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1. Introduction. Let N > 0 be a square-free integer throughout
and let σ = 2 (respectively σ = 1) if N ≡ 1 (mod 4) (respectively N ≡
2, 3 (mod 4)). Set ω = (σ−1+

√
N)/σ. The main purpose herein is to give a

complete description of all the reduced ideals which are in the principal class
of Q(

√
N) whenever N is such that the norms of three or more consecutive

(as determined by the continued fraction expansion of ω (see [13])) principal
reduced ideals are powers of a single given integer a > 1. This assumption
allows us to give a remarkable explicit formula for the period length of the
continued fraction expansion of ω in terms of this phenomenon. Moreover,
we are also able to give an upper bound on the regulator of Q(

√
N) in this

instance. Examples are also provided.
Shanks [11] has shown that the ordering of the reduced principal ideals in

a real quadratic field K (as determined by the continued fraction algorithm)
conforms to a certain structure within the principal ideal class. He called this
structure the “infrastructure” of the class. Because of the importance of this
continued fraction ordering scheme, we will employ it here and, throughout
the paper, use terms like “consecutive” or “in a row” with reference to this
particular ordering. We point out that the assumption that the norms of less
than three consecutive reduced principal ideals be powers of a single integer
a > 1, provides us with very little information concerning the set of reduced
principal ideals. It is therefore rather remarkable how the simple assumption
that 3 consecutive norms in a row are powers of a > 1 allows us to determine
so completely the principal period of reduced ideals ofK = Q(

√
N) including

a simple formula for the period length.
There are two cases, one of which we show will allow for at most 4

consecutive norms in a row being powers of a. The complete description
is given in Section 3. We are also able in both cases to give a remarkable
explicit formula for the period length of the continued fraction expansion of
ω. Examples to illustrate the major theorems are also presented.

In Section 6 we give an upper bound on the regulator of Q(
√
N), when
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the aforementioned phenomenon of at least 3 norms in a row occur as powers
of a. Section 7 contains only the proofs of the 10 lemmas in Sections 3–5,
acting therefore as an appendix.

This continues work in [7]–[9] as well as related work by Levesque et al.
in [5], [6], Bernstein [1], [2] and Hendy [4].

2. Continued fractions. We will need some basic facts concerning
continued fractions given below. For a more detailed presentation of this
material the reader is referred to [3] or [10]. Let N > 0 be a positive square-
free integer and let

σ =
{

2 if N ≡ 1 (mod 4),
1 if N ≡ 2, 3 (mod 4).

Set ω = (σ−1+
√
N)/σ. Then ω = 〈q0, q1, . . . , qπ〉 is the continued fraction

expansion of ω with period length π. Here q0 = bωc and qi = b(Pi+
√
N)/Qic

for i ≥ 1 where b c denotes the greatest integer function; and (P0, Q0) =
(σ− 1, σ) with Pi+1 = qiQi−Pi for i ≥ 0 and Qi+1Qi = N −P 2

i+1 for i ≥ 0.
It can be shown that qi < q0 for π > i ≥ 1; while Pi <

√
N , Qi < 2

√
N ,

and −1 < (Pi −
√
N)/Qi < 0 for i ≥ 1. Moreover, if N ≡ 1 (mod 4) then

ω = 〈q0, q1, q2, . . . , qπ−1, 2q0 − 1〉 .

If N ≡ 2, 3 (mod 4) then

ω = 〈q0, q1, q2, . . . , qπ−1, 2q0〉 .

Also, we note the symmetry properties of the continued fraction expansion
of ω, viz.

Pi+1 = Pπ−i for i ≥ 1 ,
Qi = Qπ−i, for i ≥ 0 and for i ≥ 1 ,
qi = qπ−i .

3. Consecutive powers of the Qi/Q0’s. In what follows we wish
to investigate the conditions for the existence of at least three consecutive
Qi/Q0’s in a row being the power of a single integer a > 1 in the continued
fraction expansion of ω. We will (see below) have an overriding hypothesis
throughout (unless specified otherwise).

Also, the sequence of reduced ideals which belong to the principal class
is given by I1, I2, . . . , Ik, . . . where

Ij = (Qj/σ)Z + ((Pj +
√
N)/σ)Z where j = 1, 2, . . .

We have Ik = Iπ+k and the norm of Ik, denoted byN(Ik), isQk/σ = Qk/Q0.
Thus if N(Ii), N(Ii+1), N(Ii+2) are powers of a then Qi/Q0, Qi+1/Q0,
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Qi+2/Q0 are powers of a. From this we also see that π is the least positive
value of i for which Qi/Q0 = 1.

Assumption. We assume that π > 3, that a is an integer greater than 1,
and that Qi/Q0 = ar, Qi+1/Q0 = as and Qi+2/Q0 = at for positive integers
r, s and t, where i ≥ 1 and i+ 2 ≤ π.

R e m a r k 3.1. We may assume without loss of generality that r ≤ t,
for if r > t then by putting j = π − i we get Qj/Q0 = ar, Qj−1/Q0 = as

and Qj−2/Q0 = at, by the symmetry properties of the continued fraction
expansion.

R e m a r k 3.2. We need several lemmas, mostly of a technical nature.
Therefore, in order to improve the flow and readability of the paper we have
put the proofs of all the lemmas from this section into Section 7.

The notation from above will remain in force.

Lemma 3.1. gcd(a,N) = 1.

Lemma 3.2. qi+1 ≡ 0 (mod ar), and if qi+1 = m = arq then qan > ak > 1
where n = r + s and k = t− r > 0.

R e m a r k 3.3. In [7] and [8] we classified completely those forms for
which all Qi/Q0’s are powers of a single integer (including the case where
π ≤ 3). Therein we found that this will occur if and only if n ≡ 0 (mod k).
We have π = 1 + 2n/k if k > 0, while π = 1 if k = 0. Thus, for π > 3 the
results of [7] and [8] can be considered as special cases of the results given
here.

R e m a r k 3.4. Now we wish to detail the form of the continued fraction
expansion of ω so that we may specify where, when, and how blocks of
consecutive powers of a (3 or more) occur as Qi/Q0’s. First we observe that
if n = k then Q3 = σ so π = 3, contradicting our assumption. Thus we
assume in the sequel that n 6= k. Moreover, since gcd(a,N) = 1, by Lemma
3.1 we have k 6= 0. Furthermore, if n = 0 then Q1 = σ, which implies that
π = 1, contradicting our assumption. Thus, we may also assume in the
sequel that k 6= 0 and n > 0.

Moreover, from Lemmas 3.1 and 3.2 we see that in order to have at least
three Qi/σ’s in a row as powers of a single integer we must have

(3.1) N = (σ(qan + (ak − 1)/q)/2)2 + σ2an .

4. Preliminary results. Before proceeding with our classification we
need some definitions and technical data as machinery for the task. The
first concept we need is:
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Definition 4.1 (The Euclidean Algorithm). Set t−2 = q and t−1 = x
> 0. Then

t−2 = µ0t−1 + t0 for 0 < t0 < t−1 ,

t−1 = µ1t0 + t1 for 0 < t1 < t0 ,

t0 = µ2t1 + t2 for 0 < t2 < t1 ,

...
...

ti−2 = µiti−1 + ti for 0 < ti < ti−1 ,

...
...

tm−2 = µmtm−1 + tm with tm = 0 .

We now modify this algorithm slightly when m is odd only. In this case
we replace the value of m by that of m + 1 which is now even. Having
done this we set µm−1 equal to the former µm less 1, and put µm = 1. If
gcd(q, x) = 1 we have tm−1 = 1, so in the case under discussion we have
tm−1 = tm−2 = 1. For a fixed q we denote by p(x) this value of m.

Definition 4.2. Let A−2 = 0 = B−1; B−2 = 1 = A−1 and An+1 =
µn+1An +An−1; Bn+1 = µn+1Bn +Bn−1.

R e m a r k 4.1. It is easily shown that (−1)k+1tk = AkBm − AmBk. If
we assume that x > 0 and gcd(q, x) = 1, then Am = q and Bm = x. Also,

tj−3Aj−2 +Aj−3tj−2 = t−2 = Am = q

and
tj−3Bj−2 +Bj−3tj−2 = t−1 = x .

These results are needed in the sequel.

Definition 4.3.
λj = jk − bkj/ncn, εj = b(j + 1)k/nc − bjk/nc ,

νj = jn− bnj/kck, ηj = b(j + 1)n/kc − bnj/kc ,
d = gcd(n, k) .

Observe that νj and ηj are respectively the same as λj and εj with the
values of k and n reversed.

Now we need some technical lemmas related to Definition 4.3.

Lemma 4.1. 0 ≤ λj < n and 0 ≤ νj < k.

Lemma 4.2. (1) λj = 0 if and only if j ≡ 0 (modn/d).
(2) νj = 0 if and only if j ≡ 0 (mod k/d).

Lemma 4.3. (1) λj+1 = λj + k − εjn.
(2) νj+1 = νj + n− ηjk.
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Lemma 4.4. (1) If n > k > 0 then εj ∈ {0, 1}.
(2) If k > n > 0 then ηj ∈ {0, 1}.

Lemma 4.5. (1) If n > k > 0 then

εj =
{

1 if and only if λj ≥ n− k,
0 if and only if λj < n− k.

(2) If k > n > 0 then

ηj =
{

1 if and only if νj ≥ k − n,
0 if and only if νj < k − n.

Definition 4.4. When n > k set
%j = k − n+ λj = λj+1,

σj = n− λj = k − λj+1 when εj = 1 .

When n < k set
%j = 2k − n− νj = k − νj+1 ,

σj = n− k + νj = νj+1 when ηj = 1 .

If ηj = 0, then put
%j = k − n− νj = k − νj+1,

σj = k + νj = νj+1 .

Definition 4.5. With notation as above

Ci,j = aσj ti,j + (−1)iAi,j , Di,j = a%jAi,j + (−1)iti,j ,

where t−1,j ≡ a%j ≡ a−σj (mod q) and 0 < t−1,j < q. The Ai,j and ti,j
are then computed as described in Definition 4.1 with x = t−1,j , Ai,j =
Ai, ti,j = ti and µi,j = µi.

R e m a r k 4.2. If m = p(t−1,j) we get Bm,j = t−1,j , tm,j = 0, Am,j = q,
tm−1,j = 1 (since gcd(q, a) = 1). (Henceforth gcd( , ) = ( , ) will be used.)
Since Bm,jAm−1,j −Am,jBm−1,j = 1, we get

Am−1,j ≡ aσj (mod q) .

Furthermore,

Di+1,j = µi+1,jDi,j +Di−1,j , Ci−1,j = µi+1,jCi,j + Ci+1,j .

Now
D−2,j = t−2,j = q > 0 ,
D−1,j = a%j − t−1,j ≥ 0 ,
D0,j = a%jA0,j + t0,j > 0 .

Hence Di+1,j ≥ µi+1,jDi,j (i ≥ −1). Thus, Di,j > 0 unless i = −1 when it
is possible for Di,j = 0. This can occur only when a%j < q.
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Since

Cm−2,j = aσj tm−2,j +Am−2,j > 0 ,
Cm−1,j = aσj tm−1,j −Am−1,j = aσj −Am−1,j ≥ 0 ,
Cm,j = q ,

we get Ci−1,j ≥ µi+1,jCi,j (i ≤ m − 1). Thus, Ci,j > 0 unless i = m − 1
when it is possible for Ci,j = 0. This can only occur when aσj < q. We also
note that Ci,j ≡ Di,j ≡ 0 (mod q) for i = −2,−1, . . . ,m.

5. The continued fraction expansions

Definition 5.1. Let u be the order of a modulo q when q > 1, and
u = 1 when q = 1. Set si ≡ (a−n)i (mod q) with 0 < si < q. (Observe
k ≡ 0 (modu) and si 6= 0 since (a, q) = 1.) Set wi = p(si) + 1.

There are exactly κ = u/ gcd(n, u) distinct si values. Thus, there are
at most κ distinct wi values. Note that sκ ≡ 1 (mod q) implies p(sκ) = 0;
whence wκ = 1. With all the above in force we have

Definition 5.2. For given n > k and q let

W (n, q) = W =
κ∑
i=1

wi ,

σ(r, n, q) = σr =
{ ∑r

i=1 wi if 0 < r ≤ κ,
0 if r = 0,

ψ(k, n, q, j) = ψ(j) = 1 + 2j +W bjk/(κn)c+ σrj

where rj = bjk/nc − κbjk/(κn)c.

Lemma 5.1. If εj = 0 then ψ(j + 1) = ψ(j) + 2.
If εj = 1 then ψ(j + 1) = ψ(j) + 2 + wrj+1.

Definition 5.3. For the continued fraction expansion of ω with N
given by (3.1), put Rh = (Ph + b

√
Nc)/σ and Sh = Qh/σ.

Lemma 5.2. If Rh = anti−1,jAi,j + Ci−1,jDi,j/q
2 and Sh = anti,jAi,j +

Ci,jDi,j/q
2 then

Rh+1 = qhSh −Rh + qan + (ak − 1)/q
= anti,jAi+1,j + Ci,jDi+1,j/q

2 ,

Sh+1 = (an +Rh+1(qan + (ak − 1)/q −Rh+1))/Sh
= anti+1,jAi+1,j + Ci+1,jDi+1,j/q

2 .

Now we are in a position to prove our classification for the first case.
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Theorem 5.1. Assume that n > k > 0 and either σ 6= 2 or q 6= 1. Then
in the continued fraction expansion of ω = (σ − 1 +

√
N)/σ we have

R0 = (qan + (ak − 1)/q)/2 + (σ − 1)/σ ,
S0 = 1 ,
q0 = (qan + (ak − 1)/q)/2 + (σ − 1)/σ ,
R1 = (qan + (ak − 1)/q) , R2 = qan ,

S1 = an , S2 = ak ,

q1 = q , q2 = qan−k ,

and for 1 ≤ j < n/d− 1 we have

Rψ(j) = qan + (ak − 1)/q ,

Sψ(j) = an−λj ,

qψ(j) =
{
qaλj if εj = 0,
qaλj + (ak−n+λj − γj)/q if εj = 1,

where γj ≡ ak−n+λj ≡ a%j ≡ t−1,j ≡ a−n(bjk/nc+1) (mod q) with 0<γj<q.
Moreover , if εj = 0 then

Rψ(j)+1 = qan ,

Sψ(j)+1 = ak+λj = aλj+1 ,

qψ(j)+1 = qan−k−λj = qan−λj+1 .

If εj = 1 and m = p(γj) then for 1 ≤ i ≤ m+ 2

Rψ(j)+i = anti−3,jAi−2,j + Ci−3,jDi−2,j/q
2 ,

Sψ(j)+i = anti−2,jAi−2,j + Ci−2,jDi−2,j/q
2 ,

qψ(j)+i =
{
µi−1,j if 1 ≤ i ≤ m+ 1,
qa2n−k−λj + (an−λj − δj)/q if i = m+ 2,

where δj ≡ an−λj ≡ aσj (mod q), with 0 < δj < q and δj = 1 when q = 1.
If j = n/d− 1 put θ = ψ(n/d− 1)− 1; then λj = n− k and

Rθ+1 = qan + (ak − 1)/q ,
Sθ+1 = ak = an−λj ,

qθ+1 = qan−k = qaλj , qθ+2 = q ,

Rθ+2 = qan , Rθ+3 = qan + (ak − 1)/q ,
Sθ+2 = an , Sθ+3 = 1 .

Also π = θ + 3 = ψ(n/d− 1) + 2 = 2n/d+ kW/(κd).

P r o o f. We proceed by induction on j. For j = 1 we have ψ(1) = 3,
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R3 = qan + (ak − 1)/q, S3 = an−k = an−λ1 and

q3 =
{
qak if ε1 = 0, i.e.,b2k/nc = 0 so n > 2k,
qak + (a2k−n − γ1)/q if ε1 = 1, i.e., n ≤ 2k,

and γ1 ≡ a−n (mod q). Thus, the result holds when j = 1.

C a s e 1. εj = 0. Given Rψ(j), Sψ(j) and qψ(j) as in the hypothesis, we
have from Lemma 5.2
Rψ(j)+1 = qψ(j)Sψ(j) −Rψ(j) + qan + (ak − 1)/q = qan ,

Sψ(j)+1 = [an +Rψ(j)+1(qan + (ak − 1)/q −Rψ(j)+1)]/Sψ(j) = aλj+1 ,

qψ(j)+1 = bRψ(j)+1/Sψ(j)+1c = qan−λj+1 .

Claim 1.1. Rψ(j+1) = qan + (ak − 1)/q.

From Lemmas 5.1 and 5.2 we have
Rψ(j+1) = Rψ(j)+2 = qψ(j)+1Sψ(j)+1 −Rψ(j)+1 + qan + (ak − 1)/q

= qan + (ak − 1)/q .

Claim 1.2. Sψ(j+1) = an−λj+1 .

Again from Lemmas 5.1 and 5.2,

Sψ(j+1) = Sψ(j)+2

= [an +Rψ(j)+2(qan + (ak − 1)/q −Rψ(j)+2)]/Sψ(j)+1 = an−λj+1 .

Finally, it is clear from Claims 1.1 and 1.2 that

qψ(j+1) =
{
qaλj+1 if εj+1 = 0,
qaλj+1 + (ak−n+λj+1 − γj+1)/q if εj+1 = 1.

Hence, we have proved the result in the case where εj = 0.

C a s e 2. εj = 1. By Lemma 5.2,

Rψ(j)+1 = qψ(j)Sψ(j) −Rψ(j) + qan + (ak − 1)/q

= (qaλj + (ak−n+λj − γj)/q)an−λj

− (qan + (ak − 1)/q) + qan + (ak − 1)/q
= qan + (ak − γja

n−λj )/q = t−2,jA−1,ja
n + C−2,jD−1,j/q

2 .

Also,

Sψ(j)+1Sψ(j) = an +Rψ(j)+1(qan + (ak − 1)/q −Rψ(j)+1)

= an + (anq + (ak − an−λjγj)/q)(qan + (ak − 1)/q

−qan − (ak − γja
n−λj )/q)

= an + ((γjan−λj − 1)/q)(anq + (ak − an−λjγj)/q)

= γja
2n−λj + (an−λjγj − 1)(ak − an−λjγj)/q2 .
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Therefore,

Sψ(j)+1 = anγj + (aσjγj − 1)(a%j − γj)/q2 = ant−1,jA−1,j +C−1,jD−1,j/q
2 .

Thus, by Lemma 5.2,

Sψ(j)+i = anti−2,jAi−2,j + Ci−2,jDi−2,j/q
2 ,

Rψ(j)+i = ti−3,jAi−2,ja
n + Ci−3,jDi−2,j/q

2 .

Now we show that if the results hold for j then they hold for j+1. First
we prove

Claim 2.1. ψ(j + 1) = ψ(j) +m+ 3.

Since rj ≡ bjk/nc (modκ) and aκ ≡ 1 (mod q) therefore a−n(rj+1) ≡ γj
(mod q) implies srj+1 = γj since both are less than q. Hence,

wrj+1 = p(γj) + 1 = m+ 1 .

By Lemma 5.1 we get

ψ(j + 1) = ψ(j) + wrj+1 + 2 = ψ(j) + p(γj) + 3 = ψ(j) +m+ 3 ,

which secures the claim.
Now, from the above we get

Rψ(j)+m+2 = antm−1,jAm,ja
n + Cm−1,jDm,j/q

2 ,

Sψ(j)+m+2 = antm,jAm,j + Cm,jDm,j/q
2 .

Thus,

Rψ(j)+m+2 = qan + (aσj −Am−1,j)qa%j/q2 = qan + (ak − a%jAm−1,j)/q ,

Sψ(j)+m+2 = q2a%j/q2 = a%j = aλj+1 = ak−n+λj .

Since Am−1,j ≡ aσj ≡ an−λj ≡ δj (mod q) we have Am−1,j = δj . Thus,

qψ(j)+m+2 = qa2n−k−λj + (an−λj − δj)/q .

Hence, by Lemma 5.2,

Rψ(j+1) = Rψ(j)+m+3 = (qa2n−k−λj + (an−λj − δj)/q)ak−n+λj

− (qan + (ak − δja
k−n+λj )/q) + qan + (ak − 1)/q

= qan + (ak − 1)/q ,
Sψ(j+1) = Sψ(j)+m+3 = an/ak−n+λj = a2n−k−λj = an−λj+1 .

Finally,

qψ(j+1) = qψ(j)+m+3 =
{
qaλj+1 if εj+1 = 0,
qaλj+1 + (ak−n+λj+1 − γj+1)/q if εj+1 = 1.

This completes the induction for all j < n/d− 1.
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Now we deal with the period π. Put θ = ψ(n/d − 1) − 1. We find that
λj = n− k if and only if j + 1 ≡ 0 (modn/d). Also,

Rθ+1 = qan + (ak − 1)/q ,

Sθ+1 = ak = an−λj ,

qθ+1 = qan−k = qaλj , qθ+2 = q ,

Rθ+2 = qan − (ak − 1)/q , Rθ+3 = qan + (ak − 1)/q ,
Sθ+2 = an , Sθ+3 = 1 .

Thus, Sk > 1 for all k with 1 ≤ k ≤ θ + 2 and Sθ+3 = 1. Therefore,
π = θ + 3 = ψ(n/d− 1) + 2.

Now, if j = n/d− 1 then

rj = b(n/d− 1)k/nc − κb(n/d− 1)k/(κn)c
= k/d− 1− κbk/(κd)− k/(κn)c .

Since κ = u/(n, u), we have k/(κd) = k(n, u)/(ud). But kn ≡ 0 (modud)
and uk ≡ 0 (modud), so k/(κd) is an integer. Thus, b(k/(κd))−(k/(κn))c =
k/(κd)−1; whence rj = k/d−1−k/d+κ = κ−1. We have σrj = W −wk =
W − 1 and bjk/κnc = k/(κd)− 1. Therefore,

ψ(n/d− 1) = 1 + 2(n/d− 1) +W (k/(κd)− 1) +W − 1 .

Hence, π = 2n/d+ kW/(κd).

Now we illustrate Theorem 5.1.

Example 5.1. Let N = 561730 = (36 + 20)2 + 36. Thus we have: a =
3, n = 6, k = 4, q = 2, d = 2, κ = 1, u = 2, w1 = s1 = W = 1, p(s1) = 0 =
r1, ε1 = λ1 = 4, m = 0, γ1 = 1, σ1 = 2, %1 = 2, ψ(1) = 3, ψ(2) = 6, π = 8
and j = 1 only for 1 ≤ j < n/d− 1. Thus,

R0 = (qan + (ak − 1)/q)/2 = 749 = P0 + b
√
Nc ,

S0 = 1 ,
q0 = (qan + (ak − 1)/q)/2 = 749 ,

R1 = qan + (ak − 1)/q = 1498 = P1 + b
√
Nc ,

R2 = qan = 1458 = P2 + b
√
Nc ,

S1 = an = 729 , S2 = ak = 81 ,
q1 = q = 2 , q2 = qan−k = 18 ,

Rψ(1) = R3 = qan + (ak − 1)/q = 1498 = P3 + b
√
Nc ,

Sψ(1) = S3 = an−λ1 = 9 ,

qψ(1) = q3 = qaλ1 + (ak−n+λ1 − γ1)/q = 166 ,
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Rψ(1)+1 = R4 = ant−2,1A−1,1 + C−2,1D−1,1/q
2

= 36 · 2 · 1 + (18 · 8)/4 = 1494 = P4 + b
√
Nc ,

Sψ(1)+1 = S4 = ant−1,1A−1,1 + C−1,1D−1,1/q
2 = 36 · 1 · 1 + (8 · 8)/4 = 745 ,

qψ(1)+1 = q4 = µ0 = 2 ,

Rψ(1)+2 = R5 = ant−1,1A0,1 + C−1,1D0,1/q
2

= 36 · 1 · 2 + (8 · 18)/4 = 1494 = P5 + b
√
Nc ,

Sψ(1)+2 = S5 = ant0,1A0,1 + C0,1D0,1/q
2 = 36 · 0 · 2 + (2 · 18)/4 = 9 ,

qψ(1)+2 = q5 = qa2n−k−λ1 + (an−λ1 − δ1)/q = 2 · 34 + (32 − 1)/2 = 166 .

Since θ = ψ(2)− 1 = 5 we have

Rθ+1 = R6 = qan + (ak − 1)/q

= 2 · 36 + (34 − 1)/2 = 1498 = P6 + b
√
Nc ,

S6 = ak = 81 ,
q6 = qan − (ak − 1)/q = 18 , q7 = q = 2 ,

R7 = qan = 1458 = P7 + b
√
Nc ,

R8 = qan + (ak − 1)/q = 749 = P8 + b
√
Nc ,

S7 = an = 729 , S8 = 1 .

Hence we have compiled the following table:
i 0 1 2 3 4 5 6 7 8
Pi 0 749 709 749 745 745 749 709 749
Qi 1 729 81 9 745 9 81 729 1
ai 749 2 18 166 2 166 18 2 1498

Thus, we see in this example that there is one run of 4 consecutive Qi/σ’s
in a row as powers of 3, namely for i = 5, 6, 7, 8 (since i must be positive).

It is possible to have runs of arbitrary length in the case where n >
k (including the case where all Qi/σ’s are powers of a; see Remark 3.3).
However, in our next case where k > n we shall see that this is not possible;
in fact, we have a considerable restriction.

First, however, we must finish the case where n > k. Theorem 5.1 fails
for q = 1 and σ = 2, so we treat this case separately. The following can be
proved in the same way as Theorem 5.1 so we do not include the proof here.
Moreover, we exclude the initial and final sequence of values of i ∈ {0, 1, 2}
since they are clear in this case.

Theorem 5.2. If n > k > 0, q = 1 and σ = 2 then in the continued
fraction expansion of (1 +

√
N)/2 we have for 1 ≤ j < n/d− 1:

Rψ(j) = an + ak − 1/2 , Sψ(j) = an−λj ,
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qψ(j) =
{
aλj if εj = 0,
aλj + ak−n+λj − 1 if εj = 1.

Moreover , if εj = 0 then

Rψ(j)+1 = an + 1/2 ,

Sψ(j)+1 = aλj+k ,

qψ(j)+1 = an−λj−k .

If εj = 1 then (observe that q = 1 implies p(x) = 0 so ψ(j + 1) = ψ(j) + 3)

Rψ(j)+1 = an + ak − an−λj + 1/2 ,

Sψ(j)+1 = an + ak − an−λj − ak−n+λj + 1 ,
qψ(j)+1 = 1 ,

Rψ(j)+2 = an + ak − ak−n+λj + 1/2 ,

Sψ(j)+2 = ak−n+λj ,

qψ(j)+2 = a2n−k−λj + an−λj − 1 ,

Rψ(j)+3 = Rψ(j+1) = an + ak − 1/2 ,

Sψ(j+1) = a2n−k−λj = an−λj+1 ,

qψ(j+1) =
{
aλj+1 if εj+1 = 0,
aλj+1 + ak−n+λj+1 − 1 if εj+1 = 1

and

π = ψ(n/d− 1) + 2 = 2n/d+ kW/(κd) .

Now we turn to the case where k > n ≥ 1. First we need:

Definition 5.4. Let δ′j be determined by δ′j ≡ aνj (mod q) with 0 <
δ′j < q and let θj = bq/δ′jc.

R e m a r k 5.1. We have Cm,j = q, Cm−1,j = aσj tm−1,j−Am−1,j = aσj −
Am−1,j , Am−1,j ≡ aσj ≡ aνj+1 (mod q), t−1,j ≡ a−n−νj ≡ a%j (mod q), when
m = p(t−1,j), Cm−2,j = Cm,j − µm,jCm−1,j , which implies that Cm−2,j =
q − µm,j(aνj+1 − δ′j+1). Also, Am,j = µm,jAm−1,j + Am−2,j with Am−2,j <
Am−1,jµm,j = bAm,j/Am−1,jc implies that µm,j = θj+1. Thus,

Cm−2,j = q − θj+1(aνj+1 − δ′j+1) ,

Cm−1,j = aνj+1 − δ′j+1 ,

Dm−1,j = ak−νj+1δ′j+1 − 1 , tm−1,j = 1 ,

Am−1,j = δ′j+1 , tm−2,j = θj+1 .

Also, anA−2,jt−2,j + C−2,jD−2,j/q
2 = aσj .
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Definition 5.5. When k > n > 0 define α by aα < q < aα+1 and set

τj =
{ 1 when νj > α and k − νj − n > α,

0 otherwise.
Definition 5.6. We note that if τj = 1 we have k − n > 2α, which

implies that ak−n ≥ a2α+1 > q; whence qan < ak. Thus if qan > ak then
τj = 0. Also, if k − n ≤ 2α then τj = 0. We define

w′
j = p(γj) + 2ηj−1 + 1 + 2τj−1

where γj ≡ a−n−νj (mod q) with 0 < γj < q, and

ψ′(j) = 1 +
j∑
i=1

w′
i .

Thus ψ′(j + 1) = ψ′(j) + w′
j+1 and

ψ′(j) = 1 +
j∑
i=1

wi + 2
j∑
i=1

ηi−1 + 2Tj , where Tj =
j∑
i=1

τi−1 .

Now
j∑
i=1

ηi−1 =
j∑
i=1

bin/kc − b(i− 1)n/kc = bjn/kc .

Further,
j∑
i=1

wi = bj/kcW (n, q) + σr′
j

where r′j = j − bj/κcκ .

Hence,
ψ′(j) = 1 + 2bjn/kc+ bj/κcW (n, q) + σr′

j
+ 2Tj .

Further, ψ′(0) = 1.
In the following theorem we do not make the assumption given at the

outset of the section. Therefore, the following result is quite general (for the
case k > n), including the possibility that qan < ak, as we shall see as one
of the possible conditions. We assume only that

N = (σ(qan + (ak − 1)/q)/2)2 + σ2an .

We now have the following

Theorem 5.3. If k > n > 0, then in the continued fraction expansion of
(σ − 1 +

√
N)/σ we have for 0 ≤ j < k/d− 1:

Rψ′(j) = θjδ
′
ja
n + (δ′ja

k−νj − 1)(θjaνj − θjδ
′
j + q)/q2 ,

Sψ′(j) = anδ′j + (aνj − δ′j)(a
k−νjδ′j − 1)/q2 ,

qψ′(j) =
{
θj + (ak−n−νj − γj)/q if ηj = 0, and k − n− νj > α ≥ νj ,
θj otherwise.
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If ηj = 1, then

Rψ′(j)+1 = qan + (ak − δ′ja
k−νj )/q ,

Sψ′(j)+1 = ak−νj ,

qψ′(j)+1 = qaνj+n−k + (aνj − δ′j)/q ,

Rψ′(j)+2 = qan + (ak − 1)/q ,

Sψ′(j)+2 = an−k−νj = t−2,jA−2,ja
n + C−2,jD−2,j/q

2 ,

qψ′(j)+2 = qak−νj + (a2k−n−νj − γj)/q ,

Rψ′(j)+2+i = anti−3,jAi−2,j + Ci−3,jDi−2,j/q
2 ,

Sψ′(j)+2+i = anti−2,jAi−2,j + Ci−2,jDi−2,j/q
2 ,

qψ′(j)+2+i = µi−1,j for i = 1, 2, . . . ,m, where m = p(γj) .

If ηj = 0, νj > α, and k − νj − n > α, then

Rψ′(j)+1 = qan + (ak − δ′ja
k−νj )/q ,

Sψ′(j)+1 = ak−νj ,

qψ′(j)+1 = (aνj − δ′j)/q ,

Rψ′(j)+2 = (ak − 1)/q ,

Sψ′(j)+2 = an+νj = anA−2,jt−2,j + C−2,jD−2,j/q
2 ,

qψ′(j)+2 = (ak−n−νj − γj)/q ,

Rψ′(j)+2+i = anti−3,jAi−2,j + Ci−3,jDi−2,j/q
2 ,

Sψ′(j)+2+i = anti−2,jAi−2,j + Ci−2,jDi−2,j/q
2 ,

qψ′(j)+2+i = µi−1,j for i = 1, 2, . . . ,m.

If ηj = 0 and k − νj − n ≤ α, then

Rψ′(j)+1 = qan + (ak − δ′ja
k−νj )/q ,

Sψ′(j)+1 = ak−νj = A−1,jt−1,ja
n +D−1,jC−1,j/q

2 ,

qψ′(j)+1 = µ0,j + (aνj − δ′j)/q ,

Rψ′(j)+i = anti−3,jAi−2,j + Ci−3,jDi−2,j/q
2 ,

Sψ′(j)+i = anti−2,jAi−2,j + Ci−2,jDi−2,j/q
2 ,

qψ′(j)+i = µi−1,j for i = 2, . . . ,m.

If ηj = 0 and k − n− νj > α ≤ νj then

Rψ′(j)+i = anti−3,jAi−2,j + Ci−3,jDi−2,j/q
2 ,

Sψ′(j)+i = anti−2,jAi−2,j + Ci−2,jDi−2,j/q
2 ,
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qψ′(j)+i = µi−1,j for i = 1, 2, . . . ,m.

Finally ,

π = ψ′(k/d− 1) + 2

=
{

2n/d+ kW (n, q)/(dκ) if k − n ≤ 2α,
2k/d+ kW (n, q)/(dκ)− 4bα/dc − 2 if k > n+ 2α.

P r o o f. The formulas for R,S, q are proved as in Theorem 5.1 by in-
duction on j. We now look at the problem of determining π. Note that
νj = k − n if and only if j + 1 ≡ 0 (mod k/d). Thus, if j < k/d − 1 then
Sh > 1 for all h < ψ′(k/d− 1)− 1 = λ. Put j = k/d− 1. We get

Rλ+1 = θjδ
′
ja
n + (δ′ja

k−νj − 1)(ajaνj − θjδ
′
j + q)/q2 ,

Sλ+1 = anδ′j + (aνj − δ′j)(a
k−νjδ′j − 1)/q2 ,

qλ+1 = θj (note that j = k/d− 1 forces ηj = 1) .

Thus,

Rλ+2 = qan(ak − δ′ja
k−νj )/q, Rλ+3 = qan + (ak − 1)/q ,

Sλ+2 = an , Sλ+3 = 1 ,
qλ+2 = q + (ak−n + δj)/q .

Thus for j = k/d − 1 we get π = λ + 3 = ψ′(k/d − 1) + 2. Now, r′j =
k/d− 1−bk/(dκ)− 1/κcκ = κ− 1 and bjn/kc = b(k/d− 1)n/kc = n/d− 1,
ψ′(j) + 2 = 3 + 2(n/d − 1) + (k/(dκ) − 1)W (n, q) + σκ − 1 + 2T with
σκ − 1 = W (n, q)− wκ = W (n, q)− 1, which implies that

ψ′(k/d− 1) + 2 = 2n/d+ kW (n, q)/(dκ) + 2T

where T = Tj with j = k/d− 1.
It remains to evaluate T . If k−n ≤ 2α then Tj = 0 for all j. Assume k−

n > 2α. Since νj/d assumes each value in the set {0, 1, 2, . . . , k/d−1} as j =
0, 1, 2, . . . , k/d−1, all of the values of νj/d in the interval 0 < α/d < νj/d <
(k−n)/d−α/d < k/d− 1 will be assumed as j = 0, 1, 2, . . . , k/d− 1. Since
there are exactly (k−n)/d−2bα/dc−1 values of νj/d in this interval, we get
T = (k−n)/d−2bα/dc−1, which implies that π = 2k/d+kW (n, q)/(dκ)−
4bα/dc − 2 whenever k > n+ 2α.

Now we illustrate Theorem 5.3.

Example 5.2. Let N = 247073 = (31 · 24 + 1)2 + 4 · 24. Then n = 4,
k = 5, d = 1, q = 31, ν0 = 0, ν1 = 4, ν2 = 3, ν3 = 2, δ0 = 1, δ1 = 16, δ2 = 8,
δ3 = 4, ak−ν0 = 32, ak−ν1 = 2, ak−ν2 = 4, ak−ν3 = 8, θ0 = 31, θ1 = 1,
θ2 = 3, θ3 = 7, κ = u = 5, γ0 = 2, γ1 = 4, γ2 = 8, γ3 = 16, γ4 = 2, w′

0 = 1,
w′

1 = 3, w′
2 = 5 = w′

3 = w′
4, W = 15, p(γi) = 2 for i = 0, 1, 2, 3, 4, η0 = 0,

ηi = 1 for i = 1, 2, 3, α = 4, ψ′(0) = 1, ψ′(1) = 4, ψ′(2) = 9, ψ′(3) = 14,
ψ′(4) = 19.
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Thus we have

Sψ′(0) = S1 = 24, Sψ′(1) = S4 = 28, Sψ′(2) = S9 = 27, Sψ′(3) = S14 = 26.

Since ηj = 0 if and only if j = 0 we have

Sψ′(0)+1 = S2 = 25, Sψ′(0)+2 = S3 = 241, Sψ′(1)+1 = S5 = 2 .

Since ηj = 1 for j = 1, 2, 3 we have

Sψ′(1)+2 = S6 = 23, Sψ′(1)+3 = S7 = 26, Sψ′(2)+1 = S10 = 22 ,

Sψ′(2)+2 = S11 = 22, Sψ′(2)+3 = S12 = 27 ,

Sψ′(3)+1 = S15 = 23, Sψ′(3)+2 = 2, Sψ′(3)+3 = S17 = 28 ,

Sψ′(4) = S19 = 25, Sψ′(4)+1 = S20 = 24, Sψ′(4)+2 = S21 = 1

and thus we get:

i 0 1 2 3 4 5 6
Pi 1 497 495 465 17 495 497
Qi 2 32 64 482 512 4 16
qi 249 31 15 1 1 248 62

i 7 8 9 10 11 12 13
Pi 495 401 273 495 497 495 273
Qi 128 674 256 8 8 256 674
qi 7 1 3 124 124 3 1

i 14 15 16 17 18 19 20 21
Pi 401 495 497 495 17 465 495 497
Qi 128 16 4 512 482 64 32 2
qi 7 62 248 1 1 15 31 497

We observe that there are 3 runs of four consecutive powers of 2, each
beginning with Q4, Q9 and Q14. There is always the final run of 3 consecu-
tive powers of a. We conclude this section with an answer to the question
concerning the possibility of longer runs when k > n.

Lemma 5.3. If k > n then there are at most 4 successive Qi/Q0’s in a
row as powers of a.

P r o o f: see Section 7.

6. An upper bound on the regulator. It is often very useful to have
a good upper bound on the size of the regulator of any real quadratic field.
We will now give an upper bound on the size of the regulator of Q(

√
N).

We need a preliminary result.
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Lemma 6.1. If p(γj) = m then for 1 ≤ i ≤ m− 1 we have

Ai,jti−2,jCi−1,jDi−1,j ≥ Ai−1,jti−1,jCi,jDi,j .

P r o o f. The result certainly holds for Ci,j = 0 (i = m− 1).
Suppose now that Ci,j 6= 0. We can write

ti−2,j = µi,jti−1,j + ti,j , Ci−1,j = µi+1,jCi,j + Ci+1,j ,

Ai,j = µi,jAi−1,j +Ai−2,j , Di,j = µi,jDi−1,j +Di−2,j .

Thus,

Ai,jti−2,jCi−1,jDi−1,j −Ai−1,jti−1,jCi,jDi,j

= Ai−1,jti−1,jCi,jDi−1,jE ,

where
E = (µi,j +Ai−2,j/Ai−1,j)(µi,j + ti,j/ti−1,j)(µi+1,j + Ci+1,j/Ci,j)

− (µi,j +Di−2,j/Di−1,j) .

Since Di−2,j/Di−1,j ≤ 1, we get our result if either µi,j or µi+1,j is
not 1. Also the result holds if Di−2,j = 0 (i = 1). Suppose then that
µi,j = µi+1,j = 1 and Di−2,j 6= 0. Since ti−1,j = µi+1,jti,j + ti+1,j we get

ti−1,j/ti,j = 1 + ti+1,j/ti,j ≤ 2 .

This implies that ti,j/ti−1,j ≥ 1/2; thus µi,j + ti,j/ti−1,j ≥ 3/2. Also,

Di−1,j = µi−1,jDi−2,j +Di−3,j , Ai−1,j = µi−1,jAi−2,j +Ai−3,j .

Hence,

E > (3/2)(1 + (µi−1,j +Ai−3,j/Ai−2,j)−1)(1 + Ci+1,j/Ci,j)
−(1 + (µi−1,j +Di−3,j/Di−2,j)−1) .

If µi−1,j ≥ 2 then (µi−1,j +Di−3,j/Di−2,j)−1 < 1/2, whence E > 0.
If µi−1,j = 1 then µi−1,j + Ai−3,j/Ai−2,j ≤ 2; therefore, 1 + (µi−1,j +

Ai−3,j/Ai−2,j)−1 ≥ 3/2, whence E > 9/4− 2 > 0.

Theorem 6.1. If n > k then R < (k + n) log(
√
∆)/d where R is the

regulator of Q(
√
N) and ∆ = (2/σ)2N is the discriminant of Q(

√
N).

P r o o f. If Rh/Sh = ti−1,j/ti,j + (−1)i−1Di,j/(ti,jqSh), then

Rh/Sh = ti−1,j(1 + (−1)i−1Di,j/(ti−1,jqSh))/ti,j .

Therefore,

(Ph +
√
N)/Qh

= ti−1,j(1 + (−1)i−1Di−j/(ti−1,jqSh))/ti−1,j + (
√
N − b

√
Nc)/Qh .

In the case where q 6= 1 when σ = 2 we get

b
√
Nc = σ(qan + (ak − 1)/q)/2 .
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Also,

N = (σ(qan + (ak − 1)/q)/2)2 + σ2an

= (σ(qan + (ak − 1)/q)/2)2(1 + σ2an/(σ(qan + (ak − 1)/q)/2)2)

= (σ(qan + (ak − 1)/q)/2)2(1 + 4an/(qan + (ak − 1)/q)2) .

Since (1 + x)1/2 < 1 + x/2 we get

(
√
N − b

√
Nc)/Qh
< [(σ(qan + (ak − 1)/q)/2)(1 + 2an/(qan + (ak − 1)/q))

− (σ(qan + (ak − 1)/q)/2)]/Qh

= σan/(Qh(qan + (ak − 1)/q)) < 1/(qSh) .

Thus,

(Ph +
√
N)/Qh < ti−1,j(1 + (−1)i−1Di,j/(ti−1,jqSh))/ti,j + 1/(qSh)

= ti−1,j(1 + ((−1)i−1Di,j + ti,j)/(ti−1,jqSh))/ti,j .

Since

(−1)i−1Di,j + ti,j = (−1)i−1a%jAi,j − ti,j + ti,j = (−1)i−1a%jAi,j ,

we get
(Ph +

√
N)/Qh < ti−1,j(1 + ζi,j)/ti,j ,

where

ζi,j = (−1)i−1a%jAi,j/(qti−1,j(Ai,jti,jan + Ci,jDi,j/q
2)) .

Now for 1 ≤ i ≤ m− 1,

|ζi,j | − |ζi−1,j |
= a%j [Ai,j/(ti−1,j(Ai,jti,jan + Ci,jDi,j/q

2))

−Ai−1,j/(ti−2,j(Ai−1,jti−1,ja
n + Ci−1,jDi−1,j/q

2))]/q

= a%j [Ai,jAi−1,jti−1,j(ti−2,j − ti,j)an +G/q2]

× [q(Ai,jti,jan + Ci,jDi,j/q
2)

×(Ai−1,jti−1,ja
n + Ci−1,jDi−1,j/q

2)]−1 ,

where
G = Ai,jti−2,jCi−1,jDi−1,j −Ai−1,jti−1,jCi,jDi,j > 0 .

Since ti−2,j − ti−1,j > 0, we get

|ζi,j | − |ζi−1,j | > 0 for 1 ≤ i ≤ m− 1 .

Now,

qAi,jti,ja
n + Ci,jDi,j/q ≥ qAi,jti,ja

n > akAi,jti,j > a%jAi,jti,j .
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Therefore, letting ζi stand for ζi,j for any fixed j, we get

|ζi| < 1/(ti−1,jti,j) ≤ 1 .

Also,
m−1∑
i=−1

ζi = |ζm−1| − (|ζm−2| − |ζm−3|)

− (|ζm−4| − |ζm−5|)− . . .− (|ζ0| − |ζ−1|)
< |ζm−1| − (|ζ0| − |ζ−1|) < |ζm−1|+ |ζ−1| .

If we set φh = (Ph +
√
N)/Qh then it is well known that

ε0 =
π∏
i=1

φi .

If n > k then

φ1 = (qan + (ak − 1)/q + 2
√
N/σ)/(2an) ,

φ2 = (qan − (ak − 1)/q + 2
√
N/σ)/(2ak) .

If we put θ = ψ(n/d− 1), we have π = θ + 3 and

φθ+1 = (qan + (ak − 1)/q + 2
√
N/σ)/(2ak) ,

φθ+2 = (qan − (ak − 1)/q + 2
√
N/σ)/(2an) ,

φθ+3 = (qan + (ak − 1)/q + 2
√
N/σ)/2 .

Now if εj = 1 and m = p(γj), then
m+1∏
i=1

(Pψ(j)+i +
√
N)/Qψ(j)+i <

m+1∏
i=1

ti−3,j(1 + ζi−2)/ti−2,j

< q exp
( m−1∑
i=−1

ζi

)
< q exp(|ζm−1|+ |ζ−1|) ,

since 1 + ζi−2 < eζi−2 . Also

(Pψ(j)+m+2 +
√
N)/Qψ(j)+m+2

= (qan + (ak − 2Am−1,ja
k−n+λj + 1)/q + 2

√
N/σ)/(2ak−n+λj )

= ((qan + (ak − 1)/q + 2
√
N)/σ)(2ak−n+λj )−1

× (1− 2(Am−1,ja
k−n+λj − 1)/(q(qan + (ak − 1)/q + 2

√
N/σ)))

< (qan + (ak − 1)/q + 2
√
N/σ)/(2ak−n+λj )

× exp(−2(Am−1,ja
k−n+λj − 1))/(q(qan + (ak − 1)/q + 2

√
N/σ)) .
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If we put

Tj = |ζm−1|+ |ζ−1|−2(Am−1,ja
k−n+λj −1)/(q(qan+(ak−1)/q+2

√
N/σ)) ,

then
Tj = a%jAm−1,j/(q(Am−1,ja

n + Cm−1,jDm−1,j/q
2))

+ a%j/(q(qan + C−1,jD−1,j/q
2))

− 2(Am−1,ja
%j − 1)/(q(qan + (ak − 1)/q + 2

√
N/σ)) .

Now, since 2
√
N/σ < 2qan we get

Tj < a%j/(qan) + a%j/(q2an)− (Am−1,ja
%j − 1)/(2q2an)

= (2a%jq + 2a%j −Am−1,ja
%j + 1)/(2q2an)

< (a%j (2q + 1) + 1)/(2q2an) < 1 .

Since
m+2∏
i=1

(Pψ(j)+i +
√
N)/Qψ(j)+i < qeTj

we get

ε0 <

( ∏
εj=0

1≤j≤n/d−2

qan − (ak − 1)/q + 2
√
N/σ

2aλj+k

×qa
n + (ak − 1)/q + 2

√
N/σ

2an−λj

)
×

( ∏
εj=1

1≤j≤n/d−2

qeTj (qan + (ak − 1)/q + 2
√
N/σ)2

2ak−n+λj

×qa
n + (ak − 1)/q + 2

√
N/σ

2an−λj

)
× (qan + (ak − 1)/q + 2

√
N/σ)2

(2an)2
· (qan − (ak − 1)/q + 2

√
N/σ)2

(2ak)2

× (qan + (ak − 1)/q + 2
√
N/σ)/2 .

Put ν = (
√
N − b

√
Nc)/σ < 1/q; we get

(qan − (ak − 1)/q + 2
√
N/σ)/2

= (qan − (ak − 1)/q + 2b
√
Nc/σ + 2ν)/2

= (qan − (ak − 1)/q + qan + (ak − 1)/q)/2 + ν

= qan + ν = qan(1 + ν/(qan)) < qan exp(ν/(qan)) .
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Also,

(qan + (ak − 1)/q + 2
√
N/σ)/2

= (2b
√
Nc/σ + 2

√
N/σ)/2 = (2(

√
N/σ − ν) + 2

√
N/σ)/2

= 2
√
N/σ − ν < 2

√
N exp(−νσ/(2

√
N))/σ .

Since
n/d−2∑
j=1

εj = k/d− 1

we see that

ε0 < (qan exp(ν/(qan)))n/d−k/d−1(2
√
N exp(−νσ/(2

√
N))/σ)n/d−k/d−1

× a−(n+k)(n/d−k/d−1)qk/d−1(2
√
N exp(−νσ/(2

√
N)/σ))2(k/d−1)

× a−k(k/d−1)
(

exp
( n/d−2∑

i=1
εj=1

Tj

))
(2
√
N exp(−νσ/(2

√
N))/σ)3

× (qan exp(ν/(qan)))2a−2(n+k)

= qn/d(2
√
N/σ)n/d+k/d

× a−k(k/d−1)−(n+k)(n/d−k/d−1)+n(n/d−k/d−1)+2n−2(n+k)E

= qn/d(2
√
N/σ)(n+k)/da−nk/dE = (q/ak)n/d

√
∆

(k+n)/d
E .

Here

E = exp(−νσ/(2
√
N))((n/d− k/d− 1) + 2(k/d− 1) + 3)

× exp(ν/(qan))((n/d− k/d− 1) + 2) exp
( n/d−2∑

j=1

Tj

)
.

Put

κ = − νσ(n/d+ k/d)/(2
√
N) + ν(n/d− k/d+ 1)/(qan) +

n/d−2∑
j=1
εj=1

Tj

< − ν(n/d+ k/d)/(2qan) + ν(n/d− k/d+ 1)/(qan) +
n/d−2∑
j=1
εj=1

Tj

< (n/(2d)− 3k/(2d) + 1)/(q2an) +
n/d−2∑
j=1
εj=1

Tj .
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Now,
n/d−2∑
j=1
εj=1

Tj <

n/d−2∑
j=1
εj=1

(a%j (2q + 1) + 1)/(2q2an)

= (2q + 1)
n/d−2∑
j=1
εj=1

a%j/(2q2an) + (k/d− 1)/(2q2an) .

Also,
n/d−2∑
j=1
εj=1

a%j ≤ ad(k/d−1) + ad(k/d−2) + . . .+ ad

= ad(ad(k/d−1) − 1)/(ad − 1) = (ak − ad)/(ad − 1)
< (ak/(ad − 1))− 1 ≤ an/(a(ad − 1))− 1 .

Hence,
n/d−2∑
j=1
εj=1

Tj < (2q + 1)/(2q2a(ad − 1))− (2q + 1)/(2q2an) .

Thus,

κ < (n/(2d)− 3k/(2d) + 1)/(q2an) + (k/d− 1)/(2q2an)
+ (2q + 1)/(2q2a(ad − 1))− (2q + 1)/(2q2an)

≤ (n/(2d)− k/d− q)/(q2an) + (2q + 1)/(4q2)
< 1/(4q2) + 1/(2q) + 1/(4q2) < 1/q

(since an > 2n− 8 for a ≥ 2). It follows that

(∗) ε0 < (q/ak)n/d(
√
∆)(k+n)/de1/q

and
R < 1/q + n log(q/ak)/d+ (k + n) log(

√
∆)/d .

We now point out that ak − 1 ≥ q implies that a−k ≤ (q+ 1)−1, whence
q/ak ≤ q/(q + 1). Furthermore,

log(q/ak) ≤ log q/(q + 1) = − log(q + 1)/q

= − log(1 + 1/q) = −(1/q − 1/(2q2)− 1(3q3)− . . .)

< − 1/q + 1/(2q2)

and so
1/q + n log(q/ak)/d < 1/q + n(−1/q + 1/(2q2))/d

= (1− n/d)/q + n/(2dq2) < 0 if n/d ≥ 2 and q ≥ 2 .
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Hence R < ((k + n)/d) log
√
∆.

Note that the result (∗) also holds for the case where σ = 2 and q = 1.
In this case we have b

√
Nc = an + ak and ν + 1/2 < an/(an + ak − 1); thus,

(an − ak + 1 +
√
N)/2 < an exp((ν + 1/2)/an)

and φψ(j)+1 < 1 + ak−n+λj/an when εj = 1.

Theorem 6.2. If qan > ak and k > n then R < (k + n) log(
√
∆)/d+ 1.

P r o o f. For a fixed j we have

|ζ0| − |ζ−1| = a%jA0,j/(γjq(A0,jt0,ja
n + C0,jD0,j/q

2))

− a%j/(q2(γjan + C−1,jD−1,j/q
2))

= a%jG/(γjq2(A0,jt0,ja
n + C0,jD0,j/q

2)

×(γjan + C−1,jD−1,j/q
2)) ,

where

G = qA0,j(γjan + C−1,jD−1,j/q
2)− γjA0,jt0,ja

n − γjC0,jD0,j/q
2

= A0,ja
nγj(q − t0,j) + qA0,jD−1,jC−1,j/q

2 − γjC0,jD0,j/q
2

= A0,ja
nγj(µ0,jγj)− γjC0,jD0,j/q

2 + qA0,jC−1,jD−1,j/q
2

> A0,ja
nγ2

jµ0,j − γja
n + qA0,jC−1,jD−1,j/q

2 ≥ 0 .

Therefore, |ζ0| − |ζ−1| ≥ 0, and∣∣∣ m−1∑
i=−1

ζi

∣∣∣ < |ζm−1| = ξj < a%j/(qan) .

When ηj = 1, m = p(γj) and ξj := |ζm−1|. By using the above results we
see that if k − νj − n ≤ α, then, as before,

m+1∏
i=1

(Pψ(j)+2+i +
√
N)/Qψ(j)+2+i < qeξj .

When ηj = 0 we have t−1,j ≡ a2k−n−νj ≡ ak−n−νj (mod q). Also, k − n −
νj < k − n so ak−n−νj < ak−n < q, which implies that t−1,j = ak−n−νj . In
this case

m+1∏
i=2

(Pψ(j)+i +
√
N)/Qψ(j)+i

< (t−1/t0)(t0/t1) . . . (tm−2/tm−1) exp
(m−1∑
i=0

ζi

)
< ak−n−νjeξj .
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It follows that

ε0 <
qan + (ak − 1)/q + 2

√
N/σ

2an
· qa

n − (ak − 1)/q + 2
√
N/σ

2an

×(qan + (ak − 1)/q + 2
√
N/σ)/2

×
k/d−2∏
j=0
ηj=1

qeξj

(
qan + (ak − 2δ′ja

k−νj+1)/q + 2
√
N/σ

2ak−νj

)

×
(
qan + (ak − 1)/q + 2

√
N/σ

2an−k+νj

)

×
k/d−2∏
j=0
ηj=0

eξj

(
qan + (ak − 2δ′ja

k−νj+1)/q + 2
√
N/σ

2ak−νj

)
ak−n−νj .

As before,

(qan − (ak − 1)/q + 2
√
N/σ)/2 < qan exp(ν/(qan)) ,

(qan + (ak − 1)/q + 2
√
N/σ)/2 < 2

√
N exp(−νσ/(2

√
N))/σ ,

k/d−2∑
j=0

ηj = b(k/d− 1)n/kc = n/d− 1 .

Also,

(qan + (ak − 2δ′ja
k−νj + 1)/q + 2

√
N/σ)/2

< (qan + (ak − 1)/q + 2
√
N/σ)/2 < 2

√
N exp(−νσ/(2

√
N))/σ .

Thus,

ε0 < ((qan/an)2
√
N/(σan))(2

√
N/σ)((2

√
N/σ)2q/an)n/d−1

×(2
√
N/(σan))k/d−1−(n/d−1)E ,

where

E = exp
{ k/d−2∑

j=0

ξj + ν/qan − σν(n/d− 1)/
√
N

−νσ(k/d− 1− (n/d− 1))/(2
√
N)− σν/

√
N

}
.

As in Theorem 6.1, we get

ε0 < qn/d(2
√
N/σ)2(n/d−1)+2+k/d−n/da−n−(n/d−1)n−(k/d−n/d)nE

= qn/d(2
√
N/σ)(k+n)/da−kn/dE = (q/ak)n/d(

√
∆)(k+n)/dE .
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Now,
k/d−2∑
j=0

ξj ≤
k/d−2∑
j=0

a%j/(anq) =
( k/d−2∑

j=0

a%j

)/
(qan) ,

and
k/d−2∑
j=0

a%j =
k/d−1∑
j=0

ak−νj =
k/d−1∑
j=1

ad(k/d−νj/d) =
k/d−1∑
j=1

adj

= ad(ad(k/d−1) − 1)/(ad − 1) = (ak − ad)/(ad − 1) < ak .

Hence,
∑k/d−2
j=0 ξj < ak/(qan). Also, since 2

√
N/σ < 2qan we have

ν/(qan)− σν(n/d+ k/d)/(2
√
N) < 0 .

Thus E < e and ε0 < (q/ak)n/d(
√
∆)(k+n)/de.

7. Proofs of the lemmas. In this section we provide the proofs of the
lemmas in Sections 3–5.

P r o o f o f L e m m a 3.1. Let p be a prime which divides both a and
N . Since QiQi+1 = N − P 2

i+1, we see that p divides Pi+1. Since Pi+2 =
qi+1Qi+1 − Pi+1, p also divides Pi+2. Hence p divides Qj for j = i, i + 1,
i + 2 and p divides Pk for k = i + 1, i + 2. Therefore, p divides Pi+3 =
qi+2Qi+2 − Pi+2 and p divides Qi+3 = Qi+1 − qi+2(Pi+3 − Pi+2). Thus,
by induction, p divides Qπ = Q0, whence p = Q0 = σ = 2 is forced.
However, N ≡ 0 (mod 2) and N ≡ 1 (mod 4) are contradictory. The result
follows.

P r o o f o f L e m m a 3.2. Since Pi+2 = qi+1Qi+1 − Pi+1, we have
Pi+2 = qi+1σa

s − Pi+1. Also, if we put m = qi+1 then σ2ar+s = N − P 2
i+1,

so
σ2as+t = N − P 2

i+2 = N − (σmas − Pi+1)2

= N − P 2
i+1 − σ2m2a2s + 2σmasPi+1

= σ2ar+s − σ2m2a2s + 2σmasPi+1 .

Hence, at = ar − m2as + 2mPi+1/σ; whence m divides at − ar. Also, ar

divides m(2Pi+1/σ −mas).
If a ≡ 0 (mod p) for some prime p and mas ≡ 2Pi+1/σ (mod p) then

2Pi+1/σ ≡ 0 (mod p) so p divides 2/σ or Pi+1. If p divides Pi+1 then
since σ2ar+s = N − P 2

i+1 we must have p dividing N , which contradicts
Lemma 3.1. If p divides 2/σ but not Pi+1 then σ = 1, p = 2, and Pi+1

is odd. However, N 6≡ 1 (mod 4) whenever σ = 1, and since r and s are
positive we get N ≡ P 2

i+1 (mod 4), a contradiction. Thus, p does not divide
2Pi+1/σ −mas whenever p divides a. It follows that m ≡ 0 (mod ar). Set
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m = arq; we get 2Pi+1/σ = qar+s + (at−r − 1)/q. If we put n = r + s
and k = t − r then N = (σ(qan + (ak − 1)/q)/2)2 + σ2an. If k = 0 we
get N = (σqan/2)2 + σ2an. Thus either a divides N or a = 1. The former
contradicts Lemma 3.1 and the latter contradicts our assumption. Hence
we have k > 0.

If either σ 6= 2 or q 6= 1 then b
√
Nc = σ(qan + (ak − 1)/q)/2. If σ = 2

and q = 1 then b
√
Nc = an + ak. In the former case

1 ≤ qi+2 = b(Pi+2 +
√
N)/Qi+2c

=
⌊
σ(qan − (ak − 1)/q)/2 + σ(qan + (ak − 1)/q)/2

σat

⌋
= bqan/atc .

Thus, qan ≥ at > at−r so qan > ak.
In the latter case

(Pi+2 + b
√
Nc)/Qi+2 = (ar+s − at−r + 1 + ar+s + at−r)/(2at)

= (2an + 1)/(2at) ≥ 1

since qi+2 ≥ 1. Hence 2an + 1 ≥ 2at, i.e., an ≥ at − 1/2, which implies that
n ≥ t > k. Thus, we always have qan > ak.

P r o o f o f L e m m a 4.2. (1) If jk−bkj/ncn = 0 then jk/d−bkj/ncn/d
= 0. Since gcd(k/d, n/d) = 1 we must have j ≡ 0 (modn/d). If j = rn/d
then jk − bkj/ncn = rnk/d− bkrn/dncn = 0.

(2) is proved in a similar fashion.

P r o o f o f L e m m a 4.3. (1) λj = jk − bkj/ncn = (j + 1)k − (bk(j +
1)/kc − εj)n− k = λj+1 + εjn− k.

(2) is proved in a similar fashion.

P r o o f o f L e m m a 4.4. (1) Clearly b(j + 1)k/nc − bjk/nc ≥ 0. Also,

b(j + 1)k/nc ≤ (j + 1)k/n = jk/n+ k/n

≤ bjk/nc+ 1− 1/n+ k/n ≤ bjk/nc+ 1 + (k − 1)/n .

Since b(j + 1)k/nc and bjk/nc + 1 are integers and 0 ≤ (k − 1)/n < 1 we
get b(j + 1)k/nc ≤ bjk/nc+ 1.

(2) Similar.

P r o o f o f L e m m a 4.5. (1) We first assume that j+1 6≡ 0 (modn/d).
In this case 0 < λj+1 < n implies that 0 < λj + k − εjn < n; whence
λj > εjn− k and λj < (εj + 1)n− k. Thus, if εj = 1 we get λj > n− k and
if εj = 0 we get λj < n− k.

If λj > n − k then λj+1 > n − εjn, so εj = 1. If λj < n − k then
λj+1 < n− εjn, so εj = 0.
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If j + 1 ≡ 0 (modn/d) then j = rn/d− 1 and

εj = brnk/(dn)c − b(rn/d− 1)k/nc = rk/d− brk/d− k/nc
= rk/d− (rk/d− 1) = 1 .

Also,
λj = (rn/d− 1)k − b(rn/d− 1)k/ncn

= rnk/d− k − (rk/d− 1)n = n− k .

Moreover, if λj = n− k then jk − bkj/ncn = n− k implies that (j + 1)k =
n(bkj/nc+ 1); whence j + 1 ≡ 0 (modn/d).

(2) Similar.

P r o o f o f L e m m a 5.1. If εj = 0 then bjk/nc = b(j + 1)k/nc and
this implies that bjk/(nκ)c = b(j + 1)k/(nκ)c. Also, rj+1 = b(j + 1)k/nc −
κb(j + 1)k/(κn)c = rj ; hence, ψ(j + 1) = 2 + ψ(j).

If εj = 1 then bjk/nc = b(j+1)k/nc−1, which implies that bjk/(nκ)c =
b(j+1)k/(nκ)c+δ where δ ∈ {0,−1}. Also, if r′ = rj+1 then r′ = rj+1+κδ.

If δ = 0 then r′ = 1 + rj and if δ = −1 then 1 + rj = κ + r′ so r′ = 0
and rj = κ− 1. Thus, if δ = 0 then

ψ(j + 1) = 1 + 2(j + 1) +W b(j + 1)k/(κn)c+ σr′ = 2 + ψ(j) + wrj+1 .

If δ = −1 then
ψ(j + 1) = 1 + 2(j + 1) +W b(j + 1)k/(κn)c+ σ′r

= 1 + 2(j + 1) +W bjk/(κn)c+W

= 2 + ψ(j) + wκ = 2 + ψ(j) + wrj+1 .

P r o o f o f L e m m a 5.2.
Rh − ti−1,jSh/ti,j = Di,j(Ci−1,j − ti−1,jCi,j/ti,j)/q2

= Di,j(Ci−1,jti,j − ti−1,jCi,j)/(ti,jq2) .

Now by Definition 4.5

Ci−1,jti,j − ti−1,jCi,j = (aσj ti−1,j + (−1)i−1Ai−1,j)ti,j
− ti−1,j(aσj ti,j + (−1)iAi,j)

= (−1)i−1(Ai−1,jti,j + ti−1,jAi,j)

and from Remark 4.1 it follows that the latter equals (−1)i−1q. Hence,

Rh − ti−1,jSh/ti,j = (−1)i−1Di,j/(ti,jq) .

Therefore,
Rh/Sh − ti−1,j/ti,j = (−1)i−1Di,j/(ti,jqSh) .

For i > −2 we get Sh > Ci,jDi,j/q
2 ≥ Di,j/q when Ci,j 6= 0. Thus,

|Rh/Sh − ti−1,j/tj | < 1/ti,j .
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This implies that qh = bRh/Shc = bti−1,j/ti,jc = µi+1,j (as long as i > −2
and Ci,j 6= 0).

If Ci,j = 0 then i = m − 1 and q > aσj . In this case Cm−1,j = 0
and Dm−1,j = a%jAm−1,j − 1. Furthermore, Am−1,j = aσj implies that
Dm−1,j = ak − 1. We also have

Cm−2,j = µm,jCm−1,j + Cm,j = q , Sh = an+σj ,

Rh = an+σjµm,j + (ak − 1)/q ,
qh = bRh/Shc = µm,j + b(ak − 1)/(qan+σj )c .

Since qh = µi+1,j , we get

Rh+1 = µi+1,jSh −Rh + 2b
√
Nc/σ

= µi+1,ja
nti,jAi,j + µi+1,jCi,jDi,j/q

2 − anti−1,jAi,j

− Ci−1,jDi,j/q
2 + 2b

√
Nc/σ

= an(ti,jµi+1,jAi,j − ti−1,jAi,j)
+ (µi+1,jDi,jCi,j − Ci−1,jDi,j)/q2 + qan + (ak − 1)/q

= an(ti,j(Ai+1,j −Ai−1,j)− ti−1,jAi,j)
+ (Ci,j(Di+1,j −Di−1,j)− Ci−1,jDi,j)/q2 + qan + (ak − 1)/q

= an(ti,jAi+1,j − q)
+ (Ci,jDi+1,j − (Ci,jDi−1,j + Ci−1,jDi,j))/q2 + qan + (ak − 1)/q .

Since (from Definition 4.5) we have Ci,jDi−1,j +Ci−1,jDi,j = q(ak − 1), we
have shown that

Rh+1 = anti,jAi+1,j + Ci,jDi+1,j/q
2 .

Now we verify the formulas for Sh+1. If we make use of the easily verified
identities

Ci,jti+1,j − Ci+1,jti,j = (−1)iq ,

Di,jAi+1,j −Di+1,jAi,j = (−1)iq ,
we get

q2 = Ci,jti+1,jDi,jAi+1,j +Di+1,jCi+1,jti,jAi,j

− Ci+1,jti,jDi,jAi+1,j −Di+1,jAi,jCi,jti+1,j .

Hence

q2 − qCi,jDi+1,j + q(ak − 1)ti,jAi+1,j − 2ti,jAi+1,jCi,jDi+1,j

= Ci,jti+1,jDi,jAi+1,j +Di+1,jCi+1,jti,jAi,j − Ci+1,jti,jDi,jAi+1,j

−Di+1,jAi,jCi,jti+1,j + (ti+1,jAi,j +Ai+1,jti,j)Ci,jDi+1,j

+ (Di,jCi+1,j + Ci,jDi+1,j)ti,jAi+1,j − 2ti,jAi+1,jCi,jDi+1,j

= Ci,jti+1,jDi,jAi+1,j +Di+1,jCi+1,jti,jAi,j .
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Since Sh+1 = (N − P 2
h+1)/(σ

2Sh), we get

σ2ShSh+1 = N − b
√
Nc2 + b

√
Nc2 − P 2

h+1

= σ2an + σRh+1(2b
√
Nc − σRh+1) .

This implies that

ShSh+1

= an +Rh+1(2b
√
Nc/σ −Rh+1) = an + 2b

√
NcRh+1/σ −R2

h+1

= an + (qan + (ak − 1)/q)Rh+1 −R2
h+1

= an + (qan + (ak − 1)/q)(anti,jAi+1,j + Ci,jDi+1,j/q
2)

− (anti,jAi+1,j + Ci,jDi+1,j/q
2)2

= a2nti,jAi+1,j(q − ti,jAi+1,j) + Ci,jDi+1,j(q(ak − 1)− Ci,jDi+1,j)/q4

+ an(q2 + qCi,jDi+1,j + q(ak − 1)ti,jAi+1,j − 2ti,jAi+1,jCi,jDi+1,j)/q2

= a2nti,jti+1,jAi,jAi+1,j + Ci,jDi+1,jCi+1,jDi,j/q
4

+ an(Ci,jti+1,jDi+1,jAi+1,j + ti,jAi,jCi+1,jDi+1,j)/q2

= (anti+1,jAi+1,j + Ci+1,jDi+1,j/q
2)(anti,jAi,j + Ci,jDi,j/q

2) .

Thus,
Sh+1 = anti+1,jAi+1,j + Ci+1,jDi+1,j/q

2 .

P r o o f o f L e m m a 5.3. Let

N =
[
σ

2

(
qan +

ak − 1
q

)]2

+ σ2an .

We get Qi/σ = ar, Qi+1/σ = as and Qi+2/σ = at with n = r+ s, k = t− r
and t ≥ r.

Claim 1. Qi+3/σ is a power of a if and only if t ≤ r + s = n.

Suppose t > n, and let q ≡ γ (mod at−n) with 0 < γ < at−n. We
have q = µat−n + γ and qan = µat + γan. Thus, qan/at = µ + γan/at ≤
µ+(at−n−1)an/at = µ+(at−an)/at. Since (at−an)/at < 1 we get qi+2 =
bqan/atc = µ. (Note that this is true when q > 1. Also note, however, that
if q = 1, then b(2an + 1)/(2at)c = 0 if t > n, a contradiction.) Thus,

Pi+3 = µQi+2 − Pi+2 = µσat − σ

2
(qan − (ak − 1)/q) ,

Qi+3 = Qi+1 − qi+2(Pi+3 − Pi+2)

= σas − µ

(
σµat − σ

2
(qan − (ak − 1)/q)− σ

2
(qan − (ak − 1)/q)

)
= σas − σµ(µat − qan + (ak−1)/q) = σas − σµ(−γan + (ak−1)/q) .
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Now, q < ak = at−n+s = µat−n + γ with 0 < γ < at−n. Thus, if µ is
exactly divisible by aν we must have ν < s. Therefore,

Qi+3/σ = as + aνµ′(anγ − (ak − 1)/q) .

Now, qan > ak implies that anγ − (ak − 1)/q > 0. Therefore, Qi+3/σ =
as + aνh where h > 0 and a does not divide h. If Qi+3/σ = aλ, then
aλ = as + aνh implies that aλ−ν = as−ν + h if λ− ν > 0; whence a divides
h, a contradiction. If λ − ν = 0 then as−ν + h = 1, a contradiction since
h > 0, and s−ν > 0. It follows that Qi+3/2 cannot be a power of a if t > n.

Now we examine the conditions under which Qi−1/σ can be a power
of a.

Claim 2. If qar < ak − 1 then Qi−1/σ cannot be a power of a.

We have (for either q 6= 1 or σ 6= 2)

qi = b(Pi+1 +
√
N)/Qic = b((2/σ)Pi+1 +

√
(2/σ)2N)/(2Qi/σ)c

= b((ak − 1)/q + anq + qan + (ak − 1)/q)/(2ar)c
= asq + b(ak − 1)/(qar)c .

If q = 1 and σ = 2 then

qi = b((ak − 1) + an + an + ak)/(2ar)c
= asq + b(2ak − 1)/(2ar)c = asq + b(ak − 1)/arc .

If qar < ak − 1 put ν = b(ak − 1)/(qar)c. Now put µ = qi = asq + ν.
Thus, Pi+1 = σµar − Pi and Pi+1/(2σ) = (µar/2)− Pi/(2σ). Also,

Pi+1/σ = (anq + (ak − 1)/q)/2 ,

which implies that

Pi+1/(2σ)− Pi/(2σ) = (anq + (ak − 1)/q − arµ)/2 .

Therefore,
(Pi+1 − Pi)/σ = anq + (ak − 1)/q − arµ

and we get

Qi−1/σ = Qi+1/σ + µ(Pi+1 − Pi)/σ
= as + µ(anq + (ak − 1)/q − arµ)
= as + µ(anq + (ak − 1)/q − arasq − arν)
= as + µ((ak − 1)/q − arν) .

Put (ak−1)/q−arν = m. We have gcd(a,m) = 1, andQi−1/σ = as+µm.
Let aλ exactly divide µ. Since qan > ak we have ν < ak/qar < as. Hence
µ = qas + ν where ν < as and λ < s. Thus, Qi−1/σ = as + aλµ′m with
a not dividing µ′m. Therefore, aλ divides Qi−1/σ. If Qi−1/σ = aκ, then
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aκ−λ = as−λ+µ′m. Since µ′m > 0 we have κ−λ 6= 0. However, if κ−λ > 0
then a divides µ′m, a contradiction which secures Claim 2.

If qar > ak − 1 (observing that we cannot have equality) then ν = 0.
Hence,

Qi−1/σ = as + µ(ak − 1)/q = as + as(ak − 1) = as+k .

Thus, Qi−1/σ is a power of a if and only if qar > ak − 1.
If n < k then n < t−r < t so Qi+3/σ is not a power of a. If qar > ak−1,

then Qi−1/σ is a power of a and we have 4 consecutive (Qi−1/σ = as+k,
Qi/σ = ar, Qi+1/σ = as, Qi+2/σ = at) powers of a.

We will now show that Qi−2/σ cannot be a power of a. We may assume
that q > ak−r − a−r. Thus, q ≥ ak−r > as > 1. Therefore, q > ak−r and
k > n imply that t−r > r+s, so t−2r > s. Now, qi−1 = b(Pi+b

√
Nc)/Qi−1c

and 2Pi−1/σ = qan − (ak − 1)/q. Thus, qi−1 = bqan/as+kc = bq/at−2rc.
Put ν = qi−1 and let q = at−2rν+m where 0 < m < at−2r. Since Qi−2/σ =
Qi/σ + qi−1(Pi − Pi−1)/σ, and Pi − Pi−1 = 2Pi − νQi−1, we get

Qi−2/σ = ar + ν(qan − (ak − 1)/q − νas+k) = ar + ν(anm− (ak − 1)/q) .

Note that gcd(anm− (ak − 1)/q, a) = 1, and let aλ exactly divide ν.
We get Qi−2/σ = ar + aλµ, where a does not divide µ. If ar divides ν,

then q > at−r = ak, a contradiction. Thus, λ < r and we get Qi−2/σ ≡ 0
(mod aλ). If Qi−2/σ = aκ then ak−λ = ar−λ + µ. Since qan > ak we
must have µ > 0. Thus, k − λ 6= 0. It follows that µ ≡ 0 (mod a), a
contradiction.
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