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1. Introduction. Let #(n) denote the number of representations
of n as a sum of two squares, and '

x

1 R(z) = }'r(n) = mo+P(a),

=0

80 that P (w) is the error term in the lattice-point problem for the circle.
It has long been conjectured, but not proved, that

) P(z) = O(att),

for every £ >0, a8 & — oo ([6]). Hardy ([7]) showed, however, that (2)
is true on the average, that is to say

@ = [1P@iay = 0w,

He also proved ([7]) that
.. P@)

it il
“ gff atlogis

whieh, in the notation of Hardy and Littlewood and Ingham, is written
as

<0,

(5) P(z) = Q_(ztlogtz).
On the other side, Hardy also proved that .
P
(6) limsup (f) =0,
that is

) P(z) = Q, (o).
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While a stronger resulb than (7), which would correspond to (5) with
0, instead of £_, is not known, Ingham proved in 1940 ([9]) that

P (x)

lim sup —;%—

T—co

(8) = oo,

Ingham’s method cousists in making a skilful use of Kronecker’s theorem
on Diophantine approximation, and it applies also to the lattice-point
problem for a rectangular hyperbola, in which the divisor funetion d(n)
takes the place of 7(n). A modification of this method, also due to Ingham,
consists in avoiding the explicit use of Diophantine approximation, and in
appealing, instead, to the argnment used by Bohr and Jessen ([3]) in their
proof of Kronecker’s theorem. The modified method has been applied
by Pennington ([15]) to Ramanujan’s arithmetical function 7{(n), to obtain
the resulf

liming — )

200

. T (x)
(9) llms;lpw = -}-o0, 'a’;'ggj[ = ’

where T (2) = ZAT(%).

In this paper we start with the funetional equation

(10) @m)"°T(s)p(s) = (2n)"~°I' (86— s)w(d—s),
where ¢ and g are representable by the Dirichlet series D, and
Db, un° respectively, and consider the corresponding averages of their

coefficients
’ 1
AY(@) = = o (8= 2,)°
f(a) ”9“);;“ (0= ),
(11) 0=0.
1
B2 (z) = E by (@ — )
Y ) T(o+1) M'gw ( ;un) )

Here 4, and u, are strictly increasing sequences of positive numbers,
4 is real, and a,, b, are complex, and not all of them zero. We ghall show
that if Rea, 7= 0 for at least one value of n, then

(12) Re(BY(2)—Q,(2)] = @, (ah+le-d),

where the term ), arises from the singularities of I'(s)p(s). Similarly,

if Im a, # 0 for at least one value of n, then

12y’ Im[BS(2)—Q,(a)] = 2, (dd+ie-1).
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We shall further show that if the sequence {a,, 1,} satisfies certain addi-
tional arithmetical requirements, then

Re[B} () —Q,(x)]

lmsup —— B gt = oo
03 Ro (B (@) —Q,(0)]
tning SLEEQD

Corresponding results for the imaginary part also exist. By interchang-
ing a, with b,, and A, with u,, one can write down similar results for A43.

Since the Dirichlet series Y r(n)n~° associated with the lattice point
problem for the circle, and the series Y'r(n)n™° associated with Rama-
nujan’s function, occur as solutions of funetional equation (10), with
84 =1 and 6 = 12 respectively, our results give, when ¢ = 0, the results
of Ingham’s, namely (8), and of Pennington’s, namely (9). We also cover
other arithmetical functions such as 7,(n) which denotes the number of
lattice points on a k-dimensional sphere, op(n) which denotes the sum
of the kth powers of divisors of » when % is an odd integer, and Siegel’s
function u(8,1), which is the measure of representation of the number
t by §, where § is an indefinite quadratie form in four or more variables,
with rational coefficients, and with positive deferminant.

We prove these results by eombining Ingham’s method with a gener-
al arithmetical identity (Lemmsa 3) which is equivalent to functional
equation (10).

2. Preliminary lemmas. We start with a precise formulation of
the funetional equation.

DermvmioN 1. Let {4}, {@}, » = 1,2, ..., be two strictly increas-
ing sequences of positive numbers, and {a,}, {b,} be two sequences of
complex numbers not identically zero, and s a complex variable with
8§ = o-+it. Let 6 be a real number. Let the Dirichlet series

@ (s)

Hl\ﬂg

a3 p(s) = D bup®
1

admit finite abseissae of absolute convergence. Then ¢, y are said fo
satisfy the functional equation

(14) (@=)7T(s)p(s) = @r) T (6—s)p(8—s),

if there exists in the s-plane a domain D which is the exterior of a bound-
ed closed set 8. and in D there exists a holomorphic function yx(s) with
the property

ey (o--it) = 0(1), 0 <e&<im,
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as [{] - oo, uniformly in each strip oy <0< 0y —00 <01 <0< +oo,
and
1(s) = @n)"°I(s)gp(s), for o >a,

() £(6) = @RI~ T(3=5)p(8—3), for o <P,

where a, f are some constants.

Amplifying the econnexion between the Riemann zeta-function
and the elliptic theta-function, Bochner ([2]) has shown that functional
equation (14) is equivalent to a “modular relation”. We state his resulb

here as a lemma.
LmvumaA 1. (Bochner). If the functional equation

(16) @)~ *I(s)p(s) = (2m)*T(8—8)y(6—5)

Tolds in the sense of Definition 1, then the following ‘modular relation’ holds:

00

P N
a7 2 a 0~ = P(n)+ (2?7:) 2 bue T, 2> 0

n=1 n=1

where P (@) 15 a ‘residual function’ given by

P(o) = [2(s)(2n)'a™ds,
e

and © denotes any curve, or curves, in D encircling all of 8.
Conversely, modular relation (17) implies functional equation (16).
The following lemma which will be required in the sequel has been

proved by us in another paper ([4]).

Levma 2. Functional equation (16) implies the identity

1
(18) f(e—-l—l—) MZQ by (B— )

1 v 30+0) .
= Q,(2)+ o 21 (%) ayd sy {47V (M) },

(o]
for >0, and g > 2a— 6— %, where ais & number for which 2 || Ay << 00,
N=1
and
1 x(8)(2m)"w"*?

2O =55 | Terarn

Conversely, identity (18) implies not only that « > }(8-+%), but that
functional equation (16) is satisfied.

icm°
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We shall now state and prove th inei
e principal lemma on i
results are based. whieh our

Lemwma 3. Functional equation (16) is equivalent to the relation

oo

a9) D gl ) = @a)* Ve 277 [, at)a¥e e dot

n=1
6 o0ssf2 a\r kad m et+d
4 (2m)0. 0e+d (-JZ) [Z( 5 ) ane+-}(2“/—l‘;)];

H=1

where o > 0, Ret > 0, 7 is a sufficiently large integer, Ko13(t) is the Bes-
sel function of purely imaginary argument, and

r £y
(s 1) =g(7, 0, 6, 2, 1) 52% ((tzi[}-)él g;(”);t;)’+j‘7°)’
T A,

v=0
where ¢, is an absolute constant, and y = 8-+ o+ }.
If
B(@) = — N bu(@— ), 00
T(Q‘I‘l)”;:i n n)y @ Z U,

then relation (19) can be writien as

5]

@0) 3 aag(n, 4) = @r)~*Vr 2 [ (B0 ~Q,(a") 1" e da,

0

and if y = 8+ 0+3% is not a negaiive integer, velation (20) can be writien
as

C dV'T I(+o+3d)
2 E a, | — —_ T 51
(21) £ ( ds ) [(32—1—1671:’2 )ererd ]

= @m)*Vz272049 [ [BI (") —Q, (@) ]o¥e " dn.
Prooi. Let U

(22) h(t, 2) = 6==,  h(t, 2) = (%)”h(i, ),

vThere r is a non-negative integer. By the ordinary rules of differentia-
tion, we have, for any sufficiently smooth function ¥,
(03 d )2r r
9, el 2y 2 (1 +)
) (dt, F(#) -guc,rwﬂ(m,

where ¢, is an absolute constant, and ¢, = 2%,


GUEST


492 K. Chandrasekharan and Raghavan Narasimhan

Since we assume that the functional equation holds, we have, by
Lemma 1, the relation

a+e Z O 6v41rzﬂnm

Na=1
for p = 0, and Rex > 0. We ghall show that if we multiply (24) throughout
by 2~ ih (t ), and integrate from 0 to oo with respect to z, we obtain
(19). Taking first the left hand side, we note that

= TP (4n’e) + (2m) " Zb ale~ i

n=1

(24)

r 00

] o, 2
[ e tomstht, 0) do = Dot (— 17 [ aprempesr g @t g
0 =0 0

,_
v=0

s0 that, for sufficiently large r, we obtain

Ty+v+7)

V41
(£ 44 ,)7 T

= g (I, ),

(25) J gote— %( \ja Gﬂmzﬂ"x)h (t 60 d.{l? = Za/ng ny 1)

M= =1
The first member on the right-hand side of (24) gives
r

b

(26) [a*+e-3P(4n"w) hu(t, @) deo
0

v

I
5

Since
~ sy g2 l -8
rmy‘“””e “dm‘—_fx(s)@rcw) ds
2l

1]

fx(e )(2m) 2 ds- fm" Vergrosg- o g,
2T’b §

= o [ 2O @R Ty r—s)e s,
27 F

we have
(<] b

@10 [ ate-2PU=D) R (1, ©)da = Dl et frin (@),
0 =0

where

2(8)(2m) L (y—s)t~¢"ds,

=5 |
e

o, (—1)* [ &P (dre) e~ .
[

icm°

Hecke’s functional equation 493

the curve C (in Lemma 1) being so chosen that @ as well as its transform
€’ by the substitution s — —s are free from the poles of I'(y —s). Using

(23) in (27), we get
a 2r
-[&f

1 —s A\ s
=2—Jefx<s)(zn> ry—a) (g Tr0as.

(28) f aP+o=1 P (4r2n) by (t, @) do

Since
T(y—sg)- a4 i ~2(y~8)
(y—s) zl !

=TI(y—s)[2(y—9)I[2(y—s)+1]...[2(y—s)+ 2r— 1]~
= 2T (y—s+1) 2" (p+3—8)(y+5—8)...(p+r—3— 8)72+"
Tly—s+n-T(y+r+i—s
I(y+4—s)
we may write (28) as

— 221‘

) s
tz(ysr)7

f P+ 4 P (42 o (1, @) do

0

Iy—s+n)I(y—s+r+1)
I'(y+4—s)

provided that r is chosen large enough. If we now change the variable

s to 6—s, and use the functional equation x(s) = y(8—s), together with
the duplication formula for the gamma-funcetion, namely

Val'(s) = 2T (3o) I (0 + 1),

4t g,

1 -8 2r
— 5 [ a2
e

we obfain

(29) f S +e-¥P (dn2) b, (1, 0) Ao
0 .

2(gsLt) I'(20-+2s+1427)
I'(o+1+5)

I

{1—26+e+r+P gg

1 < S—d2r
o [X(s)(zﬁ) 2727

s (20 274-14-25)

_ Vrem) i
2nt f () @2=)" T(o+1+53)

(2t)~2(8+e+r+1r) ds

- ]/;(2_‘7)—6221'-%1-{ Qg(mg)m”e_mdm,
. o
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where
1 8) (2m)’a’te
x(8)@rya’™e

%@ =55 ) TererD

2ni
@

Let us now consider the second member of the right-hand side of (24).
On using the relations
F a\r F :
f ge-te~tnl®h (4, 2)do = (ﬁt—) f o PRl sl 'S
0 0
and

o=t [em{-3 - Zamiaa, Res >0,
0

where K, is the Bessel function of purely imaginary argument ([20],
p. 78, p. 183), we obtain

(2m)? f oo %(ane“”%’ ) hot, @) do

= (2m)~*- 2“‘2(0”) [g;(‘/;”) b Ke+,}(2tl//,¢—,,)].

Combining (30) with (29) and (25), we obtain (19) as claimed in the lemma.
Conversely, given (19) for a large integer r, we can, by repeated integra-
tion, obtain (19) with » = 0, provided that ¢ is a sufficiently large inte-

d \efe
ger. And sinee ¢~e-¥ K,y (1) = (—1)°(3n)} (t dt) [B ] the result fol-

(30)

lows from Lemma 6 of [4].
Since

N
I'(p+1) 4

for Re(up+3) >0, and |arge| < i= ([20], p. 172),

of (30) gives
- Ve 7
[ e ey
)"n

E,(z) = B —1)tat,

the right-hand side

s d)zr )
(31) (27) (dt [nxl by, J—,(Q—_l_T

— L a\ 9 . o
== (2) 7 ] ngbn(y — ey

Hecke's functional equation

= Vr(2r) _’( ) [2fB (y )e“”"dy]

495

= Vm(2m) 02+ f B W)y e M ay.
0

Substituting (31) for the second member on the right-hand side of (19),
we obtain

D 0n by 8) = @m)Vr2 [ [BL (1) —Qu(y") 1y e dy.

Writing ¢ = /2, we obtain (20), from which (21) obviously follows.

3. The results. We are now in a position to prove the following
results.

TEEOREM I. Suppose that funciional equation (14) is satisfied, and
that the sequence {A,} contains a subset {1, } such that no number s repre-
sentable as a linear combination of the mumbers l‘} with coefficients +1,

unless Aﬁ = j:};},r for some r, in which case l‘}i has mo other representation.
Suppose, in addition, that

© R .

(32) ;%j;fi +oo, 020
Then

o Re[BL(0)—Q,0)] _ | _

(33) hﬂlﬂpw—‘f‘ ’

o Re[BL@) Q@) _

@4 e S

where Q,(z) is defined as in Lemma 2.
If in assumption (32) we replace Reay,, by Ima,, , then in conclusions
(33) and (34) we should have Im [ B (x) — @, (x)] in place of Re [ B (x)— @, (z)].
THEOREM II. If Rea, = 0 for at least one value of n, then

(35) Re[BS(2)—Q,(2)] = Q (a¥+e-1), ¢ >0.
If Ima, # 0 for at least one value of n, then
(36) Im[BS(2)—Q,(#)] = 2, (a¥+ie-1), o >0.
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The exponent % 0--%o— % in (35) and (36) is the best possible for large 0,

in the sense that if o is such that D) |a,|A7® < oo, and o0 > 20— §—13, then
n=1

L) B} (0)—Qy(0) = O (a¥+ied).

Remark. It is obvious that if a, is interchanged with b,, and A,
with ,, Wwe have eonclusions about 4j(w).

Proof. Consider identity (20) in Lemma 3. It is easy to see that if

Ims # +4nid,
then
(38) lim " ¥ g(A,, 8/2) = 0,

Ort-0

where y = 6-+p+4, and r is an integer with the property y--2r >0.

On the other hand, if Ims = :1:47:15 then (8841671, ™ = (o
+ 20+ AmaE =R+ g0 that
i 0"+l 812) = Tp-+20)-2 8 (i) rg T
Hence
(39) lim o ?+"2ang(ln,s/2)
o>+ =1
Py+202"%m "4, A776¥ 72 if  Tms = -Ldmid,

0, otherwise.

Using (39) in identity (20), we obtain
(40)  lim o™ [ [BE(2%)—Q,(#")10* e dn
a0 o

_ ‘F(y—[—27’)7:”*7"%2‘3”""2""1:1,,-l;"“’e*"i"’z, if  Ims = ;[:47:1»%,

0, otherwise.

Now let -
N
(1) W) =[] Vinit,o—0,),
k=1

where N is a positive integer, 6, is a real number, and

(42) V(2) = 2c08*(32) = $(2+ ¢+ ¢7™).
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We note that V(z) is real and non-negative for real «. Using (42) in (41),

we can write

N
W) =143 2 [0+4nii.%k1-iﬂk_,_e—4—ll§ z-‘-wk]_!_ Ua),
k=1
where U (x) is & trigonometrical polynomial with exponents

(43) am(r 2 +radd + ek,

where 7, takes the values 0, 41, or —1, and no combination (r;, 75, ...,
ry) is sueh that all the component #'s are zero, nor such that all bub
one are zero and the remaining one equals +1. By our hypothesis it

follows that none of the exponents (43) ean be equal to zﬁi for any w.
If we now consider the limit

(44) lim o"*® f [B:(#%)—Q,(#* N e W (0)ds

G0

it follows that because of relation (40), U(x) contributes nothing fo the
integral, and we have :

(43) Ilim ————

ortd 1’( o) f [BS(2) — @, (#) 12"~ W (4) dv

= Oy, 008 (0, — 7y [2)
= Y7 ’
k=1 z"k

where ¢ = g ~¢"12~%¥-3-2—512  Qince

. o - 0 [ 2\ 9\ a2F ,—OX
I s Df Ro[B4(a) — @, (2)]a”e "> W (a) du

< limsup R————"GEBE (m‘3 T LA )]
M o

we obtain from (45) the inequality

Re[B(s")—Q, (mz)] o1 Re a,, cos (0, —my ]2)
g1 lnlz

k=1

(46) limsup
T—00

Choose
if Rea, >0,

if Reap,, <0.

_ ny (2,
' wy [2—m,

Acta Arithmetica VI
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Then (46) leads to the inequality

(47) imsup 2o PA@) =€ (@)] }czmew

L—>00 .’,07_1 — l%lkz ?
withy = 6+ ¢+ 3.
Similarly we obtain also
Re[Be(#*) —Q, (a* > |Rea,
(48) liming BT —Q(@)] N ROt
200 & Lmd Ank
Hence, it Z”' ROy _ | oo, then we have
y “~ l%: ’
= Re[B (%) —@,(%)]
(49) lim —Jm%(y_—l)e— = Joo,

L—>00

which proves (33) and (34) as claimed in Theorem 1. It is obvious that
the ecorresponding result holds for the imaginary part. (In consequence of

Lemma 2, we note that the functional equation implies that Y [Rea,| 1,
[

= —+co, in case p = 0.)

Since we can always piek just one term of the sequence {4,} to serve
as the stipulated subsequence 1, , inequalities (47) and (48) lead to Theo-
rem IT.

If we use Lemma 2, and observe that J,(#) = O(z-%) as @ — oo,
it follows easily that BS(x)—Q,(x) = O(#}¢+9-1) for ¢ >2a—d—13.

4. Examples. We shall now work ‘out the implications of the
theorems in & few important cases. It will appear that even for the spe-
cial arithmetical functions considered, our theorems yield new results.

ExamprLE 1. If z(n) is Ramanujan’s arithmetical function, defined
by the relation

L

D) =2 {(1—2)(A—2t)(1—2%)..}%, || <1,
n=1
then it is well known ([8]) that its generating function defined by
. 0 T('n
ps) = X'

n=1

satisfies functional equation (14), with 6 = 12, 4, = u, = n, and @, =

=D, = v(n). Further, the function @,(») of Lemma 2 is zero in this case.
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For the subset {Ank} whose existence is stipulated in the hypothesis of
Theorem I, we can choose the set of positive square-free integers. That
this set satisfies the requirements is a consequence of Besicoviteh’s theo-
rem that the fractional powers of certain classes of integers are line-
arly independent over the field of rational numbers ([1]). To verify con-
dition (32) of Theorem I, we observe that the proof of a lemma of
Pennington’s ([15]) carries the following implication:

200 @l
ZT_+ implies ; ¢ o0,

where ¢ runs over all positive, square-free integers. Thus if
(50) O _ oo, where y=dteth
Me=1 n

then we obtain, by Theorem T,

. T“(m) L. Te(a,) L
o msup gy = T BRIy = T
where

(F(e+ 1) To(@) = Y t(n)(@—n), ¢ >0.
n<x .
It
(52) %7,-?—1 < 4oa, where y=d+e+d
n

n=1
then, since (n) is not identically zero, by Theorem II, we have
(53) Te(x) = O(aht-D), T°(z) = Q,(ad~).

b —25/4
Since 8 — 12, and we know, for instance, by Lemma 2, that 3'z(n)|n *

1
= +oo, condition (50) is satistied for o = 0. Hence Theorem I yields the
conclusions

T ... T®
(54) ]imsup—z—(g% = 00, hmmi——wzsfa = —oa.
T—00 m T—00

This result is due to Pennington ([15]). On the other hand, since
§ [7(n)| n~ "= < oo for & > 0 ([8], p. 173), condition (52) is satistied for
91 >}, and Theorem 2 yields the conclusions

(55) (@) = O@di+he), To(a) = Q. (1)

for o > 3.
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ExAMPLE 2. Let o,(n) denote the sum of the kth powers of the divi-
sors of n, where & is an odd integer, & 54 0. Then 3 o (n)n™° = £ (s—x),
N=1

and functional equation (14) is satistied by ((s)l(s— k) with ¢ = k+1,
In= g =N, @ = op(n), and b, = (—1)#+V2q, (n). I‘ulthel the function
Q,(z) of Lemma 2 in this case is the sum of the residues of the function
L(s)C(s—R)a* T (s)

I'(o+1+5)
at ity poles ([4]). For the subset {4,) we can again take the positive,
square-free integers.

Case (i). First consider oy(n), Whme k is a positive, odd integer.

(36)

We have #* < o(n) < enF, &> 0, and ak(n)n < oo, fora >k+1,

n =1

while 3 op(n)n~® = +oo for a < k+1. Further, if ¢ stands for any

i
square-free integer, then Z’ak(q Yg™*<< 400 for @ >k+1, while 20;0 (@)g™®
= +oo fora <k+1 smee 2 q %< +oo for @ > 1, while Zg +oo

for @ <<1. Hence by Theorems I and II we obtain the followmg results:
HI'(e+1)8%(2) = )Y op(n)(w—n)%, and % is a positive, odd integer,
nLr

then
O (whk+e+d)y,

¢ -— =
(57) HO—0o) = | s,
for ¢ > k-1, while
; Si (@) — @, () e SE(0) =0, (2)
(58) hil;%;lpm = +o0, hﬁgﬁ W = —00
forpo <k+%.

Case (ii). Now consider o;(n), where % is a negative odd mtegel We
have 3 ox(n)n " < oo if ¢ >1, while 20 (m)n™® = o0 if 4 <X 1. Argu-
- ing as in Cage (i), we obtain the following :

O(attreid),

59 88 (@) — =
(69) H(7)=Qy(2) Q, (aktter by,
if ¢ >|k|+%, while
8 (2) —Q, (x) oo SH)—Q, (@)
(60) hmsup mm = +oo, 11£2ﬁ T%(H“a{' )

it o < [kl 4.
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ExaMpLE 3. Let 7,(n) denote the number of lattice points on a k-di-

mensional sphere of radius Vn.The generabing function {(s) = 2 re(n)n

N=1

k> 2, is Epstein’s zeta-function ([5]), and functional equation (14)
is therefore satistied with ¢(s) = 2°C.(s), 6 =k/2, a, = b, = 1 (n),
and A, = u, = %n. Further, the function @,(») of Lemma 2 in this case
is given by

nk/ﬂ mk/2+g 0

I(e+1+k2)  I'(e+1)

(61) Q,(z) =

It is easy to see that 37 (n)n™"* = 4co, and Yr(n)n*#~* < oo, for
e>0. In order to invoke Theorem I we choose the subset {4,} to be
the numbers 4¢, where ¢ is a positive, square-free integer.

Case (i). First consider 7,(n) for k > 4. We then have r,(n) > en*?!
for n odd, and Yrx(g)¢ " = +oo. The inequality is well known ([1.3},
p. 113, Satz 172) for % = 4, and can be derived for ¥ >4 by observing
that 7,(n) = 2 151 (n—m?2). Hence, by Theorems I and II, we have

m? <n

the following:
= gklre

I Py = o D) e @ =) — Fe T T

I(o+1)

[IE7 R

with 7,(0) = 1, and k >4, then

: , O(w%(klz-i-e—})),
(62) Pi(w) = I o, it 1),
if ¢ >3(k—1), while
o o P@)
(63) Tin sup "L}“(k;ﬂzig)_g) +oo, hﬂff et
Z-—>00 .
I <3(k—1).
Case (ii). Let & = 3. Smcez "Elg) +4oo, and 7y(dn) = 75(n),
=1

» . 1 o @ -
we have 2 3" _ | o, and ry(n) = 0 it and only i n = 4(@m+7)

PR
4tn
I n = g*q, where g is squave-free, and 4{7, then ¢* = =1 modi(s1 somtha];;
¢ =Tmod8 if and only if » = 7mod8, le. 7s(n) #0 if and only
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73(¢) # 0. From this and the explicit formula for »4(n), originating in
the work of Gauss ([11], p. 253; [14]), we obtain

73(n) < ngl+ETS(Q)7 0<e<1l
if 44n. Hence

73(n) 73(g) g'te 75(q)
27{/? s ce;’ " ZT - 02 ‘Z‘s’/r

4tn g odd q

and since the series on the left diverges, so does 215(@« Hence (62)

qwz
and (63) hold for & = 3 as well.

. Case (iii). Let & = 2. Since any prime p of the form 4n 1 is expres-
sible as a sum of two squares, we have, if ¢ stands for a square-free inte-

ger,
7a(9) 73(p) 1
yu. o, v
¢ pagdi p paZﬂmd& ?

(See [11], p. 155). Henee (62) and (63) hold for & = 2 ag well. Thus, if
¢ >%, we have ’

Pio) — ‘ 0($%(e+})}7
‘Q:i: (w*(‘ﬁdb) ’

whereas if ¢ <},

; Pi(w) . P4
e = s e Z

PR s YT U

If ¢ =0, we get Ingham’s result (8).

Remark. For k& > 4, better estimates are kn i
See Petersson [16]. ’ o i the case ¢ = 0.

EXAMPLE. 4. Case (i). Let 8 be an indefinite quadratic form in more
;]fn four va,rmblt‘-:ss, with rational coefficients, and positive determinant.
o 1;?;1 the genfara.tmg funfztion iy Siegel’s zeta-function ([18], [19]) which

sfies f'lmctlona.l equation (14) and the same conclusions as in Example

3 are valid. We have only to note that u(S, t) > ¢-£2~1 if it; iy non-zero

a..nd that all sufficiently large integers of certain arithmetical progresz

§lons are repregentable ([177).
Case (ii). The same remarks as above apply to the case of positi

L ; : pitive

ziflzln.l}:e I;ogug, ,w1th ratwnaJ. coefficients, in which case the generatilfg fune-

o pstein’s zeta-function, which satisfies equation (14). If the coeffi-

8 are real, then the second part of estimate (62) holds for o > 0.
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