ; = D; ; =0 (modgq) for i = —-2,—-1,...,m.

5. The continued fraction expansions

DEFINITION 5.1. Let u be the order of @ modulo ¢ when ¢ > 1, and
v =1 when ¢ = 1. Set s; = (a™™)" (modgq) with 0 < s; < ¢q. (Observe
k=0 (modu) and s; # 0 since (a,q) = 1.) Set w; = p(s;) + 1.

There are exactly k = u/ged(n,u) distinct s; values. Thus, there are
at most x distinct w; values. Note that s, = 1 (mod q) implies p(sx) = 0;
whence w, = 1. With all the above in force we have

DEFINITION 5.2. For given n > k and ¢ let

K

W(n,q):W:Zwi,

i=1
w0 < <k,
U(“"’q)_”_{o if r = 0,

Yk, n,q,5) = ¢(j) =1+ 2j + W[jk/(kn)] + o,
where 7; = |jk/n| — k|jk/(kn)].
LEMMA 5.1. Ife; = 0 then ¢(j + 1) = ¢(j) + 2.
Ife; =1 then(j +1) =9(j) + 24+ wr,41.

DEFINITION 5.3. For the continued fraction expansion of w with N
given by (3.1), put Ry = (P, + |V/N])/o and S}, = Q1 /0.
LEMMA 5.2. If Ry, = a"t;—1;Ai; + Ci_1,jDi,j/q2 and Sy = a"t; jA; j +
Ci’jDivj/q2 then
Ryy1 = qnSp — Ry + qa" + (a* —1)/q
= a"tijAiv1,j + CijDiv1;/4,
Shi1 = (0" + Ruy1(qa”™ + (a" = 1)/q¢ — Rny1))/Sh
= a"tis1Ai415 + Cir15Div15/0° -

Now we are in a position to prove our classification for the first case.
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THEOREM 5.1. Assume that n > k > 0 and either o # 2 or ¢ # 1. Then
in the continued fraction expansion of w = (0 — 1+ v/N)/o we have

Ry = (qa" + (a* = 1)/q)/2+ (0 = 1) /o,
So=1,

90 = (ga" + (a" = 1)/q) /2 + (o0 — 1) Jo,
Ry = (qa" + (a* = 1)/q), Ry =qa",
Slza", ngak

)

an=q, @=qa"",
and for 1 < j<n/d—1 we have
Ry(j) = qa" + (a* = 1)/q,
n—A>A;
Sy = a7,
Qu( 7 :{qakj if €5 =0,
v(7) qa™ + (bt — vi)/a if €5 =1,

where y; = a* "N = a2 =t ; = a7 F/PHD (mod q) with 0<y;<q
Moreover, if e; = 0 then

Ryy+1 = qa™,

_ kXN A
Sy =a " =avr,

Qy(j)41 = qa" "N = ga" N
Ifej =1 and m = p(v;) then for 1 <i<m+2
Rygypi = a"ti—3jAiaj + Ci3iDi 2/,
Sy)+i = a"ti2jAi 2+ Ci—2;Di—2;/q",
iy if1<i<m+1,
WO qa?n kN g (@ = 65) g ifi=m 2,
where §; = a N =

=a% (modgq), with 0 < §; < q and 6; =1 when g = 1.
Ifj=n/d—1put @ =¢(n/d—1)—1; then \; =n —k and

Rgi1 =qa™ + (a" —1)/q,

Sgp1 =aF=a""N

Qop1 = qa" " =qa™ | g2 =0q,

Rpys =qa”", Rpys=qa” + (a"—1)/q,
Soy2 =a",  Spyz=1.

Alsom=0+3=1(n/d—1)+2=2n/d+ kW/(kd).
Proof. We proceed by induction on j. For j = 1 we have ¢(1) = 3,
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R3 = qa™ + (a* —1)/q, S3 = a" % = a"~** and
_ qak if e =0, i.e,[2k/n| =0son > 2k,
a3 qa® + (a®* " —~))/q ife; =1, ie., n <2k,
and 73 = a " (mod q). Thus, the result holds when j = 1.

Case 1. g; = 0. Given Ry ), Sy(j) and gy(;) as in the hypothesis, we
have from Lemma 5.2

Ry(jye1 = @w(i)Sui) — Rug) +aa” + (a* = 1)/q = qa™ |
Syiy+1 = [a" + Rygjy41(ga” + (0 = 1)/q = Rygy41)]/Sp() = a7+,
()1 = [ By(gy41/Spy+1) = ga" =+
CLAIM 1.1. Ry(j+1) = qa™ + (a* — 1) /q.
From Lemmas 5.1 and 5.2 we have
Ry(j1) = Ryyr2 = quya1S(+1 — Ry + 0" + (a" = 1)/q
= qa" + (a" — 1)/q.
CLAIM 1.2. Sy(j1) = a™ Mt
Again from Lemmas 5.1 and 5.2,
Sy(i+1) = Sy(i)+2
= [a" + Ry(j42(qa” + (a" —1)/q = Ry(jy42)]/Sp i1 = a" ¥
Finally, it is clear from Claims 1.1 and 1.2 that
[ qarin if i =0,
Ti+1) = {quHl + (aF= Xy — 5 0) /g if e = 1.
Hence, we have proved the result in the case where €; = 0.
Case 2. ¢; = 1. By Lemma 5.2,
Ry(jy+1 = @u()Sui) — Ru) +aa" + (a* = 1)/q
= (qa™ + (a" "N — ;) /q)a" N
— (ga™ + (" = 1)/q) + ga" + (a" = 1) /q
= qa" + (a" —y;a" V) Jg =tz ;A1 ja" + C_ ;D1 3 /4" .
Also,
S +18p) = a" + Rygy1(aa” + (a" —1)/q = Ry(jy11)
=a" + (a"q+ (a" = a"" M) /q)(qa" + (a" —1)/q
—qa™ — (aF —;a"%) /q)
= a" + (130" = 1) /g)(a"q + (a" —a" ;) /q)

= ;0> 4 (a" Ny — 1) (a" = a" N y) /¢P
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Therefore,
Syya1 = aj+ (@7 = 1) (0% — ;) /q* = a"t 1 jA 1 j+C1 ;D1 5/q
Thus, by Lemma 5.2,
Sp(y+i = a"ti—ojAi—2; + Ci—2,;Di—2;/q"
Ry(jy4i = ti—s jAi—2ja" + Ci_sjDi_2;/q" .

Now we show that if the results hold for j then they hold for j+ 1. First
we prove

Cram 2.1. ¥(j 4+ 1) =¥(j) + m + 3.

Since 7; = |jk/n] (mod k) and a® =1 (mod q) therefore a ™" t1) = ~,
(mod g) implies s,., 11 = y; since both are less than ¢q. Hence,

wr;41 = p(y;) F1=m+1.
By Lemma 5.1 we get
Y +1) =00) + w1 +2=90) +p(7;) +3 = ¥() +m+3,

which secures the claim.
Now, from the above we get

Ry(j)+m+2 = @"tm—1,Am ;0" + Cpm_1,;Dm ;/q* ,
Sp()rm+2 = " tm jAmj + Cm i D i /¢ -

Thus,
Ry(jyemt2 = qa" + (a7 — Ap_1,;)qa% /q° = qa” + (a* — a% Ap_15)/q,
Sy(j)+m+2 = q’a /q2 = q% = g+t = gk—ntA

Since A,,—1,; = a% = a" % =4, (mod q) we have A,,_1 ; = &;. Thus,

Qo) rmiz = qa*"F N 4 (@ — ;) /q.

Hence, by Lemma 5.2,

Ry(i+1) = Ry(jypmes = (qa®" "% + (@™ = §;)/q)a "

— (ga™ + (a* — §;a" ") /q) + qa™ + (a* — 1) /q
=qa" + (a" —1)/q,

Sy41) = Se(i)emes = a™/aF TN = @2 TR = gn A

Finally,
_ [ qati+ T—

G s {qa)\j“ + (@ — ) /g g = 1

This completes the induction for all j < n/d — 1.
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Now we deal with the period m. Put 8 = ¢(n/d — 1) — 1. We find that
Aj =n—kif and only if j +1 =0 (modn/d). Also,

Roi1 =qa™ + (a" - 1)/q,

Spr1 =a" =a" |

Qo1 = qa" " = qa Qo2 =4,

Ry =qa" — (& —1)/q, Rgiz=qa"+ (a"—1)/q,
Sgya =a", So4s =1.

Thus, Sy > 1 for all £ with 1 < k < 64 2 and Spss = 1. Therefore,
T=0+3=19(n/d—1)+2.

Now, if j =n/d — 1 then

rj = [(n/d = 1)k/n] = k[(n/d = 1)k/(kn)]
=k/d—1—klk/(kd) —k/(kn)] .
Since k = u/(n,u), we have k/(kd) = k(n,u)/(ud). But kn = 0 (mod ud)
and uk = 0 (mod ud), so k/(kd) is an integer. Thus, |(k/(kd))—(k/(kn))] =
k/(kd)—1; whence r; = k/d—1—k/d+r = k—1. We have 0,, = W —wy, =
W —1 and |jk/kn| = k/(kd) — 1. Therefore,
W(njd—1) =1+2(n/d— 1)+ W(k/(kd) — 1)+ W — 1.

Hence, 7 = 2n/d + kW/(kd). =

Now we illustrate Theorem 5.1.

EXAMPLE 5.1. Let N = 561730 = (3% 4 20)? + 35. Thus we have: a =
3n=6k=4,¢=2,d=2, k=1L u=2, wy=s51=W=1, p(s1)=0=
r1, 81:)\1:4,m:0, 71:1, 0’1:2, Q1:2, w(l)zg, w(2):6,7r:8
and 7 =1 only for 1 < j <n/d— 1. Thus,

Ry = (qa™ + (a* —1)/q)/2 =749 = Py + |V N],

So=1,

qo = (qga™ + (a® = 1)/q)/2 = 749,

Ry = qa" + (a* —1)/q = 1498 = P, + [VN],

Ry =qa" = 1458 = P, + |VN]| ,

Si=a"=729, Sy=da"=381,

G =9=2, ¢=qa""=18,

_ _ n k _ _ \/>

R¢(1)—R3—qa +(a”—1)/q=1498 = P+ |V N |,
Sw(1)253:an7>\1:9,

Qp(y = g3 = qa™ + (a" "M —p) /g = 166,
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Ryy41 =Ra=a"t_21A 11+ C_91D_11/¢*
=3%.2.1+(18-8)/4=1494 = P, + |VN]|,
Spyt1 =81 =a"t_11A_ 11+ C_11D_11/q> =3°-1-1+(8-8)/4 =745,
Qy(1)+1 = q4 = po = 2,
Ry)y+2 = Rs = a™t_11A01 + C_11Do 1 /¢
—30.1.24(8-18)/4 =1494 = P; + |VN |,
Sy)+2 = S5 = a"to1 40,1 + Co,1Do1/q* =3°-0-24 (2-18)/4 =9,
Q)2 = G5 = qa*" M 4 (a"M —5y) /g =23 + (37 —1)/2 = 166 .
Since 6 = 1(2) — 1 =5 we have
Roy1 = Rg = qa" + (" —1)/q
=2.30 4 (3*~1)/2=1498 = P; + |VN]|,
Sg = a” = 81,
g6 =qa" — (a* —1)/q=18, qr=q=2,
Ry =qa" = 1458 = P; + |V/N |,
Ry =qa™ + (a* - 1)/q =749 = Py + [VN],
S;=a" =729, Sg=1.
Hence we have compiled the following table:

1 0 1 2 3 4 ) 6 7 8
P; 0 79 709 749 745 745 749 709 749
Qi 1729 81 9 745 9 81 729 1
a; 749 2 18 166 2 166 18 2 1498

Thus, we see in this example that there is one run of 4 consecutive Q;/o’s
in a row as powers of 3, namely for i = 5,6,7,8 (since 7 must be positive).

It is possible to have runs of arbitrary length in the case where n >
k (including the case where all @);/0’s are powers of a; see Remark 3.3).
However, in our next case where k > n we shall see that this is not possible;
in fact, we have a considerable restriction.

First, however, we must finish the case where n > k. Theorem 5.1 fails
for ¢ = 1 and o = 2, so we treat this case separately. The following can be
proved in the same way as Theorem 5.1 so we do not include the proof here.
Moreover, we exclude the initial and final sequence of values of i € {0, 1,2}
since they are clear in this case.

THEOREM 5.2. If n > k > 0, ¢ = 1 and 0 = 2 then in the continued
fraction expansion of (1 +v/N)/2 we have for 1 < j <n/d — 1:

n k n—>\;
Rw(j):a +a —1/2, Sw(]-):a J

)
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o ai if €5 =0,
Qy(5) a)\j 4 akfn%*)\j -1 Zf g = 1.
Moreover, if e; = 0 then

Rygy41 =a" +1/2,

Sy(y1 = aN

Tp)+1 = @
If e; =1 then (observe that ¢ = 1 implies p(x) =0 so Y(j + 1) = ¥(j) + 3)
Rl/J(j)—‘rl =a" + ak - a”_)‘j + 1/2,

Spyer = a" +aF —a" N b

nf)\]fk

Tyy+1 =1,

Rzp(])+2 — a’n + ak _ ak*?’lri’)\j + 1/2,

S¢(j)+2 — ak:—n—l—)\j

q1j;(])+2 — a2n—k—>\j + an—)\j . 1’

)

Ry(y+s = Ryan) = a” +a" = 1/2,
Sp(jn) = a®"TFTN = g
_ Jadn if €j41 =0,
TG+1) = {a)‘f“ +abm A 1 f e =1
and
T=1¢(n/d—1)+2=2n/d+ kW/(kd).
Now we turn to the case where k > n > 1. First we need:

DEFINITION 5.4. Let 07 be determined by d% = @ (modq) with 0 <
6% < g and let 0; = |q/5;].

Remark5.1. Wehave Cy, j = ¢q, Cppe1,j = a%ty—1,j — Apm—1,; = a% —
A1, Am—1,j =a% =a”*+ (modgq),t_1,; =a """ = a% (modq), when
m = p(t_lyj), Cm_QJ‘ = Cm,j — ,umij'm_Lj, which implies that Cm_gjj =
q = pm, (@71 = 851 1). Also, A j = pn jAm—15 + Am-—2,; With Ap,_5; <
Amfl,jﬂm,j = LAm,j/Amfl,jJ implies that Mm,5 = 0j+1- ThllS,

Cm—2,j =4q— 9j+1(auj+l - 6;'4—1) )

Crm-1; = 0" = 85y,

D1y =a" 4185 =1, tmory=1,

Am1j =004, bm—2,5 = bj41-
Also, anA_Qyjt_Qyj -+ C_Q’jD_Q’j/q2 =a%.
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DEFINITION 5.5. When k > n > 0 define o by a® < ¢ < a®*! and set
7__:{1 when v; > aand k —v; —n > a,
J 0 otherwise.
DEFINITION 5.6. We note that if 7; = 1 we have k — n > 2«, which
implies that a*~" > a2**! > ¢; whence ga™ < a*. Thus if ga™ > a* then
7; = 0. Also, if K —n < 2a then 7; = 0. We define

w; = p(")/j) + 2T]j71 + 1+ 27']‘,1
where v; = """ (mod ¢) with 0 < v; < ¢, and

OESEDINTE
Thus ¢/ (j + 1) = 4/ (j) + wj, and

J J J
@Z)'(j):1+2wi+22ni_1+2Tj, WhereTj:ZTi_l.
i=1 i=1

i=1
Now
J J
S it = S lin/k| — | — n/k] = Lin/k].
i=1 i=1
Further,
J
S w; = Li/k|W(n.g)+ v where v} = j — |j/x]x.
i=1
Hence,

W) = 1+ 2jn/k] + /K] W (n, ) + 0 + 2T}
Further, ¢'(0) = 1.

In the following theorem we do not make the assumption given at the
outset of the section. Therefore, the following result is quite general (for the
case k > n), including the possibility that ga™ < a*, as we shall see as one
of the possible conditions. We assume only that

N = (o(qa" + (a* = 1)/q)/2)* + o%a™.
We now have the following

THEOREM 5.3. If k > n > 0, then in the continued fraction expansion of
(6 —1++V/N)/o we have for 0 < j < k/d —1:

Ry = 0;65a™ + (850" = 1)(0;0" — 0,65+ q)/¢°,
Syr(jy = a0} + (a" — &7)(a" 71985 — 1) /%,

o = 0; + (a* Vi —~;)/q ifn; =0, and k—n—v; >a >y,
V') 0; otherwise.
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Ifn; =1, then
Ry (jy+1 = qa” + (a* — 65a*7) /q,
Sy = a7,
Gy (41 = qa T E + (0 = 6%) /q,
Ryr(jy+2 = qa”™ + (a* —1)/q,
Syr(yaa ="M =t 9 A 550"+ C g ;D 5 5/q7,
@y ()42 = qa" 77 + (@®F T — ) /g,
Ryi(jyroti = a"ti—z jAi 25+ Cis;Di2;/¢°,
Syr(yaasi = A" ti2jAi2j + Ci2;Di2/q%,
Gy (j)+2+i = Mi—1,5  fori=1,2,....m, where m = p(vy;).
Ifn; =0,v; >a, and k —v; —n > «, then
Ry (jy41 = qa” + (a* — 85a"7"9) /q,
Sy = a7,
Qyr ()41 = (a7 = 85)/q,
Ry (jy42 = (" = 1)/q,
Syryaz = a" T =a"A g it 5+ C 9D /¢,
b ) /a,

Ty ()+2 = \@
Rys(jya+i = a"tiozjAiozj + Cig jDio23/q° |
Sy (y+24i = a"ti2Ai_2 5+ Ci—2jDi—2;/q,
Q' (j)+24i = Mi—1,;  Jori=1,2,...,m.
Ifnj=0and k —v; —n < «, then
Ryo(jy1 = qa” + (a* = 8;a777) /g,
Sy = a7 = Ay jtog 0" + Doy ;0-15/,
@y (j)y+1 = Hoj + (a7 = 85)/a,
Ryr(jy4i = a"tizs jAi—2j + Cizs jDi—2/° |
Syr(iyri = a"tiz2jAiaj + Cica jDia i /0",
Q' ()i = Mi—1,5 fori=2,...,m.
Ifnj=0and k —n —v; > a <v; then
Ry (jy4i = a"ti 3 ;A 2 + Ci—s;Di—2;/q%,
Sy(y+i = a"tiajAima; + Cina i Di2/¢%,
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Q' ()i = Mi-15  fori=1,2,...,m.
Finally,
=" (k/d—1)+2

{Qn/d—l- kW (n,q)/(dk) if k—n < 2a,
2k/d + kW (n,q)/(dk) —4|a/d] — 2 if k > n+ 2a.

Proof. The formulas for R,S,q are proved as in Theorem 5.1 by in-
duction on j. We now look at the problem of determining m. Note that
v;j =k —nif and only if j +1 = 0 (mod k/d). Thus, if j < k/d — 1 then
Sp>1forall h<¢/(k/d—1)—1= X Put j=k/d—1. We get

Ras1=0;85a" + (850" — 1) (a;a” — 0,8} + q)/q°
Sxt1=a"d; + (a7 — 5;)(@k_yj 8 —1)/q%,
¢r+1 =0; (note that j = k/d — 1 forces n; =1).

Thus,
Ryyp = qa™(a* — 050" ") /q,  Rays=qa" +(a"—1)/q,
S>\+2:an7 S/\+3:17
Gz =g+ (7" +65)/q.
Thus for j = k/d —1 we get 7 = A+ 3 = ¢'(k/d — 1) + 2. Now, r; =
k/d—1—|k/(dk)—1/k]k =Kk —1and |jn/k] = |(k/d—1)n/k| =n/d—1,
V() +2 = 3+2n/d—1) + (k/(d&) — )W (n,q) + ox — 1 + 2T with
0w —1=W(n,q) —w, = W(n,q) — 1, which implies that
V'(k/d—1)+2=2n/d+ kW (n,q)/(dr) + 2T

where T' =T with j = k/d — 1.

It remains to evaluate T'. If k—n < 2a then T; = 0 for all j. Assume k—
n > 2a. Since v;/d assumes each value in the set {0,1,2,...,k/d—1} as j =
0,1,2,...,k/d—1, all of the values of v;/d in the interval 0 < o/d < v;/d <
(k—n)/d—a/d < k/d—1 will be assumed as j =0,1,2,...,k/d — 1. Since
there are exactly (k—n)/d—2|a/d| —1 values of v;/d in this interval, we get
T = (k—n)/d—2|a/d| —1, which implies that 7 = 2k/d+ kW (n,q)/(dk) —
4|a/d] — 2 whenever k > n+2a. »

Now we illustrate Theorem 5.3.

EXAMPLE 5.2. Let N = 247073 = (31-2* 4+ 1)2 +4.2% Then n = 4,
k:5,d:1,q:31,1/0:0,1/1:4,V2:3,V3:2,50:1,(51:16,62:8,
03 = 4, aF7"0 =32, aF1 =2, a2 =4, a3 =8, 6y = 31, 6, = 1,
O =3,05=T,k=u=5"7%=2,11=4,7%=8 v3=16 7 =2, w, =1,
wy =3, wh =5=wi =wy, W=15, p(y;) =2 fori =0,1,2,3,4, no =0,
ni = 1fori=1,23, a=4, ¢,(0) =1, d/(l) =4, 1/)/(2) =9, ¢/(3) = 14,
Y'(4) = 19.
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Thus we have
Syro) =S =24 Syray =S1=2% Syiz) =S89 =2", Sy =S =2"
Since n; = 0 if and only if j = 0 we have
Sw/(0)+]_ - SQ - 25, S¢/(0)+2 - 53 - 241, Sw/(1)+1 - S5 - 2 .
Since n; = 1 for j = 1,2,3 we have
Swayr2 =9 =2°  Spy4z =57 =2%  Sy(a)+1 = S10=2°,
Sw/(2)+2 = Sll = 22, Sw/(2)+3 - 512 = 27,
Sy@yr1 =815 =2 Sy(zya =2, Syzs =S =2°,
Spray =510 =2"  Spaws1=50=2"  Spur2=051=1
and thus we get:

1 0 1 2 3 4 ) 6
P; 1 497 495 465 17 495 497
Qi 2 32 64 482 512 4 16
qi 249 31 15 1 1 248 62

1 7 8 9 10 11 12 13
P 495 401 273 495 497 495 273
Q; 128 674 256 8 8 256 674
i 7 1 3 124 124 3 1

1 14 15 16 17 18 19 20 21
P, 401 495 497 495 17 465 495 497
Q; 128 16 4 512 482 64 32 2
qi 7 62 248 1 1 15 31 497

We observe that there are 3 runs of four consecutive powers of 2, each
beginning with Q4,9 and @14. There is always the final run of 3 consecu-
tive powers of a. We conclude this section with an answer to the question
concerning the possibility of longer runs when k > n.

LEMMA 5.3. If k > n then there are at most 4 successive Q;/Qo’s in a
row as powers of a.

Proof: see Section 7.

6. An upper bound on the regulator. It is often very useful to have
a good upper bound on the size of the regulator of any real quadratic field.
We will now give an upper bound on the size of the regulator of Q(v/N).
We need a preliminary result.



Consecutive powers in continued fractions 249

LEMMA 6.1. If p(y;) = m then for 1 <i < m —1 we have
Aijti—2,;Cim1;Di15 = Aiyjtio1;Ci D .

Proof. The result certainly holds for C; ; =0 (i =m — 1).
Suppose now that C; ; # 0. We can write

ti—a; = Mijti—1j +tij, Ci-15 = Hi+1,;Cig + Civrj,
Aij = pijAi-1,j + Aimaj, Dij = pijDicrj+ Di-zj.
Thus,
Aijtio2,Cim1,;Di-1,5 — Aim1,ti-1,;Ci 5 Di
= A1 tio1;Ci;Di1;E,
where
E = (pij+ Aiaj/Ai—1;) (i + tij/tiz1,;)(pis1,; + Civ1,5/Cij)
— (wij + Di—23/Di 1)

Since Dj_o;/D;—1; < 1, we get our result if either p; ; or p;y1; is
not 1. Also the result holds if D;_5,; = 0 (i = 1). Suppose then that
pij = piy1,j = 1 and D;_o; # 0. Since t;_1 ; = piy1,5tij +tir1,; we get

tz‘_l’j/ti’j =1+ ti+1’j/ti,j <2.
This implies that ¢; ;/t;—1,; > 1/2; thus p; ; +t; ;/ti—1,; > 3/2. Also,
Di_1j=pi—1Di—2j+Di—gj, Ai—1j=pi—1;jA4i—2;+Ai_3;.
Hence,
E > (3/2)(1 + (tie1,j + Ai—sj/Ai—25) ") (1 + Ciz1,;/Cij)
—(1+ (pi—1,j + Di—3,j/Di—2,5)"").
If ;1 ; > 2 then (pi—1,; + Di—3/Di—2;)"' < 1/2, whence E > 0.

If pi—1; = 1 then p;_q; + Ai_3,;/Ai—2; < 2; therefore, 1+ (i1 +
Ai3j/Ai_9;)"" >3/2, whence E > 9/4—2>0. u

THEOREM 6.1. If n > k then R < (k + n)log(v/A)/d where R is the
regulator of Q(v'N) and A = (2/0)?N s the discriminant of Q(v/N).

Proof. If Ry/Sy =ti—1;/tij + (—1)""'D; j/(t; jqSk), then
Ry/Sp = tio1,j(1+ (1)1 Dy j/(tim1,a5n)) /tis -
Therefore,
(Pn+VN)/Qn
= ti 1,5 (L4 (1) "D /(tim1,a5n)) /tio1j + (VN = [VN])/Qu.
In the case where ¢ # 1 when o = 2 we get

[VN] = o(qa" + (a* —1)/q)/2.



250 R. A. Mollin and H. C. Williams

Also,
N = (o(ga" + (a* =1)/q)/2)* + o*a"
= (0(ga" + (a* =1)/q)/2)*(1 + 0%a" /(o (ga" + (a* — 1)/q)/2)?)
= (0(ga" + (a* —1)/¢)/2)*(1 + 40" /(qa" + (a" = 1)/q)?).
Since (1 + )2 <1+ /2 we get
(VN = [VN])/Qn
<[(o(ga" + (a* =1)/q)/2)(1 + 24" /(ga" + (a* = 1)/q))
— (o(ga”™ + (a* = 1)/q)/2)]/Qn

— 6a"/(Qnlqa" + (a* — 1)/q)) < 1/(gSh).

g

Thus,
(Ph+ VN)/Qn < ti1 (14 (=1)7" Dy /(ti-1,;a50)) /ti; + 1/(aSh)
=ti1,;(1+ ((=1)""'Dyj +tij)/(ti=1,5q5h)) /ti; -
Since
(=) 'Dij+tij = (—1)"""a% Ay —tij+ti; = (—1)""1a% Ay 5,
we get
(Pr+VN)/Qn < tic1j(1+ Gij)/tiy
where
Gij = (1) 1a% A; ;/(qti—1 j(Aijti ja" + Ci;Di i/q°%)) -
Now for 1 <i<m —1,
|Gijil = [Cim1,41
= a%[A; j/(ti1;(Aijti 0" + Ci;Di ;/q%))
— Ai_1j/(tima, (A1 jtic1 ja" + Ci—1jDiz1 j/4%))] /g
= a%[A; jAi1 jtioa,j(tima; — tij)a” + G/q°)
x [q(Ai jtija" + Ci ;Di j/q°)
*(Aim1ti-140" + CicaDicr g /q*)) 7
where
G = A ti—2;Ci—1,;Di1,; — Ai—1,jti1,;Ci;Dij > 0.
Since ti,Q,j — ti*l,j > O, we get
|<z’,j|_|<i—1,j|>0 fOFlSiSm—l.
Now,

invjt,;ja” + Ci,jDi,j/q > in’jti,ja” > akA,-’jti,j > a‘QjAthi’j .



Consecutive powers in continued fractions 251

Therefore, letting (; stand for (; ; for any fixed j, we get
Gl < 1/(ti—1,ti5) < 1.
Also,

m—1
S G = 1Gmt] = (sl ~ s
i=—1
— ([Gm—a = [Gm—5]) = .. = (o] = [¢=1)
< [Gm—1l = (IS0l = I¢-1]) < [Cm—a] + ¢l
If we set ¢, = (Py + v/N)/Qp, then it is well known that

™
€o = H¢i-
i=1

If n > k then
¢1 = (ga" + (a" —1)/q +2VN/0)/(2a"),
¢o = (ga" — (a" = 1)/q+2VN/0)/(2a").
If we put § = ¢(n/d — 1), we have m = 6 + 3 and
do1 = (ga" + (a* —1)/q+2VN/0)/(24"),
do+2 = (qa" — (a" =1)/qg+2VN/0)/(2a"),
P43 = (qa" + (a" —1)/q+ 2V N /o) /2.
Now if ¢; = 1 and m = p(v;), then

m+1 m+1
I Poiyri + VN Quiyri < [ timsi L+ Gima) /tizay
=1 =1
m—1
<qexp (Y G) < aexp(lGual +1¢-1]),
i=—1

since 1 4 (i_o < €%-2. Also

(Pygiyem+2 + VN)/Qyyme2
= (qa" + (a* = 24,1 jaF "N + 1) /g + 2N J0) /(20" 7TV)

= ((ga" + (¥ = 1)/q + 2VN)/o)(2a"~ ") 7!
X (1=2(Ap_1,;a" " —1)/(q(ga" + (a* = 1)/q+2VN /0)))
< (ga™ + (a¥ —1)/q +2VN/0)/(2a" ")
X exp(—=2(Ap 156" — 1)) /(q(ga” + (a* — 1) /g +2VN /o).
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If we put
Ty = G|+ 161~ 2(Amo 1,505 —1)/(lga™ + (0" — 1) fq+ 2V o))
then
T = a% Apm_1/(q(Am_1;0" + Co—1.;Dm—1.1/3%))
+a% /(q(qa" + C-1;D_1,;/¢*))
—2(An1,0% —1)/(g(qa™ + (a" = 1)/q+2V/N/0)).
Now, since 2v/N /o < 2qa™ we get
Tj < a%/(qa") +a® /(¢*a") — (Ap-1,50% —1)/(2¢°a™)
= (2a%q +2a% — A1 ja% +1)/(2¢%a™)
< (a%(2¢+1)4+1)/(2¢%a™) < 1.

Since
m—+2
1 (Pogy+i + VN)/Qujy+i < g™
i=1

we get

50<< H ga" — (a* —1)/q+2VN/o

2a>\j +k

EjZO
1<j<n/d—2

L20"+ (@ —1)/g+ 2v/N /o
QG/TL*)\J‘

x ( [[ el et =)/t 2/N /o)

2qk—n+X;

Ej:l
1<j<n/d—2

2a7’l7>\j

L (aa" + (@ —1)/q+2VN/o)® (qa" — (a* —1)/q+2VN/o)?
(2a7)? (2a%)?

x (qa™ + (a* = 1)/q+ 2V N /0)/2.
Put v = (VN — |VN|)/o < 1/q; we get
(qa" — (a" = 1)/q+2V'N/0)/2
= (ga" — (" =1)/q+2|VN] /o +2v)/2
= (ga" — (a* = 1)/q+ qa" + (" = 1) /q)/2+ v
=qa" +v =qa"(1+v/(qa")) < qa"exp(v/(ga")).

L0+ (@t = 1) /g + 2\/JV/0>
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Also,
(qa™ + (a* = 1)/q+2VN/5)/2
= (2|VN|/o+2VN/o)/2 = (2(VN /o —v) + 2N /o) /2
=2V N/o —v < 2V N exp(—vo/(2VN)) /o .

Since
n/d—2

Y ei=k/d-1
j=1
we see that

g0 < (ga" exp(v/(qa™)))™ I */ =12/ N exp(—vo /(2VN)) o)/ d-k/d=1
> af(nJrk)(n/dfk/dfl) k/dfl(2\/7eXp(—I/J/(Q\/N)/U))Q(k/dfl)
n/d—2
x g F(k/d=1) (exp < Z T; )) (2V'N exp(—vo /(2VN)) /o)?
x (qa" exp(v/(qa™ )))2 _2("+k)
— qn/d(2\/]v/o_)n/d+k/d
% a—k(k/d—l)—(n+k)(n/d—k/d—1)+n(n/d—k/d—1)+2n—2(n+k)E

— qn/d(z\/ﬁ/a)(n—f—k)/da—nk/dE _ (Q/ak)n/d\/z(k_‘_n)/dE.

Here
E = exp(—vo/(2VN))((n/d — k/d —1) + 2(k/d — 1) + 3)
n/d—2
x exp(v/(qa"™))((n/d —k/d — 1) + 2) exp ( Z TJ> :
Put
n/d—2
k= —vo(n/d+k/d)/(2VN)+v(n/d—k/d+1)/ Z T;
n/dEJZ
< —v(n/d+k/d)/(2qa™) + v(n/d — k/d+ 1)/ Z T;
aj—l

n/d—2

< (n/(2d) = 3k/(2d) + 1)/(¢*a™) + > T;.

j=1
EJ'ZI
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Now,
n/d—2 n/d—2
> T< Y (a%(20+1) +1)/(2%")
j=1 Jj=1
g5=1 g;j=1
n/d—2
= (2q+1) Y a®/(2¢%a") + (k/d - 1)/(2¢%a").
]
Also,
n/d—2
I I
j=1
g;=1 —
— a(a*¥/4) — 1) /(a® 1) = (a* — ah)/(a® — 1)
<(d*/(a’ = 1)) ~1 < a"/(a(a® — 1)) ~ 1.
Hence,
n/d—2
> T < 20+ 1)/(2¢Pala - 1)) — (20 + 1)/ (24%a").
E
Thus,

K < (n/(2d) = 3k/(2d) +1)/(¢%a") + (k/d — 1)/ (2¢°a")
+(2¢+1)/(2¢%a(a” — 1)) — (20 +1)/(2¢°a")
< (n/(2d) — k/d - q)/(¢®a") + (2q + 1)/ (4%)
<1/(4¢%) +1/(2¢) +1/(4¢%) < 1/q
(since a™ > 2n — 8 for a > 2). It follows that
(%) g0 < (g/a")" (VA detla
and
R < 1/q+nlog(q/a®)/d + (k+n)log(v/A)/d.

We now point out that a* — 1 > ¢ implies that a=* < (¢+ 1)1, whence
q/a* < q/(q+1). Furthermore,

log(q/a”) < logq/(q+1) = —log(q+1)/q
= —log(1+1/q) = —(1/¢—1/(2¢°) = 1(3¢°) — ..)
< —1/q+1/(2¢%)
and so
1/q+nlog(q/a")/d < 1/q+ n(—1/q+1/(2¢*))/d
=(1—-n/d)/q+n/(2d¢*) <0 ifn/d>2andq>2.
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Hence R < ((k +n)/d)log vVA.
Note that the result (x) also holds for the case where o = 2 and ¢ = 1.
In this case we have |[V/N| = a” 4+ a* and v +1/2 < a”/(a" + a* — 1); thus,

(a" —aF +14+VN)/2 < a”exp((v 4 1/2) /a™)
and ¢y ()11 < 1+a" " N /a" whene; =1. m
THEOREM 6.2. If ga™ > a* and k > n then R < (k +n)log(v/A)/d + 1.
Proof. For a fixed j we have
[Gol = 161 = a% Ag ;/(v;4(Ao jto 0™ + Co,Do,5/4°))
—a% /(¢*(yja" + C-1;D-1,/4°))
= a® G/ (74 (Ao,jto,ja" + Co,Do.;/4%)
x(vja" +C-1,;D-1,3/4%)),
where
G = qAo,j(vja" + C-1;D-1,3/¢%) — ;A0 3t0 5" — 7;Co,;Do,j/4°
= Ao ;a"v;(q — to;) + qAo;D-1,;C-1,;/¢* — v;Co;Do ;/q*
= Ao,ja";(10,5%;) = 73Co,Do,i/a* + aAo,;C-1,;D-1,; /4"
> Ao ja"yipo 5 — 150" + qAo;C-1;D_1/¢* > 0.
Therefore, [(o] — |¢—1] > 0, and

\mig

i=—1

<|Gmal =& < a®/(ga").

When n; =1, m = p(v;) and §; := [(n—1|. By using the above results we
see that if £ —v; —n < «, then, as before,

m—+1
[T (Pugysasi + VN)/Quiysari < g .
=1
When 7; = 0 we have t_1; = a®* 777" = a* """ (modgq). Also, k —n —

v; < k—nso akF~" Vi < g*" < ¢, which implies that t_1,; = ak=" i In
this case

m—+1
H (Py(i)i + VN)/Qujy+i
< (t-afto)(to/t) - (b2 /tm—1) exp ( T )
1=0

<afTmviess



256 R. A. Mollin and H. C. Williams

It follows that
o qa" + (a* —1)/q+ 2V N /o . qa" — (a* —1)/q+2VN/o
0 2a" 2a"
x(qa" + (a¥ —1)/q+2V/N /o) /2

xk/ﬁz 6 (10" + (a" —255a" ) /g + 2N o
o a 2ak—vi
n;=1
ga™ + (a* —1)/q+2VN/o
k/d_Z n k 25/ k—Dj+1 2\/N
ST e (1 2 VR o
g Qak—l/j :
77]j=0

As before,

(qa™ — (a" = 1)/q+2V/N/0)/2 < qa" exp(v/(qa™)),
(ga" 4 (aF —1)/q+ 2V N /o) /2 < 2VN exp(—vo/(2VN)) /o,

k/d—2

> nj=Lk/d=1)n/k] =n/d—1.
j=0

Also,
(ga"™ + (a* — 28" + 1) /g + 2V N /o) /2
< (qa™ + (a* —1)/q+ 2V N /o) /2 < 2V/N exp(—vo/(2VN)) /o .
Thus,
eo < ((ga"/a™)2VN/(0a"))(2VN /0)((2VN [o)?q/a™)"/ ¢!
X (2V N /(oa™))k/d-1=(n/d=1) g

where
k/d—2
E= exp{ S & +v/qa” —ov(n/d—1)/VN
7=0

—vo(k/d—1— (n/d—1))/(2VN) — ay/\/ﬁ} .
As in Theorem 6.1, we get
e < ¢ 42V/N [o) 20/ A=V +2+k/d=n/d( —n—(n/d=)n—(k/d=n/d)n
= U2V o) FH kAR — (gak)r /i (/B)
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Now,
k/d—2 k/d—2 k/d—2
oG Y e =% a) /),
Jj=0 Jj=0 Jj=0
and
k/d—2 k/d—1 k/d—1 k/d—1

E 4% = E ak—vi = E ad(k/d—vj/d) _ E " a¥
i=0 i=0 =1 =1

= a% (/=1 _1)/(a? — 1) = (a* — a?)/(a? — 1) < a*.
Hence, Zk/d_2 ¢ < d*/(qa™). Also, since 2v/N /o < 2qa™ we have

7=0
v/(qa") — ov(n/d + k/d)/(2V'N) < 0.
Thus E < e and gq < (¢/a")d(V/A)F+m)/de, u

7. Proofs of the lemmas. In this section we provide the proofs of the
lemmas in Sections 3-5.

Proof of Lemma 3.1. Let p be a prime which divides both a and
N. Since Q;Q;y1 = N — Pi2+1’ we see that p divides P;y;. Since Py, =
qi+1Qi+1 — Pit1, p also divides P;y5. Hence p divides Q; for j =i, 7 + 1,
1+ 2 and p divides Py for k = i + 1, i + 2. Therefore, p divides P;1 3 =
¢i+2Qitr2 — Pip2 and p divides Qi13 = Qi1 — qiv2(Piys — Piy2). Thus,
by induction, p divides Q. = Qo, whence p = Qg = o = 2 is forced.
However, N = 0 (mod2) and N = 1 (mod4) are contradictory. The result
follows. m

Proof of Lemma 3.2. Since P12 = ¢i+1Qi+1 — P41, we have
P19 = qiy10a° — P 1. Also, if we put m = g;;1 then 0%a"™* = N — Pi2+17
SO

oc*a*t' = N - P, =N — (oma® — Piq)?

=N — P2, — o®m?a® + 20ma’ Py

=c%a" — 0®m2a® + 20ma’ Py .

Hence, a' = a" — m?a® + 2mP;y1/0; whence m divides a® — a”. Also, a”
divides m(2P;y1/0 — ma®).

If a = 0 (modp) for some prime p and ma® = 2P;;1/0 (modp) then
2P, 11/0 = 0 (modp) so p divides 2/0 or P;j4q. If p divides P11 then
since o2a""* = N — P2, we must have p dividing N, which contradicts
Lemma 3.1. If p divides 2/0 but not P11 then 0 = 1, p = 2, and P,
is odd. However, N # 1 (mod4) whenever o = 1, and since r and s are
positive we get N = P2, (mod4), a contradiction. Thus, p does not divide
2P;11/0 — ma® whenever p divides a. It follows that m = 0 (moda”). Set
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m = a"q; we get 2P 1/0 = qa" " + (a'"" —1)/q. ff we put n =7+ s
and k = t —r then N = (o(qa"™ + (a* — 1)/q)/2)? + 0%a™. If k = 0 we
get N = (0qa™/2)? + o%a™. Thus either a divides N or a = 1. The former
contradicts Lemma 3.1 and the latter contradicts our assumption. Hence
we have k& > 0.

If either 0 # 2 or ¢ # 1 then [VN| = o(qa™ + (a¥ —1)/q)/2. If 0 = 2
and ¢ = 1 then [V/N| = a™ + a*. In the former case

1< giso = [(Prs2 + VN)/Qit2]
_ La(qa" —(@* —1)/q)/2 + o(ga" + (a* — 1)/q)/2J

oat

= [ga"/a'].

Thus, qa™ > a* > a*™" so qa™ > a*.

In the latter case

(P2 + [VN])/Qiya = (™ —a"™" +1+a" ™ +a'™")/(2a")
= (2a"+1)/(2a") > 1

since g;1o > 1. Hence 2a™ + 1 > 2a', i.e., a" > a' — 1/2, which implies that
n >t > k. Thus, we always have qga™ > a*. =

Proof of Lemma 4.2. (1) If jk—|kj/n|n = 0 then jk/d—|kj/n|n/d
= 0. Since ged(k/d,n/d) = 1 we must have j = 0 (modn/d). If j = rn/d
then jk — |kj/n|n =rnk/d — |krn/dn|n = 0.

(2) is proved in a similar fashion. m

Proof of Lemma 4.3. (1) \j = jk — |kj/n|n=(j + 1)k — (|k(j +
1)/k‘J — aj)n — k= )‘j+1 +€jn — k.

(2) is proved in a similar fashion. m

Proof of Lemma 4.4. (1) Clearly |(j + 1)k/n]| — [jk/n| > 0. Also,

LG+ Dk/n] < (j+ Dk/n = jk/n+ k/n
< |jk/n]+1—-1/n+k/n<|jk/n|+1+(k—-1)/n.

Since |(j 4+ 1)k/n| and |jk/n] + 1 are integers and 0 < (k —1)/n < 1 we
get |(j + k) < [jk/n] +1.

(2) Similar. m

Proof of Lemma 4.5. (1) We first assume that j+1 # 0 (modn/d).
In this case 0 < Aj;1 < n implies that 0 < A\; + k — g;n < n; whence
Aj >ein—kand \; < (¢j+1)n—k. Thus, ife; =1 we get A\; > n—k and
ife; =0weget \j <n—k.

If \j >n—~Fkthen \j;1 >n—¢ejn,soe; = 1. If \; <n—k then
Ajy1 <n—eggn,soe; =0.
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If j+1=0 (modn/d) then j =rn/d—1 and
gj = |rnk/(dn)| — |(rn/d — 1)k/n| =rk/d — |rk/d — k/n]
=rk/d—(rk/d—1)=1.
Also,
Aj = (rn/d— 1)k — [(rn/d — 1)k/n|n
=rnk/d—k—(rk/d—1)n=n—k.

Moreover, if A\; = n — k then jk — |kj/n|n = n — k implies that (j + 1)k =
n(|kj/n] + 1); whence j + 1 =0 (modn/d).

(2) Similar. m

Proof of Lemma 5.1. If ¢; = 0 then [jk/n] = [(j + 1)k/n] and
this implies that |jk/(nk)| = [(j + 1)k/(nk)|. Also, rj41 = |(j +1)k/n]| —
k[(J + 1)k/(kn)] = r;; hence, ¥(j + 1) = 2+ 9(j).

If e; =1 then |jk/n| = |(j+1)k/n|—1, which implies that [jk/(nk)| =
|(j+1)k/(nk)]+6 where 6 € {0, —1}. Also, if ¥’ = rj4q thenr’ = r;+1+kd.

If0 =0thenr =1+rjandif § = —1then 1+r; =rx+r"sor’ =0
and r; = k — 1. Thus, if 6 = 0 then

PG+ 1) = 120+ 1)+ WL + D/ ()] + 0 = 24+ $() + 41
If § = —1 then
Y +1) =142+ 1)+ W[+ Dk/(sn)] + o,
=1+2(j+1)+Wljk/(kn)| + W
:2+¢(j)+wn:2+w(j)+wm+l- u
Proof of Lemma 5.2.
Ry —ti1Sn/tij = Dij(Ci1j —tio1,;Cij/ti;)/q°

D;j(Cimvjtij — ti1,3Cig)/ (ti54%) -

Now by Definition 4.5

Cim,jtij —ti1,3Ci5 = (a7 tio1j + (1) Aoy j)ti g

—tim1(a7 i + (1) A )
= (1) 7N (Aimgtig +tioiAg)
and from Remark 4.1 it follows that the latter equals (—1)*~1q. Hence,
Ry —ti1,jSn/tij = (=1)""" Dy j/(ti ;q) -
Therefore,
Rp/Sh —tim1j/ti; = (=1)"""Dy;/(ti,;a5n) -

For i > —2 we get S, > C; ;D; j/q*> > D, j/q when C; ; # 0. Thus,

]Rh/Sh — ti_ljj/tj‘ < l/ti’j .
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This implies that g, = |Rp/Sk| = [ti—1,;/ti;] = pi+1,; (as long as i > —2
and Ci,j 75 0)

If C;; = 0then ¢ =m—1and ¢ > a%. In this case Cy,—1; = 0
and Dp,_1,; = a%Ap_1; — 1. Furthermore, A,,_1; = a° implies that
Dy = a® — 1. We also have

Cm—2,j = /‘m,jcm—l,j + Cm,j =q, Sh = an+0j )
Ry = a™ % i + (a¥ = 1) /g,
gh = [Bn/Sn) = pm j + [(a" —1)/(ga"*77)].

Since qpn, = fit1,5, we get

Ris1 = pi1,Sh = B+ 2|V N|Jo
= Wit1,j0" i j A j + i1, Ci i Dij /@7 — a1 jAs
—Ci1yDij/q* +2|VN|/o
= a"(tijpiv1,;Aiy — tic1,;4i5)
+ (pi11,DijCij — Cim1,3Di5) /6% + qa™ + (a* = 1) /g
=a"(tij(Aigry; — Aic1g) —tio1;4i5)
+(Cij(Dit1,j = Di1j) = Cic1,jDij) /4 + qa™ + (a" — 1) /q
= a"(tijAiy15 = q)
+(CijDit1,j — (CijjDi-1j + Ci13Diy))/a* + qa™ + (a* = 1) /q.
Since (from Definition 4.5) we have C; jD;_1; + Ci—1,;D; ; = q(a* — 1), we
have shown that
Rpy1 = a™tijAig1j + CijDig1 /4.

Now we verify the formulas for Sp, 1. If we make use of the easily verified
identities ‘
Cijtiv1, — Ciprgtiy = (=1)'q,
DijAis1j — Dis1jAij; = (-1)'q,
we get
¢* = Cygtiv1;DijAierj + Dit,jCiga gtijAi
= Cit1,4tijDijAiv1y — Dit1jAijCigtiva; -
Hence
¢* —qCijDiy1j+q(a® — V)t jAiy1; — 2t jAig1 jCi jDiga
= Cijtiv1,iDijAir1j + Dig1jCitajtijAij — Cigajti jDijAia,j
= Dit1,;Ai;Cijtiv1y + (tig1,Aiy + Aig1,ti3)Ci i Diga
+ (Di,jCigr,j + CijDigaj)tijAivr; — 2t jAig1 jCi i Diga

= Cijtit1,jDijAir1j + Dit1,Civa jtijAi -
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Since Sp41 = (N — P2,,)/(02Sy), we get
U2Sh5h+1 =N — {\/ﬁJQ + I_\/]VJ2 — P,?+1

= 024" + 0Rp41(2|VN| — 0Rpy1) .
This implies that

ShSh+1
= a" + Rp1(2[VN]/o = Rpy1) = a" + 2|V N|Ryi1 /o — Ry yy
=a" + (qa" + (" —1)/q)Rp41 — Rj 4y
= a" + (qa" + (" = 1)/q)(a"t; jAir1,5 + CijDit1,5/4%)
— (a™jAiv1,j + CijDiv1,;/0°)
= a®"t; jAit1,j(q — tijAiv1;) + CijDit1 j(q(a® — 1) — Ci jDis1 ;) /¢
+a™(¢® + qCi jDi1j + qla® = Vti jAip1 5 — 2ti jAip1,5Ci i Dig1y) /¢
= a®"t; jtiv1,jAi jAiv1,j + CiyDit1 jCiva 3Dy /¢
+a™(Cyjtiv1,iDiv1,jAir1j + i jAi jCiv1,Dig1j) /4
= (a"tiy1,jAi1,5 + Cir1Div13/a*) (@t Aij + CiiDij/¢%) .
Thus,
Spa1 = a"tiz1;Aiv1; + Civ1;Div1;/¢° . =
Proof of Lemma 5.3. Let

o a* —1\1?
N = [ (qa” + >] +o%a".
2 q

We get Q;/o0 =a", Qi11/0 =a® and Q;102/0 =a' withn=r+s, k=t—r
and t > r.

CLAIM 1. Q;43/0 is a power of a if and only if t <7+ s =n.

Suppose t > n, and let ¢ = v (moda'™™) with 0 < v < a'="™. We
have ¢ = pa'™"™ + v and qa™ = pa' + va™. Thus, qa"/at = p + va"/at <
p+(a="—1)a"/at = p+(a' —a™)/a’. Since (a* —a™)/a’ < 1 we get gi12 =
lga™/a'| = p. (Note that this is true when ¢ > 1. Also note, however, that
if ¢ =1, then |(2a™ +1)/(2a")] = 0 if t > n, a contradiction.) Thus,

g
Piy3 = iQito — Py = poa’ — 5(11@" —(a* =1)/q),

Qit3 = Qit1 — qir2(Piys — Pit2)

g

= ot — (o — laa” (@ = 1)/a) = (00" ~ (@~ /0

— 00" — op(pa’ - qa” + (a*~1)/q) = 0a® — op(~ya” + (a*~1)/q).
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Now, ¢ < a® = a*™"% = pa’™™ + v with 0 < v < a*™™. Thus, if u is

exactly divisible by a” we must have v < s. Therefore,
Qita/o = a® +a"y/(a"y — (a" —1)/q).

Now, ga™ > a* implies that a"y — (a* — 1)/q > 0. Therefore, Q;,3/0 =
a® + a’h where h > 0 and a does not divide h. If Q;13/0 = a’, then
a® = a® + a”h implies that a* ¥ = a*~" + h if A — v > 0; whence a divides
h, a contradiction. If A — v = 0 then a*~% 4+ h = 1, a contradiction since
h >0, and s—v > 0. It follows that @;13/2 cannot be a power of a if t > n.

Now we examine the conditions under which @;_1/0 can be a power
of a.

CLAIM 2. If qa” < a® — 1 then Q;_1 /o cannot be a power of a.
We have (for either ¢ # 1 or o # 2)

¢i = [(Piv1 + VN)/Qi] = [((2/0) Pir1 + V/(2/0)2N)/(2Qi/0)]
= [((a" =1)/qg +a"q+ qa" + (a" — 1)/q)/(2a")]
= a°q+ [(a* —1)/(qa")].
If g=1 and o = 2 then
¢ = [((a" = 1) +a" +a" +a")/(2a")]
=a’q+[(2a" ~1)/(2a")] = a’¢ + [(a* ~ 1)/a"] .
If ga” < a* — 1 put v = |[(a* — 1)/(ga")|. Now put u = q; = a®q + v.
Thus, P41 = opua” — P; and P;y1/(20) = (pa”/2) — P;/(20). Also,
Pip1/o = (a"q + (a* = 1)/9)/2,
which implies that
Pi1/(20) = P;/(20) = (a"q + (a* — 1)/q — a"p) /2.
Therefore,
(Piy1 = P)Jo =a"q+ (" = 1)/qg—a"p
and we get
Qi-1/0 = Qit1/0 + Py — Bi)/o
=a + p(a"q+ (" = 1)/q —a"p)
=a* + p(a"q + (" —1)/qg—a’a’q — a'v)
= a* 4 p((a* —1)/q—a'v).
Put (a*—1)/g—a"v = m. We have ged(a, m) = 1, and Q; _1 /0 = a®+pum.
Let a* exactly divide u. Since ga™ > a* we have v < a*/qa” < a®. Hence

p = qa® + v where v < a® and A < s. Thus, Q;_1/0 = a® + a*p'm with
a not dividing p/'m. Therefore, a* divides Q; /0. If Q;_1/0 = a”, then
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a" A = a* "+ pu'm. Since u'm > 0 we have k — X # 0. However, if s —\ > 0
then a divides p'm, a contradiction which secures Claim 2.

If ga” > a* — 1 (observing that we cannot have equality) then v = 0.
Hence,

Qi—1/o =a* + p(a® —1)/qg =a® + a’(a* — 1) = a**" .
Thus, Q;_1/0 is a power of a if and only if ga” > a* — 1.

If n < kthenn < t—r < tso Q;;3/0 is not a power of a. If ga" > a* —1,
then Q;_1/c is a power of a and we have 4 consecutive (Q;_1/0 = a***,
Qi/o =a", Qix1/0 = a®, Qir2/0 = a') powers of a.

We will now show that Q;_2/0 cannot be a power of a. We may assume
that ¢ > a*~" —a™". Thus, ¢ > a*" > a®* > 1. Therefore, ¢ > a*~" and
k > nimply that t—r > r+s,s0t—2r > s. Now, ¢;_1 = [(Pi+|VN])/Qi_1]
and 2P;_1/0 = qa" — (a¥ —1)/q. Thus, ¢;_1 = |qa"/a***| = |q/a'~%"].
Put v = ¢;_1 and let ¢ = a'~?"v+m where 0 < m < a’~2". Since Q;_2/0 =
Qi/O' + Qi—l(Pi — Pi_l)/O', and Pz — Pi—l = 2Pz — VQi—la we get
Qi_2/o =a" +v(qa" — (a* —1)/q —va**) =a" + v(a"m — (a* —1)/q).
Note that ged(a™m — (a¥ —1)/q,a) = 1, and let a* exactly divide v.

We get Q;_2/0 = a” + a*pi, where a does not divide u. If a” divides v,
then ¢ > a'~" = a*, a contradiction. Thus, A < r and we get Q;_»/0 = 0
(moda*). If Q;_2/0c = a” then a*~* = a"* + pu. Since ga"™ > a* we
must have g > 0. Thus, £k — X\ # 0. It follows that 4 = 0 (moda), a
contradiction. m
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