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Hans Rademacher was born of Lutheran parents on April 3, 1892 in
Wandsbek, near Hamburg. His mother and father, Emma and Henry, owned
a local store. There were two others in the family, a brother Martin and a
sister Erna.

By the time Rademacher entered the University in Göttingen in 1910,
he had developed a great breadth of interests, an attribute that would be
transformed in his later mathematical life into a creative interest in many
branches of mathematics. At the age of 18 he had a curiosity for mathemat-
ics, the natural sciences, foreign languages, and philosophy. It was to the
latter area that Rademacher devoted his primary initial attention. However,
he enjoyed the lectures of two of Felix Klein’s assistants, Erich Hecke and
Hermann Weyl, and eventually he turned to mathematics, chiefly through
the influence of Richard Courant. His doctoral dissertation [1] was in real
analysis and was completed under the direction of C. Carathéodory in 1916,
despite the fact that during the years 1914–1916 he served with his country’s
army.

Rademacher’s first position was as a teacher in Wickersdorf. From 1919–
1922 he served as a Privat Dozent in Berlin. In 1922 he accepted the position
of Ausserordentlicher Professor at the University of Hamburg, a position he
held until being named Professor at Breslau in 1925. While in Berlin, he
married Suzanne Gaspary, and their daughter Karin was born in 1925. The
marriage ended in divorce in 1929.

Throughout his entire life, Rademacher maintained an active interest in
human rights. In Breslau he joined the International League for the Rights
of Men and was chairman of the local chapter of the Deutsche Friedensge-
sellschaft. Not surprisingly, after Hitler’s ascendancy to power, Rademacher
was removed from his position in 1934. He and his daughter Karin moved
briefly to a small town on the Baltic Sea where he met and married Olga
Frey. In that same year 1934, Rademacher departed for the United States,
where he had been invited to the University of Pennsylvania as a Visiting
Rockefeller Fellow. Rademacher’s wife stayed behind in Germany until their
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son Peter was born in 1935. Upon the completion of his fellowship, he re-
turned briefly to Germany but came back in the autumn of 1935 to accept
a position at the University of Pennsylvania, the institution he was to serve
faithfully until his retirement in 1962. His daughter Karin stayed behind
in Germany, and finally in 1947 he succeeded in helping her come to the
United States.

Although Rademacher had held a full professorship in Germany for ten
years before immigrating to the United States, he was offered only an assis-
tant professorship at Pennsylvania in 1935. Despite this, Rademacher was
ever after to remain loyal to the University of Pennsylvania for providing him
refuge from the horror that had engulfed his native land. Rademacher en-
joyed congenial relations with many colleagues and graduate students at the
University of Pennsylvania as well as in Swarthmore where he and his family
resided. Among his best friends were A. Zygmund, J. R. Kline, A. Dresden
from Swarthmore College, and I. J. Schoenberg, whom he had previously
known in Germany (and who recently died on February 21, 1990 at the age
of 86). Rademacher’s second marriage also ended in divorce in 1947, and he
moved to Philadelphia close to the campus of the University of Pennsylva-
nia. In 1949, Rademacher married Schoenberg’s sister Irma Wolpe, who had
a successful career as a concert pianist. She and her husband opened their
home frequently to mathematicians, musicians, and a host of other friends.
An annual event at the Rademacher home was an informal New Year’s Day
afternoon gathering.

During his residence in Swarthmore, Rademacher’s good friend A. Dres-
den introduced him to the Society of Friends. Rademacher joined the Society
and remained a member until his death.

In Germany and while at Pennsylvania, Rademacher supervised the
Ph.D. dissertations of twenty-one students, many of whom became well-
known mathematicians. These twenty-one doctoral students were Theodor
Estermann, Wolfgang Cramer, Otto Schulz, Käthe Silberberg, Albert White-
man, Joseph Lehner, Lowell Schoenfeld, Ruth Goodman, John Livingood,
Paul Bateman, Jean Walton, Nelson Brigham, Emil Grosswald, Saul Rosen,
Leila Dragonette, Albert Schild, Jean Calloway, Morris Newman, Frederick
Homan, William Spohn, and George Andrews. At the time of this writing,
the Rademacher mathematical family tree is blooming into its fifth genera-
tion with over 140 flowers.

In 1938, Rademacher and James Clarkson began to conduct a prob-
lems seminar at Pennsylvania. Later, after Clarkson departed for service
in World War II, Schoenberg took his place. Through the seminar’s suc-
cess over several years, many of the problems became widely known. The
seminar was officially listed in the University of Pennsylvania’s catalog as
the “Proseminar”. It was a required course for students seeking a graduate
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degree, and was often used in the determination of a student’s progress and
the awarding of fellowships.

During the spring semester of 1953, Rademacher held a position at the
Institute for Advanced Study in Princeton. In 1954–55, he lectured at the
Tata Institute of Fundamental Research in Bombay and at the University
of Göttingen. In 1952 and 1959–60, he was Phillips Lecturer at Haverford
College, and in 1960–61 he again visited the Institute for Advanced Study.
He also had lengthy stays at the University of Oregon and at the University
of California at both Berkeley and Los Angeles.

During his final year at Pennsylvania, a special year in the theory of num-
bers was convened, and several prominent number theorists participated in
this tribute to Rademacher. His university awarded him an honorary doc-
torate upon his retirement in 1962. After retiring from the University of
Pennsylvania, Rademacher lectured at New York University for two years.
In 1964, he accepted a position at Rockefeller University in New York, a post
he held until his death on February 7, 1969. Rademacher became a founding
editor of Acta Arithmetica in 1935 and served on its editorial board until
his death.

Rademacher made significant contributions to several areas of mathemat-
ics, including real analysis and measure theory, complex analysis, number
theory, geometry, and numerical analysis. He also coauthored two papers
in physics [21], [22] and wrote an article in genetics [31]. About 50 of the
76 papers listed in his bibliography are concerned with number theory or
related areas. In this brief survey of Rademacher’s achievements, we shall
confine ourselves mainly to these 50 articles. Note that there are two bib-
liographies at the end of this essay. The second (pp. 227–231) comprises
the works of Rademacher divided into three categories: papers, books and
lecture notes, and problems; the first bibliography contains articles of other
authors cited in this survey.

The fourteen papers published by Rademacher in 1916–1922 chiefly con-
cern the theory of functions of a real variable and measure theory. In partic-
ular, we mention paper [13] in which Rademacher introduced an orthogonal
system of functions now known as Rademacher functions. He soon wrote
a sequel on the completion of this system but was discouraged from pub-
lishing it. In the meanwhile, J. L. Walsh [59] independently completed
the system and published a paper containing much of Rademacher’s work.
Rademacher never published his paper, which, for many years, was con-
sidered to be permanently lost. In the summer of 1979, the paper was
miraculously unearthed, and soon thereafter E. Grosswald [16] described
the paper’s history and its contents at a conference honoring Grosswald at
his retirement. Since its discovery, Rademacher’s orthonormal system has
been utilized in numerous instances in many areas of analysis.
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Papers [3] and [10] might be classified under the purview of number
theory as well as analysis. In [3], Rademacher gives an easy proof of a
theorem of Borel: The probability that in a decimal expansion not all ten
digits appear asymptotically the same number of times is zero. A sharper
version of the theorem is proved in [10]. If nν(x) denotes the number of
times the digit ν, 0 ≤ ν ≤ 9, appears in the first n digits of the decimal
expansion of a number x ∈ (0, 1), then for any ε > 0,

nν(x)
n

− 1
10

= O

(
(log n)1/2+ε

n1/2

)
,

as n tends to ∞, except on a set of measure 0. Actually, a stronger theorem
was previously given by G. H. Hardy and J. E. Littlewood [19], [18, pp. 28–
63]. Rademacher’s proof, however, is short and elegant. It depends upon
one of his theorems giving necessary and/or sufficient conditions on the
sequence {en} of complex numbers for the convergence of

∑
unen, where∑

un is divergent and un is strictly decreasing to 0.
Rademacher’s first particularly notable contribution to number theory

is his improvement of Brun’s sieve [14]. As an application of his theorem,
Rademacher showed that if f(x) is an irreducible, primitive polynomial of
degree g, the sequence {f(n)} contains infinitely many terms with at most
4g − 1 prime factors, not counting those which appear in every term of
the sequence. For the twin prime problem, it follows from Rademacher’s
work that there exist infinitely many pairs n, n + 2 such that each member
contains no more than seven prime factors. From Brun’s original theorem,
this conclusion could be drawn if “seven” were replaced by “nine”. In [15],
Rademacher showed how Brun’s method could be applied to algebraic num-
ber fields. For a lucid, contemporary account of Brun’s sieve, see Halberstam
and Richert’s treatise [17, pp. 56–68].

In [16], [17], and [23], Rademacher generalized to algebraic number fields
the work of Hardy and Littlewood [20], [18, pp. 561–630] on expressing a
positive integer as a sum of three or more primes. Hardy and Littlewood had
shown that if there is a number θ < 3/4 such that no Dirichlet L-function
has a zero with real part greater than θ, then, subject to an obvious parity
condition, there is an asymptotic formula for the number of ways of express-
ing a positive integer as a sum of m primes, where m ≥ 3. Rademacher’s
extension of this result to algebraic number fields requires the existence of a
number θ′ < 3/4 such that no Hecke zeta-function for the relevant algebraic
number field has a zero with real part greater than θ′. Just as the results of
Hardy and Littlewood [20] were later established by I. M. Vinogradov and
A. Walfisz with no unproved hypothesis, in an analogous way, Rademacher’s
papers [16], [17], and [23] were later superseded by the work of O. Körner
[29], [30], [31].
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The majority of Rademacher’s subsequent contributions to number the-
ory came in the related areas of modular forms, partition problems, and
Dedekind sums. We first describe a few miscellaneous results.

Rademacher’s first research paper in the theory of modular forms is [26].
Using the Schreier–Reidemeister method, he determined a system of gener-
ators for the congruence subgroups Γ0(p) of the modular group, where p is
a prime. He also determined all relations involving the generators. Later,
H. Frasch [12] and Grosswald [14] proved similar theorems for the groups
Γ (p) and Γ 0

0 (p), respectively. Grosswald [15] also proved that under certain
conditions the generators for Γ (p) could be chosen so that none is parabolic.
It was not until 1973 that corresponding theorems for Γ0(N), where N is
an arbitrary positive integer, were established by Y. Chuman [9]. A com-
pletely new method, based on Farey symbols, has recently been devised by
R. S. Kulkarni [32].

In [65] and [68], Rademacher gives a short, clever proof, based on a
corollary of Jensen’s inequality, of the following well-known theorem: A
modular function analytic and bounded on the open upper half-plane and
belonging to a congruence subgroup of the modular group is necessarily a
constant.

Recall that the Dedekind eta-function η(τ) is defined for Im τ > 0 by

η(τ) = eπiτ/12
∞∏

n=1

(1− e2πinτ ) .

Rademacher devoted several papers to the study of this function and the
Dedekind sums which appear in the transformation formulae of log η(τ). In
order to define the Dedekind sum s(h, k), set

((x)) =
{

x− [x]− 1/2 if x is not an integer,
0 otherwise.

Then

s(h, k) :=
k∑

µ=1

((hµ/k))((µ/k)) ,

where h and k are coprime integers with k ≥ 1.
Rademacher’s first paper devoted to the eta-function and Dedekind sums

was published in 1932 [27]. Here he proves the transformation formula
for log η(τ) under modular transformations via contour integration and the
functional equation of the Hurwitz zeta function. A similar proof of the
transformation formula for T (τ) = −1/τ was later given by A. Weil [61].
One of the most beautiful methods for obtaining the transformation formu-
lae for log η(τ) is by contour integration and is due to C. L. Siegel [58] and
Rademacher [58]. Siegel first gave the proof when T (τ) = −1/τ , and then
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Rademacher gave the proof for a general modular transformation. Another
general method for obtaining the transformation formulae for log η(τ) and
similar functions has been devised by B. Berndt [4], [5].

Recall that the classical theta-function θ3(τ) may be defined by

θ3(τ) =
∞∏

n=1

(1− e2πinτ )(1− eπi(2n−1)τ )2 ,

where Im τ > 0. Since θ3 can be expressed as a quotient of three eta-
functions, a transformation formula for log θ3(τ) can be effected from that
of the Dedekind eta-function. In one of his last papers [73], Rademacher
used this idea to give a new formulation of the transformation formula for
log θ3(τ). A similar transformation formula for log θ3(τ) involving a new
analogue of Dedekind sums was discovered by Berndt [7].

The most fundamental property of Dedekind sums is the remarkable
reciprocity law: If h, k > 0 and (h, k) = 1, then

(1) s(h, k) + s(k, h) = −1
4

+
1
12

(
h

k
+

k

h
+

1
hk

)
.

This formula was first proved by R. Dedekind [11] using the transformation
formulae of log η(τ). There now exist many proofs of (1), and several of these
can be found in a monograph [7] on Dedekind sums, written by Rademacher
and completed by Grosswald after Rademacher’s death. Rademacher found
five original proofs of (1). In the aforementioned paper [27], Rademacher
gives an elegant proof of (1) based on the enumeration of lattice points
in pyramids. An elementary proof of (1), as well as a generalization when
(h, k) > 1, is given in [28]. Another elementary proof appears in a paper [44],
coauthored with A. L. Whiteman. A method employing finite Fourier series
was used in [32] to prove (1). In [53], Rademacher gives a particularly sim-
ple and elegant proof of (1) that depends on Riemann–Stieltjes integrals.
Rademacher [57] also established the following generalization of the reci-
procity law. Let a, b, and c denote pairwise coprime, positive integers. Let
a′, b′, and c′ be integers chosen so that aa′ ≡ 1 (mod bc), bb′ ≡ 1 (mod ca),
and cc′ ≡ 1 (mod ab). Then

(2) s(bc′, a) + s(ca′, b) + s(ab′, c) = −1
4

+
1
12

(
a

bc
+

b

ca
+

c

ab

)
.

Two of the most important papers in the theory of Dedekind sums are
[44] and [59]. Dedekind [11] stated without proof several properties of s(h, k)
in a paper that was written in order to fill some gaps in a famous pa-
per of B. Riemann [52], first published in his “Nachlaß”. Rademacher and
Whiteman [44] gave proofs of these properties and established some others
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as well, including various congruences satisfied by Dedekind sums. We men-
tion a few of the interesting properties established by Rademacher in [59].
If 1 < h < k, then s(h, k) < s(1, k). If 0 < h < (k − 1)1/2, then s(h, k) > 0.
Rademacher also showed that 12s(h, k) assumes only one integral value,
namely 0, and this occurs if and only if h ≡ −1 (mod k). Let % = h/k
and put s(%) = s(h, k). Then Rademacher showed that s(%) is unbounded
from above and from below on any interval in (−∞,∞). Identities for
s(h1, k1)± s(h2, k2) are found, where h1/k1 and h2/k2 are consecutive frac-
tions in a Farey sequence. Rademacher ([8] in problems list) later asked
if s(h1, k1) + s(h2, k2) is always positive. However, L. Pinzur [46] and
K. H. Rosen [53] independently exhibited infinite classes of pairs (h1, k1),
(h2, k2) for which the sum is negative.

There exists a connection between Dedekind sums and lattice points in
a tetrahedron. Let N3(a, b, c) denote the number of lattice points in the
tetrahedron

(3) 0 ≤ x < a, 0 ≤ y < b, 0 ≤ z < c, 0 < x/a + y/b + z/c < 1,

where a, b, and c are relatively prime in pairs. Rademacher proved the
congruence(

s(bc, a)− bc

12a

)
+

(
s(ca, b)− ca

12b

)
+

(
s(ab, c)− ab

12c

)
≡ −1

4
− abc

12
+

1
12abc

(mod 2) ,

and used a theorem of L. J. Mordell [41] to show that

(4) N3(a, b, c) ≡ 1
4 (a + 1)(b + 1)(c + 1) (mod 2) .

More generally, consider the number of lattice points Nn(a1, a2, . . . , an) in
the n-dimensional tetrahedron

0 ≤ xj < aj , 1 ≤ j ≤ n, 0 < x1/a1 + x2/a2 + . . . + xn/an < 1 ,

where the integers aj , 1 ≤ j ≤ n, are pairwise coprime. Rademacher ([6] in
list of problems) conjectured that

(5) Nn(a1, a2, . . . , an) ≡ 1
2n−1

(a1 + 1)(a2 + 1) . . . (an + 1) (mod 2) .

For n = 1, 2, (5) is trivially true with the congruence sign ≡ replaced by
an equality sign. For n = 3, (5) is valid by (4). However, for n = 4,
K. H. Rosen [54] found an infinite class of counterexamples to (5).

Very recently, J. E. Pommersheim [48] has removed the coprime con-
ditions on a, b, and c and greatly extended the work of Rademacher and
Mordell. Moreover, he has also found a beautiful generalization of (2).

Rademacher ([7] in problems list) posed a third problem at the number
theory conference at the University of Colorado in 1963. Are the points
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(h/k, s(h, k)) dense in the plane? By a very elegant argument using con-
tinued fractions, D. R. Hickerson [25] answered this question affirmatively.
G. Myerson [42] proved that the sequence (h/k, s(h, k)) is uniformly dis-
tributed modulo 1, a result further refined by R. W. Bruggeman [8].

Generalizing a sum of F. Klein, Rademacher [70] defined the generalized
Dedekind sum

(6) s(h, k;x, y) :=
k∑

µ=1

((
h

(
µ + y

k
+

x

h

)))((
µ + y

k

))
,

where (h, k) = 1 with k > 0, and where x and y are real. If x and y are
integers, then (6) reduces to s(h, k). Rademacher [70] derived a beautiful
reciprocity law relating s(h, k;x, y) with s(k, h; y, x).

After Rademacher and Grosswald’s elegant monograph [7] on Dedekind
sums was published in 1972, there appeared a profusion of papers offering
many generalizations. We cannot give any details here, but we remark that
many elegant generalizations are due to L. Carlitz. For a survey containing
some of these, see Berndt’s paper [6]. Analogues or generalizations of the
classical Dedekind sum s(h, k) frequently appear in transformation formulae
of analogues of log η(τ), as well as in formulas for values of certain zeta-
functions at integral arguments.

Perhaps Rademacher’s most famous theorem is his exact formula for the
partition function p(n) [37], [38]. Let c = π

√
2/3 and λn =

√
n− 1/24.

Then Rademacher proved that

(7) p(n) =
1

π
√

2

∞∑
k=1

Ak(n)
√

k
d

dn

(
sinh(cλn/k)

λn

)
,

where
Ak(n) =

∑
h (mod k)
(h,k)=1

ωh,ke−2πihn/k ,

with ωh,k = exp{πis(h, k)}. The history of this formula is interesting.
Introducing their famous circle method, Hardy and Ramanujan [21], [18,

pp. 306–339], [50, pp. 276–309] had in 1917 astounded the mathematical
community by finding an asymptotic series for p(n), namely,

(8) p(n) =
1

2π
√

2

∑
k<α

√
n

Ak(n)
√

k
d

dn

(
ecλn/k

λn

)
+ O(n−1/4) ,

as n tends to ∞, where α is a positive constant. They started with the
familiar generating function f(x) :=

∏∞
n=1(1 − xn)−1 for p(n), to which

they applied Cauchy’s integral formula on a circle centered at the origin and
interior to the unit circle, and utilized a dissection of that circle by means of
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Farey series. Their method has two main features. First, they approximated
f by a function F and integrated f − F over a dissection of the circle by a
Farey series of order N . Secondly, they coupled the parameters n and N by
setting N = α

√
n.

On the other hand, while preparing the lectures for his graduate course
in analytic number theory at the University of Pennsylvania in the fall
of 1936, Rademacher applied the transformation formula for the Dedekind
eta-function η(τ) = eπiτ/12/f(e2πiτ ) to obtain the principal term, and he
left the parameters n and N free. He subsequently found that

p(n) =
1

π
√

2

N∑
k=1

Ak(n)
√

k
d

dn

(
sinh(cλn/k)

λn

)
(9)

+ O(N−1/2 exp(2πnN−2)) ,

as N tends to ∞. Note that the principal terms are independent of N.
Thus, keeping n fixed and letting N tend to ∞ in (9), we deduce (7).

Observe that the summands in (7) differ from those in (8). When
Rademacher first obtained (7), he assumed that he had made a calculational
error. On the following day, Rademacher carefully checked his analysis and
found that (7) was indeed correct. D. H. Lehmer [33] later proved that the
sum in (8), when extended to ∞, diverges.

At about the same time Rademacher proved (7), A. Selberg also proved
(7) but never published his result [57, p. 705].

The numbers Ak(n) appear in both Hardy and Ramanujan’s and Ra-
demacher’s formulas, and Lehmer [34] found that they possess some re-
markable factorization properties. Using their theorems on congruences for
Dedekind sums, Rademacher and Whiteman [44] gave easier proofs of these
factorization theorems. Selberg later discovered a much simpler formula for
Ak(n), namely,

(10) Ak(n) =

√
k

3

∑
(3j2+j)/2≡−n (mod k)

(−1)j cos
(

π(6j + 1)
6k

)
.

After Whiteman [62] gave the first published proof of (10), Rademacher [61]
devised a simpler proof of (10) depending upon the transformation formu-
lae for η(τ). He also gave an improved version of Lehmer’s factorization
theorems, while offering still easier proofs.

Another interesting theorem is proved in [37]. Let

f(x) = 1 +
∞∑

n=1

p(n)xn , |x| < 1 .
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Then using (7), Rademacher obtained a representation of the form

(11) f(x) =
∞∑

n=0

fn(x) ,

where each function fn(x) has a simple pole on |x| = 1; the closure of
this set of poles, |x| = 1, constitutes the natural boundary of f(x). Fur-
thermore, each function fn(x) has an analytic continuation to the entire
complex plane. Moreover, (11) represents an analytic function on |x| > 1,
which, from numerical evidence, Rademacher thought might be identically
zero. Rademacher ([5, pp. 190–199] in the list of Rademacher’s books), in
fact, later proved his conjecture. H. Petersson [45] also proved Rademacher’s
conjecture, but by an entirely different method. J. Lehner [38] established
a very general theorem of which the result of Rademacher and Petersson is
a special case.

The ideas in Rademacher’s paper [38] were found to be even more fruitful,
as he and H. S. Zuckerman [40] proved the following generalization: Let F (τ)
be a modular form of dimension r > 0. Suppose that F has a pole at i∞,
i.e.,

F (τ) =
∞∑

n=−µ

ane2πi(n+α)τ ,

where Im τ > 0, µ > 0, and 0 ≤ α < 1. Then the coefficients an, n ≥ 0, are
determined by those with −µ ≤ n ≤ −1. Furthermore, Rademacher and
Zuckerman derived a formula for an, n ≥ 0, which involves an, −µ ≤ n ≤
−1, sums analogous to (10), and the modified Bessel function Ir+1. An inter-
esting corollary is that an entire modular form of positive dimension belong-
ing to the full modular group must be identically zero. Many other proofs of
this fundamental result have been given by various writers. Zuckerman [63]
found similar formulas for the coefficients of modular forms associated with
congruence subgroups. In a subsequent paper [64], Zuckerman extended the
results of himself and Rademacher by establishing a corresponding theorem
for modular forms of positive dimension having at most a finite number of
poles in a fundamental region. Further extensions to more general auto-
morphic forms were made by J. Lehner [37], [39], [40], who also generalized
the aforementioned theorem on identically vanishing forms. For the special
cases of the classical theta-functions, L. A. Goldberg [13] discovered easier
proofs of Zuckerman’s theorems and also derived analogues of the Selberg–
Whiteman–Rademacher formula (10). Rademacher extended his ideas yet
further [39] and found a formula for the Fourier coefficients of the modu-
lar invariant J(τ), a modular form of dimension 0. In fact, Rademacher’s
formula for the Fourier coefficients of J(τ) was actually derived earlier by Pe-
tersson [44] by an entirely different method. In [41], Rademacher considered
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the converse problem; taking the Fourier expansion of J(τ) together with
his formula for the coefficients, he showed that they define a modular func-
tion. The importance of this paper has been made clear by M. Knopp [28],
who showed its connection with Eichler cohomology, Poincaré series, and
the construction of modular forms.

As previously indicated, the Hardy–Ramanujan–Littlewood circle method
is a key ingredient in Rademacher’s proof of his formula for p(n). Radema-
cher later [48] improved this method by replacing the Farey arcs of cir-
cles with centers h/k + i/(2k2) and radii 1/(2k2), where h/k runs through
a Farey sequence. These new paths of integration simplify the estimates
of certain integrals and clarify how the singularities contribute to the for-
mula.

Rademacher wrote two further papers [42], [45] on p(n). In the first,
coauthored with H. S. Zuckerman, proofs are given of two famous identities
of Ramanujan:

(12)
∞∑

n=0

p(5n + 4)xn = 5
∞∏

n=1

(1− x5n)5

(1− xn)6

and

(13)
∞∑

n=0

p(7n + 5)xn = 7
∞∏

n=1

(1− x7n)3

(1− xn)4
+ 49x

∞∏
n=1

(1− x7n)7

(1− xn)8
.

In the second, Rademacher gave further proofs of these identities as well
as other results of this sort. In both papers, the theory of modular forms,
in particular, the transformation formulae of the Dedekind eta-function, is
used. Motivated by Rademacher’s ideas, M. Newman [43] established further
identities akin to (12) and (13). The identities (12) and (13), respectively,
immediately imply the Ramanujan congruences

(14) p(5n + 4) ≡ 0 (mod 5)

and

(15) p(7n + 5) ≡ 0 (mod 7) .

The congruences (14) and (15), respectively, are special cases of the following
Ramanujan conjectures:

If 24m ≡ 1 (mod 5n), then p(m) ≡ 0 (mod 5n) ,(16)
if 24m ≡ 1 (mod 7n) , then p(m) ≡ 0 (mod 7[(n+2)/2]) .(17)

The conjecture (17) is given in its corrected form; Ramanujan also con-
jectured a congruence for powers of 11. Although Ramanujan proved spe-
cial cases of his three general conjectures, the first complete proofs of (16)
and (17) were given by G. N. Watson [60] in 1938. For powers of 11, Ra-
manujan found proofs for n = 1, 2, and Lehner [35] used Rademacher’s



220 B. C. Berndt

ideas in [45] to establish the same congruences. Lehner [36] also proved
Ramanujan’s conjecture for n = 3 before A. O. L. Atkin [3] first found a
complete proof of the corresponding conjecture for powers of 11 in 1967. Ra-
manujan’s unpublished manuscript on congruences for the partition func-
tion has recently been reproduced with his “lost notebook” [51]. An ex-
cellent survey of Ramanujan’s work on congruences has been written by
K. G. Ramanathan [49]. The books of M. Knopp [27, Chapters 7, 8] and
G. E. Andrews [2, Chapter 10] contain excellent accounts of Ramanujan’s
congruences for p(n).

In Rademacher’s last paper [74] in the area of modular forms, it is shown
that T (pr) is essentially a Chebyshev polynomial in T (p) of the second
kind, where T (n) is the Hecke operator, p is a prime, and r is a positive
integer. Hecke [23], [24, pp. 644–671] had previously proved that T (pr) is a
polynomial in T (p).

Before leaving modular forms, we describe Rademacher’s contribution,
peripherally involving modular forms, to a famous problem from complex
analysis. Let f be analytic on the unit disc |z| < 1 with f ′(0) = 1. Then
there exists a positive constant L which is the least upper bound of all r
such that the range of f always contains a closed disc of radius r. The
constant L is called Landau’s constant. L. Ahlfors [1] proved that L ≥ 0.5,
and C. Pommerenke [47] improved this slightly by showing that L > 0.5.
On the other hand, Rademacher [47] proved that L ≤ 2πΓ (1/3)Γ (1/6)−2 =
0.54325 . . . , which he conjectured to be the true value of L. The exact value
of L is still not known.

In his papers [33], [34], and [36], Rademacher studied the geometrical
distribution of prime numbers ω in the ring of integers of a real quadratic
number field. As was the case with his papers [16], [17], and [23], the argu-
ments involve the use of Hecke’s Grössencharakteren and the corresponding
Dirichlet series. For a given angular region in the (ω, ω′) plane, where ω′ is
the conjugate of ω, Hecke [22], [24, pp. 249–289] had proved earlier that the
number of prime numbers in this angular region having norm not exceeding
x is asymptotic to h−1 Li(x) times a geometric proportionality factor, where
h is the class number of the field and Li(x) denotes the logarithmic integral.
In [33], Rademacher made Hecke’s result more precise by proving it with
an error term of the type obtained by de la Vallée Poussin for the ordinary
prime number theorem. Next, Rademacher [34] applied the results of [33] to
obtain an analogous asymptotic formula with an error term for the number
of prime numbers in a region of the form 0 < ω ≤ Y , 0 < ω′ ≤ Y ′, where
Y Y ′ > 2. In [36], he obtained the same result as in [34] by a direct argument
not requiring the results of [33].

We now discuss Rademacher’s papers on zeta-functions and related
areas.
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Applying the Poisson summation formula to
∞∑

n=−∞
(α + i(n + u))−s , α > 0 , Re s > 1 ,

Rademacher [25] elegantly proved the functional equation of the Riemann
zeta-function ζ(s). Using the same notion, he also established the functional
equation satisfied by Dirichlet’s L-functions L(s, χ). These ideas have been
generalized somewhat by W. Schnee [56].

As usual, put

Λ(n) =
{ log n if n is a prime power,

0 otherwise.

Then, by a well-known formula (Davenport [10, p. 109]),∑
n≤x

′
Λ(n) = x− lim

T→∞

∑
|γ|<T

x%/%− log(2π)− 1
2 log(1− x−2) ,

where % = β + iγ runs through the non-trivial zeros of ζ(s), and the prime ′

on the summation sign indicates that if x is integral, only 1
2Λ(x) is counted.

The infinite series on the right-hand side is closely related to

(18)
∑

γ

γ−1 sin(γy) , y = log x .

Rademacher [64] proved that if the Riemann hypothesis is true, (18) has
certain jump discontinuities. He felt that by constructing a similar series
with the same jumps, some light might be shed on the distribution of zeros
of ζ(s). L. A. Rubel and E. G. Straus [55] showed that this was doubtful by
constructing the type of series sought by Rademacher and proving that (18)
has the aforementioned discontinuities under a much weaker assumption
than the Riemann hypothesis.

In [62], [63], and [67], Rademacher proved a Phragmén–Lindelöf theorem
for an infinite strip that has the advantage that, when applied to problems
in prime number theory, it is uniform in several parameters. He then gave
applications to the growths of L(s, χ) and the Dedekind zeta-function in the
critical strip.

In [35], Rademacher extended the validity of a fascinating identity of
F. John [26] involving a periodic function and gave applications to ζ(s) and
Dedekind’s zeta-function.

The last research paper on which we shall comment is [76]. Here, Ra-
demacher properly interpreted and established some results stated by Euler
on certain divergent series involving the pentagonal numbers n(3n − 1)/2.
Moreover, Rademacher extended some of Euler’s results.
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Rademacher’s expository papers serve not only as excellent introductions
to several of his own research interests, but also to broader areas in number
theory.

Analytic additive theory in algebraic number fields is examined in [54].
The problems and differences encountered when generalizing the classical
theory over the rational field to algebraic number fields are discussed.

Rademacher’s address [43] provides an excellent introduction to the par-
tition function p(n), including the Hardy–Littlewood–Ramanujan circle
method, the asymptotic formula of Hardy and Ramanujan, and the exact
formula of Rademacher. After a prefatory exposition about modular forms,
Rademacher further discusses the content of his recent work [39]–[42].

Rademacher did not deem function theory to be merely a tool in study-
ing properties of numbers. “It is more the inner harmony of a system” with
both disciplines bearing on the character of the other. This belief is fully
developed by Rademacher in [46]. “The name ‘analytic number theory’ im-
plies, as I take it, a thorough fusion of analysis and arithmetic, in which
as we shall see, analysis is not necessarily subordinate to arithmetic.” Of-
ten analytic number theory is regarded as the development of asymptotic
formulas. However, Rademacher believed that identities, group-theoretical
arguments, and structural considerations have just as important roles in the
subject. Rademacher provides a brief, eloquent history of analytic number
theory in [46], wherein the names of Dirichlet, Riemann, Landau, Hardy,
Littlewood, Ramanujan, and many others are highlighted. We must now
add to this roll of honor the name of Rademacher.

The author is very grateful to Paul Bateman, Heini Halberstam, Marvin
Knopp, Joseph Lehner, and Andrzej Schinzel for many helpful contributions.
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[26] F. John, Identitäten zwischen dem Integral einer willkürlichen Funktion und un-

endlichen Reihen, Math. Ann. 110 (1935), 718–721.
[27] M. Knopp, Modular Functions in Analytic Number Theory , Markham, Chicago

1970.
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totalpositiver Zahlen als Summen von totalpositiven Primzahlen in einem beliebigen
Zahlkörper , Math. Z. 27 (1928), 321–426.

[24] Zur Theorie der Modulfunktionen, in: Atti del Congresso Internazionale dei Mate-
matici, Bologna 1928, Vol. 3, Nicola Zanichelli, Bologna 1928, 297–301.

[25] Ein neuer Beweis für die Funktionalgleichung der ζ-Funktion, Math. Z. 31 (1929),
39–44.
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and G. Szegö, Jber. Deutsch. Math.-Verein. 35 (1926), 50–52.

[2] Aufgabe 30, Jber. Deutsch. Math.-Verein. 34 (1925–26), 158; solution by A. Brauer,
Jber. Deutsch. Math.-Verein. 35 (1926), 92–94.

[3] Aufgabe 31, Jber. Deutsch. Math.-Verein. 34 (1925–26), 158; solution by A. Brauer,
Jber. Deutsch. Math.-Verein. 35 (1926), 94–95.



Publications of Hans Rademacher 231

[4] Aufgabe 32, Jber. Deutsch. Math.-Verein. 34 (1925–26), 158–159; solution by A.
Brauer, Jber. Deutsch. Math.-Verein. 35 (1926), 95–96.

[5] Solution to Aufgabe 184 posed by T. Nagell, Jber. Deutsch. Math.-Verein. 46 (1936),
4–5.

[6] Problem 98. Number of lattice points in a tetrahedron, Proceedings of the 1963
Number Theory Conference, Univ. of Colorado, Boulder, Colorado, 1963, 111–112.

[7] Problem 99. Density of the points (h/k, s(h, k)), Proceedings of the 1963 Number
Theory Conference, Univ. of Colorado, Boulder, Colorado, 1963, 112.

[8] Problem 100. Positivity of Dedekind sums, Proceedings of the 1963 Number Theory
Conference, Univ. of Colorado, Boulder, Colorado, 1963, 112.


