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Distributions of the values of some arithmetical
functions

by

P. ErDOS (Budapest) and A. SCHINZEL (Warszawa)

§ 1. Y. Wang and A. Schinzel proved, by Brun’s method, the fol-
lowing theorem ([3]):
For any given sequence of h non-negative numbers a,, Gy, -.., @y, and
e >0, there ewist positive constants ¢ = ¢(a, &) and z, = xy(a, &) such
that the number of positive integers n < « satisfying
p(n+1) |

1W+i_1)_ai§<e A<i<h)

is greater tham czflog™'s, whenever x> x,.

They also proved the analogous theorem for the funetion o.

Shao Pin Tsung, also using Brun’s method, extended this result
to all multiplicative positive funetions f,(n) satisfying the following con-
ditions ([4]):

I. For any positive integer 1 and prime number p:

Lm (f,(p)/p®) =1  (p denotes primes).
P—oo

IL. There exists an interval {a, by, a = 0 or b = oo, such that for any
inleger M > 0 the set of numbers f,(N)/N®, where (N, M) =1, is dense
in {a,b).

(This formulation is not the same but equivalent to the original one.)

In this paper we shall show without using Brun’s method that if
we replace the condition I by the condition

2 (fS(-zgs:1pS)z < oo

(but preserving condition II) then there ewist more than C(a, &)@ posi-
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tive integers n < @ for which
[ falnt9)
fotnti—1)
This theorem. follows easily from the following stronger theorem.
TasoreM 1. Let f(n) be an additive function, satisfying the following
conditions
1. J(If@)2/p) s comvergent, where ||f|| denotes f(p) for |f(p)] <1
»

and 1 for |f(p)] >1.
9. There exists @ number ¢, such that, for any integer M >0, the set
of numbers f(N), where (N, M) = 1 is dense in (¢1, o).

—a|<e (i=1,2,...,h).

Then, for any given sequence of h real numbers Gy Gy, ..., &y and
£ >0, there ewist morve than C(a, &)@ positive integers n < for which
@) fti)—flntri—l)—a] <e (i=1,2,..,1);

O(a, &) 18 a positive constant, depending on & aond a;.

LA, There exists an absolute constant ¢ such that the number of
the integers of the form pq > for which one can find n < satisfying
n = b (moda), n = 0 (modp) and n+1 = 0 (modgq) is for @ > m,(a) less
than oz e

Proof. Let ¢,,¢,,... denote absolute constants. Assume p >a'
(g > o' can be dealt similarly). Denote by 4;(») the number of integers
of the form pg satisfying

2

-1 <p < w1—1/2l+1, n = b (moda), pln, qn+1,

for some 7, 1 < n <Yy,

pg >,

and by A4;(z) the number of integers pg for which

19t 1 r9l+1
s q>a,

n = b (moda), pn, gqn+1l,

1<n<o.

T+1
<p<m1—1/21 ,

for some n,
Clearly A4; () > 4;(x) and it will suffice to prove that for o > @y(a)
E’Ai (%) < ox/a.
- Define positive integer 1, by the inequality

1
o > Zlogw > 2%,
@

The number % of integers » satisfying

1—120+1

2) n<®# n=0>b(moda), = =0(modp), A < p <
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for an 1 > 1, does not exceed 2 ([i] +1), thus by theorems of
27>p>z1"‘2_l$ pa
Mertens and Chebyshev
o

a2z

Co®
loga

and by the definition of I,
Cy
loga’
Denote the numbers satisfying (2) for an I > 1, by a, <a, < ...
<@ <. Since for all y <, »(y) < ¢logzfloglogs (from the prime
number theorem or from more elementary results), we have

k
, ¢ logw [
() lgf; 4@ < é‘y(a') < logz loglogs = a
for # >z, (a).
For 1<, denote numbers satisfying (2) by o < al < ... < a.
Similarly as for & we have for %; the inequality

Ca®

C Co
By < 07 72
1S gor T logz
hence by [ < 1,
v [
(4) k< i
‘We shall prove that for 7 < I, and sufficiently large =
ky
5 ) = 0 it
() i) = In(a+1) < 5

where »,(m) denotes the number of prime factors > z'2 " of m.

For this purpose, we split the summands of the sum (5) into two
classes. In the first class are the integers af? for which v (al+1) < 2.
From (4) it follows that the contribution of these integers af to (5) is less
than ca/al’. The integer in the second class satisty »(al’4+1) > 212,
Thus these infegers are divisible by more than 24 primes q >z
Thus the number of integers of the second class is less than

e¥12]
At g, 2y, w(e )t
] + [—-J! = :

[2'/e]! z a[2}i]!

<

2 2logx ] x

L1 —_—
a5 " Laloglogz ]’ = 4 &
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for 1 >0, ® >ay(a). By definition, w(a +1) < 2. Thus, for I > o,
the contribution of the numbers of the second class to (5) is < #/a-2-1;
for 1 < ¢, the contribution is clearly < 2°0*'g, Thus, for I < 1,, > x,(a),

A (@) < oz /al?

and in view of (3) we have for # > x,(a)

fe]

@ % ox
Ay < ==+ Do < —
l;: @ 5T, al /]

which proves the Lemma.

Proof of the theorem. Let ¢ be a positive number and let
a sequence a; (i =1,2,...,h) be given. )

%y eond;tion 2 ,We can find positive integers N,, Ny, ..., N}, such
that

(6) (Nu(h‘{‘l)!):l (E=0,1,...,h), (NhNy‘):l (0 <@<]<h)7

f(No) > o+ max {f(5+1)— ¥ o)
1<ish =3

and ‘
|F)—{f ) —Fl+ 1+ Y af < ke (1 <i <D
i=1
hence
(7 [F(G+ 1) M) —F(N ) —a) <3e (1 <i<h).

Let k, be the greatest prime factor of Ny N,...N;. Put p=

s/}/96hc (¢ is the constant of the Lemma). By condition 1, mp%w A /p)

is convergent. Since Y(1/p’) is also convergent, there exists a &,
»

such that

a1 1 1
(®) D Y <
lf’(Qlk?u‘p p>k2p 3(h+1)
23

Finally by condition 1 there exists a %, such that

flpy &
9) . <z

F®)<u
D>ks
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Let us put
k = max(k,, k,, k), N = N, N,..N;, P= ”p, Q = (h+1)! N*P
o<k
PIN

and let us consider the following system of congruences
n=1(mod(h+1)P), n = —i+N;(modN}), 0<i<h.

By (6) and the Chinese Remainder Theorem there exists a number n,
satisfying these congruences.
It is easy to see that
(10) for every integer t the numbers (@ +no+9) i+ 1)N: (5 =1, 2, cey B)
are integers which are not divisible by any prime < k;
(11) the number of terms not exceeding » of the arithmetical progression
Qi+ny is 2/Q+0(1).
In order to prove Theorem 1 we shall estimate the number of inte-
gers n of the progression Qi+, which satisfy the inequalities
3
A2 n <o, F{ft—fnti=1)—f{G+ DN N > 1ot
1=1
We divide the set of integers % = n, (modQ) for which the inequalities
(12) hold into two classes. Integers n such that n(n+1)...(n+h) is
divisible by a prime p >k with [f(p)] > g, or by 2’ p >k, are in the
first class and all other integers are in the second clags.
(18) The number of integers n < %, n =7 (modq) which are divisible by
a given integer d >0 is equal to z{dQ+0(1) for (d,Q) =1,
hence the number of integers n < T, n = n, (modQ) of the first class is

less than
(M—l)jz;—( D 1% +£§%)+o( 21+ D).

D>k P<T+h D) 5
@) zx PP+

By the inequality (8) and the definition of k this number is less than
Y20+ o ().
For the iutegers of the second class, by remark (10) we have

’r

2 N =i i—1)—f(i+1) ¥ +FEN))

l/jn'

]
-

| 22 Yo~ Y s,

i=1 pln4i Pin+i-1
P>k >k
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where )’ means that the summation runs through the integers of the
second class. In view of remark (13), since (@,p) =1 we have

S 3 - 3 sof

n+i pNA4-i—1
p>7gllf(r)l<u p>)c,|f(m|<n

<

n=ngy(mod Q) i=1
n<e

- Y ro (%"—Z_ +0(1))+

o+h>p>k
Hp)<u

h

v 3 N

n=nq{mod Q) =1
n<E

D Iof@+

pgn-+i, >0 >k,
o) <u, 1@t <p

ff (@2 @)
\n 41, gjnti-1,a>k

+2
i b »
i e D>, 1) <4, @I <0

>

P, ain+i—1
De=x, D>k, 0>k
1H(p)l<p, f@i<s

+o( D rwr+
D<+h
ifo)<n

Thus finally from (9), Lemma, the equality u* = ¢ /96hc a,nfi from th.e
fact that the number of integers of the form pg not exceeding z+h is

o(x), we gef

h
= oy 3 3

o>k, fip)|<p

If (o) (el +

)

1>0>k, Pe<@+h
(o)< 1 (@i<p

n=ng(mod @) i=1
N

@) ))-

&
—-—+o(x).
8<43 0 +o(x)
Thus the number of integers of the second class is less tha:n t2/Q+o(2).
Hence there exist less than %w/Q—{-o(m) positive integers » < =,
7 = ny (mod @) for which
> N 2
Dot —flrti— ) —F(G+ DN+ FEN)) > 16
=1
Therefore by (11) there exist more than }2/Q-+o(x) positive integers
n < &, for which

h
(font i) —fOnt i) —Fli+ 1) N+ FEN)) < 36

i

N

icm
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and then
[F(n-+4)— f(n+ i—1)—f((i-+ ) N+ FGN:_) < de
In view of (7), the proof is complete.

THEOREM 2. Let f(n) bt an additive fumetion satisfying the condi-
tions of Theorem 1 and such that partial sums of 2(” f(p)”/p) are bound-

(i=1,2,...,R).

ed:
If (@i
(14) VA N L2
<k r

Then for any given natural number h there emists number ¢;, such that
for any & >0 and every sequence of h numbers: @y Gy vy Oy 2> Cp, there
exist more than C(a, e)x positive integers n < %, for which
(15) Fnti)—al <e (@E=1,2,...,h).

Ola, ) is a positive constant, depending on ¢ and a,.

Proof. Let ¢ be a positive number, ¢, = ¢, maxf(¢) and let a se-
quence a; > ¢ (4 =1,2,..., k) be given.

By condition 2 we can find positive integers N,, N,, ..., N} such
that

(16) (i, Bl) =1 (i=1:27---’h)7 (N,-,.N:,-)zl (1\<\7:<j < h)
and
a7 F(N)—a+fl) <3e (=1,2,..,n).

Let %, be the greatest prime factor of NyN,...N,. Let ¢ be an absolute
constant such that

1 1
—< (}'logl—og for all 2>y >1.
vipae P ogy
Put u = £/TOVh. By condition 1, ' (1/p) is convergent. Since > (1/p?)
eI

is also convergent, there exists a k, sueh that

1 1 1
(18) eyioL
!f(?)l;u,p>k2p D>ko p

By condition 1 there exists also a kg such that
2 2
&€

(19) for =
kg Toi<u 7 ~

Put 5 = ¢/V/96h, B = 4+1/3h and denote by I, the interval

D=3, v9+39], »=0, 41, 42, ..., £[B/y+1]
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and let &, be the least integer & > max (%, ks, ks) such thatpgkf,\j(m!kp(f(p) /p)
. - . . b o— 1
if such integers k exist, otherwise let y =
) IﬂNOW if > (f(p) fp) €I, —by the condition (14) and by (18) such
D<A, (D) I<u
», certainly exists—we put &, =1k and then we get

(20) \! M <7, k< max k,=kFk.
P PI<[B/m]+1
T4+h>p>E
1f@)i<n

Let > denote that the summation runs through all primes

p, q satisfying conditions p >gq >k, pg <z +h, [f(P) < |f(@l <p.
From (20) we get

(21) 2 Z'f(P;‘Z(Q) < ( 2 M)Z N 2 % Z %

/

5D T

< o

\96h+2 . 2-4 P on 4
1=2 b)) 125 po @bty 112 o+hg>
2012 N & 40t < I

Soen CANETY 2 < oan

N = ...N P =
Let us put ¥ = N, N, hy K;QHNPJ
(22) Q=nNP<HN [] p=0
o<k, ptN

and let us consider the following system of congruences:
n =0 (modh!P), == —i+N;(modNj).

By (16) and the Chincse Remainder Theorem there exigts a number n,
satisfying these congruences.
It is easy to see, that

(23) for every integer t the wnumbers (i=1,2,...,h) are

Qt+ny+4
@
integers, which are not divisible by any prime < k.
Analogously, as in the proof of Theorem 1, we shall estimate the nuI'n-
ber of integers n of the progression Qi+ n,, which satisfy the inequalities
"
(24) n<a, 3 (flnti)—fEN))P > e

i=1

icm
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We divide the set of integers n = n, (mod@), for which the inequal-
ities (24) hold, into two classes. Integers » such that (n+1)(n+2)...
(n+h) is divisible by & prime p > % with If®)l > u or by p% p >k
are in the first class and all others integers are in the second class.

By remark (13) the number of integers n < &, n = ny (modQ) of
the first class is less than

&r 1 1 v v
"a( ;+Z‘p‘f)+0(_o 1+ 3 ).
P>k, [f@)=u o>k p<+h piezih

By the inequality (18) and the definition of % this number is less than
$2/Q+o(z).
For the integers of the second class, by remark (23), we have

- h R X
2 et i—famf = 3 (N i)
i=1 i=1 pnt+i,p>k
and

> é:(f(7z+i)—f(iN¢))’=Z"Zh’( Y i),

n i=1 pin+i,p>k

where 3" means that the summation runs through the integers of the
n

second class. In view of remark (13), we have

h h
2 Ysa—savp< 3 N3 gwf

P,
f=1 R=ng(modQ) i=1  plnti, o>k
ngr

~ hg ~ ha
= ) [+ 0 2 3 (_~
f(p)i<u
ha o ' f(p)f(g)
S5 -2 )+
Q (ﬂ>k,|—f>(;:}<# P Z pg )

+0 (pghflnmz' fwiran)
v(an,,

Thus, finally from (19), (21) and from the fact that the number
of integers of the form pg not cxeeeding #4-h s o(z) we got

r 2
N\ ) . & =z
M —fanar < £ E o).
nd T—»_l‘ 12

Acta Arithmetica VI 31
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Thus the number of integers of the second eclass is 1‘e§ss th.a,n 12/Q+o0(2).
Hence, there exist less than 22/Q+o(x) positive integers n < u,

n = n, (mod @) for which
h
(f(bn+6)— PGNP > 16"
=1

By (11) and (22) there exist, therefore, more than $#/@ - o(#) positive
integers n < @, for which

h
D [fnti)—fuNIf < e,

and then
ot —fEN) <je (=1,2,..
In view of (16) and (17), this completes the proof.

Theorem 2 is best possible. Assume only that there exists an o and
a ¢ >0 5o that the number of integers n < sabtisfyng [f(n)| <a is

greater than cz. ,
Then ZM eonverges and VM has bounded partial sums.
P ~ p ]
In the paper [2], P. Erdos proved () the following theorem:

If there exist two constanis ¢, and ¢, and an infinile sequence @, — oo
so that for every u, there are at least ¢,z integers:
1< << . <oty 1264,
for which
fla)—=fla)l <oy 1Ki<] <,

then
f(n) = alogn+g(n), where Zﬂg(g_)h < oo

In our case the conditions of this theorem are clearly satisfied and,
in fack, we clearly must have a = 0. This implies that

yler
?

(!) The proof of Lemnma 8 [2] is not clear and on p. 15 needs more details
similar to these given above.

icm
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Assume now thab Z(][f(p)[]/p) does not have bounded partial sums.

Let eg. (f(p)/p) =4, A large. Then by the method of Turin
p<z

([6], cf. also [2]) we obtain
x
Z(f(n)—AV < ¢y
=1
which implies that |f(n)—A| < 4—a for all but nz integers n < @,
where 7 = ¢;/(4 — a)’. For sufficiently large A, it contradicts the assump-
tion that |f(n)| < @ has ¢z solutions » <, thus the proof is complete.
In Theorem 1 one can replace Y (|f(®)/p) < oo by: there is an
a 50 thai if we put f(n)—alogn = g(n) then 3(lg(p)I*/p) < co. We think
that here we again have a necessary and sufficient condition, but we
cannot prove this. In fact, we conjecture that if there exist an ¢ and an
¢ > 0 such that the number of integers # < « satistying |[f(n-+1)—f(n)| < a
is > ¢», then

f(n) = alogn-t+g(n) with 2 ”9(5)“2 < oo

§ 2. The proof of Theorem 2 is very similar to the proof of Lemma 1
of P. Erdés’ paper [1]. Using ideas and results from that paper we can
prove the following theorem.

TeBORBM 3. Let f(n) be an additive function satisfying condition 1

of Theorem 1 and let 3 (1/p) be divergent, Y (If(p)lfp) convergent,
f{m)=0
then the distribution function of h-tuples {f(m--1), f(m~+2), ..., f(m-+ h)}
exisls, and it is a continuous function.
Proof. We denote by N(f;ey,¢,,...,cs) the number of positive
integers m not exceeding n, for which

f(m+1) > Ciy

where ¢; are given constants.
I$ is sufficient to consider, as in [1], the special case in which, for

any a, f(p*) = f(p), so that
flm) = > 'f(p).
pim

Let us also consider the funetion f,(m) = D f(p). We are going
2lm, <k

i=1,2,...,h,

to show that the sequence N (fi; 64,6, ..., ¢p)/n is convergent. For, if
we denobe by 4;; (j <jo,) the squarefree integers whose prime factors
are not greater than %, and for which fe(4; ;) > ¢, we can see that the
integers m for which

Jelm+i) =e (1=1,2,...,h)
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are distributed periodically with the period [] \ 4;;. Hence N(fy;e,,
1<t <
) 1<i<Tps

Gay ..<y Cp)/n has a limit.

To prove the existence of & limit of N(f; ¢y, €2y ..., €a)/n it is suffi-
cient to show that for arbitrary ¢ > 0 there exists k, such that for every
E >k, and n >n(e)

[NV (f; €1y Ca5 oevy ) —DN (fi} €1y Cay ovy Oa)| [0 < &

To show this, it is enough to prove that the number of integers m < n

for which there exists ¢ < h such that fy(m+14) < ¢ and f(m+4i) >¢
or fy(m—+14) = ¢; and f(m-+14) < ¢; is less than ehn. But it is an immediate
consequence of the analogous theorem for 4 = 1 proved in [1], p. 123.
In order to prove that the distribution funection is continuous we
must show that for every &> 0, there exists a 6 >0, such that

A=N(f300—8,0— 0, ..., 00— 8)—N(f; 4+ 8, a0, ..., 0+ 06) < e.

Now
h

A= D UN(f 048,y 61+ 8, 6—0, ..., 4~ 0)—

i=1
—N(fie1+98, ..., 6+ 6, 6.1— 8, ..., 0,—0)}
and by Lemma 2 of [1] each term of this sum is less than ¢/h for suitably
chosen 4. This completes the proof.
‘We conclude from Theorems 2 and 3 that if an additive function f
satisfies conditions 1, 2,f(p§o' (1/p) is divergent and 3 (If(p)ll/p) conver-

gent, then the distribution funetion of {f(m-+1), ..., f(m-h)} exists,
is continnous and strietly decreasing on some half straight-line, thus
the sequence of integers n for which inequality (15) holds has a posi-
tive density. Similarly we ean prove the following:

1 If @)
— = 00 d th —— oo
: and  that E " <

f@y=o P
then {f(n+1)—f(n), F(1+2)—f(n-r1), ..., Fln+T)— F(at 1)) Tas

a continuous distribution function.
It is easy to see that condifion 2 can be replaced by the conditions

Lm f(p) =0 and  Y'(f(p)] = co.
P00 7

THEOREM 4. Assume that

§3. Y. Wang proved in [6] that the number N of primes p < &
satistying
[e(@+r+1)
)

—a,|<e, 1<K<v<k

icm
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iy greater than
@

o(a, ) (logzY***loglogs =

By our methods we can obtain in that case

N >o(a; e)

logx

Atter having passed to the additive function log(p(n)/n) the proof is simi-
lar to the proof of Theorem 1. We use the fact, that log (q; (n) /n) is always
negative, and apply the asymptotic formula for the number of primes in
arithmetical progression instead of (11) and the Brun-Titchmarsh theo-
rem instead of (13).

‘We can also prove that there exists distribution funcetion N (e, ¢5, ..., ¢;)
defined as

.1 @+

im —— N z; =e =1,2,...,k).

P )] @ <a; p+v 7" Y 1 2o )
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