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On some problems of the arithmetical theory
of continued fractions

by

A. SoHINZEL (Warszawa)

§ 1. For a given quadratic surd & let us denote by

[boy bla LN} bh—u bh: bh+17 AERE] bh-(-k-—l]

its expansion into an arithmetical continued {fraction, by Ip£—the
length of the shortest period of this expansion, by lapZ—the number
of terms before the period. For some polynomials f(n) assuming only
integral values (so-called 4nfeger-valued polynomials) there are kmown
formulae for the expansion of V’W) into continued fractions such that
the partial quotients are also integer-valued polynomials and lpl/f(n)
is independent of » (ef. (3], [5]). Recently H. Schmidt has proved ([3],
Satz 10) that

If b is an integer %0, 41, 2, 44, then for each ny the set of all
integers = n, cannot be decomposed into o finite number of classes, so that
the relation

Vit h = [po(n), Pi(n), ..o, pe(n)], n=my, nek,

holds for each class K (p, are polynomials assuming integral values for
neK, k depends only upon K).

This theorem suggests the following problem P.

P. Decide for a given integer-valued polynomial f(n) whether

limlp ¥f(n) < oo.

An investigation of this problem is the main aim of the present paper.

In § 2 we investigate the relation between Ip £ and Ip((p&-+7)/(q€+9)),
where p, q,r,s are integers.

In § 3 we give a negative solution of the problem P for polynomials
of odd degree and for a large class of polynomials of even degree.
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In §4 after more accurate study of the behaviour of the funetion

IpVa*+h and on the base of results of § 2 we give a complete solution
of the problem P for polynomials of the second degree.

We shall use the following notation; &, &, £ will denote either ra-
tional numbers or quadratic surds;in the latter case 7, %, %" will be cor-
responding conjugate numbers. Putbing

& = [by,y by, by, ...]
we shall assume simultaneously
" A, =1, Ay=by, A, =bA, +A4,,,,
B_,=0, By,=1, B,=bB,,+B,,,
(whence [by, by, ...,b,] = 4,/B,) and
& =1y byysy byay .ol (ef [2], . 24 and 34).
For rational & we put Ipé = 0 and
lapt — if ¢ is an integer,
i E=1[by, by, .., by ], by, >1
(the so-called normal expansion).

§2. Lemma 1. Let b >1, h and s be positive integers.

If
(2') &= [blu bu [RRE} bh~1]
or
27 &= [b,, b17 sevy bh——l: i’h} bh:--) bh+k_]],
where
(3) by < b T<igh-1),
then
(4) i<B <V (0<i<h~—1).

Moreover, if for some integers p and r

) £ =@E+n)s,
then
) lap & < 2b”.
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Proof. Formula (4) follows by easy induection from (1) and (2).
Hence for rational £ we immediately get the remaining part of the lemama.
In fact, putting
’ ’ ’ ’ 'A”_
& :[b07b11..-,bh!-1]=§?:j! ®
we have in view of (5)

'
Apor  pAs 7By

’ - b
Bh’ 1 SB;L_I

then lap&’ = ' < By, < 8Bj_, < sb* ' < 2sb™.
In the case p = 0 we have likewise
Ap
By
One can therefore assume that & is irrational and p # 0. It follows
from (2'') that

1. ’ ’
== whenee lapé& =k’ < By, < s < 28b".

&= [bo; biyoovs baas &ls

&, which has a pure period in its expansion, i3 by a well-known theorem,
a reduced surd, i.e.

(7} & >1, 0> >—1.
On the basis of well-known formulae (ef. [2], §13, (7)) we have:
4, 1yt
s (D)

By, By 1 (By 16+ Brs)

_ A (=™
B, , By (Byym+Bis) |

whence
=&l
|Baor=+Ba_2/Enl* | Ba_yfin+ Bl

[§—n} =

Since, in view of (7),
0 < —nulén; 0 < Bp_i1+Bu 2/ < By1+Bn_s < By,
—Bj_1 < By_1p+Bnos < Bu_y < By,
we get by (4)

[E—n| >1/Bn_ By >1/b™}
and by (5)

/4

15'—17 | = T [§—nl> ?W‘—‘]'
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It & >, we assume A’ = 2sb"—2. Therefore, in view of (4),
1
|&'—7']"
We shall prove that &, is a reduced surd. It follows from the
formula

(8) Bi 1By, >N (K —1) = (2sb"—2) (280"~ 3) > sp™" >

’ A"L’—l (_‘ 1)h,~1
= Bllz'—l B}’z'—l(Bi'z'—N?llz"*“Brlw—z)
that
C o (=
By 1(Biyoy M+ Bros) = m, .

Sinee B’ = 2sb"—2 is even, we have
Ay JBy =y > —n >0.

The last two formulae together give

1 r ? n’ !
ET:?? > (Bp—1mp+ Bprg) Broy >0.

‘We then get, on the one hand,

0 < By_ynp+Bu_s, Whence 7 > —Bp /B, > —1;

on the other hand, in view of (8),

Bj_yBjy_y > By (By_1 My +Br_s), Whence N < 0.

Therefore 0 > 7;, > —1 and since &, >1, the surd &, is reduced
(for ' = 2sb"—2).

In the case #' > & we prove similarly that the surd &, is reduced
for 1’ = 2sb"—1. Since a reduced surd gives in its expansion a pure
period, we have in both cases

lap&’ =n" < 2sb", q.e d.

Remark. Inequalities (4) and (8) ean be greatly improved; how-
ever, it is without any importance for the applications intended.

In the following we shall profit by a theorem used in the investigation
of Hurwitz’s continued fractions and due to A. Hurwitz and A. Chate-
let. We quote this theorem according to Perron’s monograph ([2], Satz
4.1) with slight changes in his notation to avoid confusion with owurs.
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H. Let [by, by, b, ...] be the arithmetical continued fraction for a quad-
ratic surd &, A,, By—the numerators and denominators of s conver-
gents, and &—its complete quotients. Further, let

_ Doty
_—————80

34 (Do) 75 Sy—integers, poy >0, 85 >0, PoSy = d >1).

For any index » (=1) the number

Polboy by, .oy b, 1141, _ PoAv—1+7’oBv__1
So S0 B,
can be developed in an arithmetical continued fraction [dy,d;, Y

and besides the number of its terms can be chosen so that y = v (mod 2);
let C,, D, be the numerators and denominators of its convergenis, so that in
porticular

Pod, 1, +10B, _ Cun

8(]Bw—-l D/z—l

Then there emist three uniquely determined integers D1y ¥y 8y Such that the
formula
Do To| (4s-s Av—‘z): Cuy Cua\[ps 1
0 s/\B,_, B,_, D, , D, -/\0 s,
holds and besides
P >0, § >0, ps;=d,

—8 <71 <Py

— P1&,+7y
8y )

& =1[dy, dy,...,d, ,, ], where £,
The theorem quoted obviously preserves its validity for d = 1 as
well as for rational ¢; in the latter case under the eondition » < lapé.
On the bagis of Lemma 1 and theorem H we shall show
THEOREM 1. For arbitrary positive integers m and d there exists & num-
ber M = M(m,d) such that if lap& < m and

_ Do+
==
then lap & < M.

Proof. We shall prove it by induction with respeet to m. For m = 1
the theorem follows immediately from Lemma 1, whence after the sub-
stibution b =2, h =1 (assumption (3) being satisfied in emptiness),
P =P, T =1y, 8§ =28, we get i

lap & < 4s,.

&) ¢ (Pos 705 Sy—integers, o, 5o >0, Pos, = d)
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Assume now that the theorem is valid for m ='h—1 (k > 1); we

shall show that it is valid for m = k.
By hypothesis there exists a number M(h—1,d) such that if lapé¢

< h—1 and & ~(p§+7 /s (p,r,s—integers, » >0, s >0, ps=d),
then
lapt' < M(h—1,4).

Let M =2M(h—1,d)+2""'@*+". The proof will be complete if we
show that for any & such that lap & < % the number & defined by (9)
satisfies the inequality

lap & < M.

Since M(h—1,d) < M, we can assume that lapf =
given by one of the fornmlae (2).

1f for each ¢ < his b; < 2d, then putting in Lemma 1 b = 2d, p = p,,
P =Ty, § = &, We getb

lap & < 28, (2d)" < 210 < I

h and that & is

It remains to cousider the case where for some » < h: b, > 2d.
We then have

(10) &= [bm b17 s by &1

In virtue of theorem H there exist integers p,, »;, s, such that

£ =0, = 2d.

(1y) p1>0, >0, psi=d, —s <1 <Py,
boy biy-ves b

(12) Polbos b1, - y b,1]+ 7o = [dgy dyy -y dys],
. . 0

Etr , , £+
sy g =P gan e, g = b ET

N %
From (10) and (11) we get

=& /s—1=¢/d—1 21,

which together with formula (13) proves that numbers d,, d,,...,d,_,
are the initial partial quotients of the number £'. Hence

(14) lapé’ < p+lapé,.
Meanwhile, by (12)

Polbos byy ooy by 1417
o

u < 1l4lap

icm°®
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and since lap[b,, by, ..., b,_,] <» <}, we have in virtue of the inductive
assumption
(15) p<1+M(kh—1,d).

On the other hand, since lap &, = lapé—v» < h, we have
(16) lap &, < M(h—1, d)

and finally by (14), (15), (16) we get

lap& <14+-2M(h—1,d) <M, q.e d.

COROLLARY. For any positive integer m and arbitrary iniegers d and ¢
there exwists a mumber M = M (m, d, ¢} such that if

pE+T
q£+s

lapé<m, & = (,r, s—integers, qg&+s = 0)

and ps—qr = d, then lap & <
Proof. The case d = 0 is tnwal thus let d £ 0. It is easy 1;0 ver-
ify the equality (cf. [2], p. 56):

[~(bo+1),1,b,—1, by, bs,...] for

—[boy by bay by, ...] =
(o) Ba; Bay By, -] [—(be+1), b+1, bg, by, ...] for b, =1,

whence
17y lap(— &) <3-+lapé.
If ¢ =0, then s 520 and we have

sgnp |plé+rsgnp
I

&=
sgn.s 18]
the corollary follows therefore directly from Theorem 1 and formula
(17).
It ¢ 0, then
Ip sgng |g|é+s-sgng
§ = : f=— :
T sgnd || ’

and we obtain the corollary applying Theorem 1 successively to the num-
bers ¢ and £, using formula (17) and the obvious inequality

lapl™ < 1+41api.

LEvMMA 2. Let b, k,p and s be positive integers. If £ is given by (2'')
and & by (5) and if

(18) h<b (h<i<
then 1p & < 8(ps) b*.

h+k—1),
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Proof. It follows from (2'') that
' £ = Dny gty <o Durers 615

the number &, satisfies therefore ﬁhe' equation

(19) .Bk_l‘hwﬁ—\—(Bk_‘_,’;,,——Ak*II;,)w—A,M., 0y =0,

where numbers 4,, and B;; are respectively the numerator and the

denominator of the ith eonvergent of [y, b1y -]
Denoting by 4 the diseriminant of the equation (19) we have

4= (Bk_z,h'_‘Ak.,).,h)z’!"4BL'—1,)¢Ak—2,h = (dp_1pt+Bi_op) -+ 4(—1),
and since from (18) easily follows
*4k~1,7t < bk7 Bk—2,h < l)ky

we get
(20) A < 4b%.

It follows from the formulae

51 _ pf—!—?’ _ »-Ah—lsh'{_fil:_:_z”
Tos By_1&+ Bya
and from equation (19) for & that the number &, satisfies the equation
(21) Az’ +Bx+C =0,

where integers 4, B, C are defined by the formula

22) 24 B) _ ( s 0)( By _» Ah-«z)( 2By 1p — A )><
B 20] \—r p)\—Bu_y 45, By op—Ap_1p —245 04
% By s —By_1\[s —*
—d4y_y  AgaJ\O )
On the other hand, as can easily be seen from Lagrange’s proof of

his well-known theorem about periodical expansions of quadratic surds
(ct. [2], pp. 66-68), if & i3y a root of equation (21), then

Ip& <24,
where A’ is the diseriminant of that very equation. But, as follows from
(22),

24 B

4 =—\B 20!

= @S)Z(Ah—lBhgﬁ_Bh—lAh :1)2 A= (p"?)zd N

icm
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The last two formulae together with (20) finally give

Ip& < 8(ps)b™, q.e d

THEOREM 2. For arbitrary integers n >0 and d, there exists a num-
ber N = N(n,d) such ‘that if

_ pé+r

(23) lp&égn, ¢ = (p, q,r, s—integers, g€+ #* 0)
gé-+-s

and ps—qr = d,

then Ip& < N. 3

Proof. The case of £—rational or d = 0 is trivial; let £ be a quad-
ratic surd, d = 0. On the basis of Theorem 1 there exists a number
M(n, |d|) such that, if p,r,s—integers, p >0, s >0, ps = |d] and
lap¢ < n, then

q i I
13,1335;1. < M(n, |d)).

Let N = M(n, |d])(|d|+1P+ 2@+, We shall show that if condi-
tions (23) hold, then

Ip& <N,
Put
B=qlp, 0, &=—2/(p,q9-
Since (f, 6) = 1, there exist integers « and y such that
(24) ad— By = sgnd.
Putting
L
(25) £ _,a.g_._'.l
BE+6
we get
e Do+
= 80 ’

where the integers py, 1y, S, are defined by the formula

o 7o :(a W (e 7).
0 s B 8/\q s)’
thus py8) = («d— By)(ps— qr) = dsgnd = |d].

Acta Arithmetica VI
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In view of formulae (24) and (25), the surds & and & are equiva-

lent, whence

] y
]_pf' = 11)5" — lpgo_g._j_._o_

So

Changing, if necessary, the signs of p,, 7,8, we can therefore assume
that

Poé+ T

gD 5,
So

8 >0, posg=4d >0.

Lebt & be given by formula (2”), where & < n. If for each ¢ such that
h<i<h+k—1 we have b; < 2d, then, putting in Lemma 2 b = 2d,

P = Do, § = 8, We geb
Ip& < 8(pyso) (24

It remaing to consider the case, where for some » >
We then have

Sd. (Zd)‘n —_ Zn +3d2n+‘2 N

N

h holds b, > 2d.

&= [byy b1y bory by bopry ooy gy by, bipiy vy bv+k—11 -1
Using theorem H we get
boy byy ovny b 7
Dolbo, byy oy bu_s]47 = [dy, ..., a1,
So
, &+
(26) =y ooy By £y], £y = 2L
8y

(27) P >0, §>0, ms=d, —s < <py,y

and for all 2 >1

.'pi[bw ) bv+k—l] +"’i

(28) S = [d,m L) dui“-ul]f
1
LA ’ ’ b4 5»‘{"7“
(29) b=y oy 0y £ ], £ = P o Teer
Si,»\t-l
(30) Piy1 > 0, Sip1 > 0, Piy1Sip1 = d7 — i < Ty < Pist-

In view of the inequality &, > b, > 2d, it follows from (27) and (30)
that &y >1 (i =1,2,..)); the number & has therefore the following
expa.nswn into an amthmetlcal continned fraction;

§ = [dy, .. ] 111—17 d;zly ERRS] d;12—19 d/[g) EERS du3--17 dua’ PHE

icm
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It follows from (27) and (30) that the number of all possible different
systems (p;, 7:, 5;) does not exceed d(d-2). Thus, among the systems
(Diy 73y 8 (3=1,2,...,(d+1)") there must be at least two identical
ones; there exist therefore positive integers ¢ < j < (d+1)* such that

Pg=Djy Ty =717 S =58.

On the basis of (26) and (29) it follows hence that
5,',7. =&, ;

g?
thus
i-1
D& <p—py = (i—m).
i=v
On the other hand, in virtue of formula (28), the definition of the number
M(n, |d]) and the condition %k < n,

) s bl
Dilbyy ooy bugra] 4% < M(n, |d).

Hia— g < 1+41ap .

In view of j—g < (d-+1)*, we thus get

Ipé& <(G—g)HM(n, 1)) < (d+1)M(n, |d) <N,

Remark. As can easily be seen, we use in the proof given above only
a special case of Theorem 1. We proved it in full generality only for a more
complete characterisation of the relation between continued fractions
and rational homographic transformations.

q.e. d.

§ 3. Lmama 3. If & — ¢ (£ are quadratic surds, I an arbitrary
wrrational number) and

(31) R
then
(32) lim (lap £ +1Ip &™) = oo.

Proof. If formula (32) does not hold, the sequence &™ contains
a subsequence for which

(33) lap &M +1p £ < L < oo.

Proving Lemma 3 by reduetion to absurdity we can therefore assume
at once that inequality (33) holds. Let

5 = [H, 00, My B B,

hn+k il

hy = lap é(n)y k, =1p E(ma (= [bm by, .- 1e
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Sinee [ is irrational, we have

Emd® =6, (4=0,1,2,...);
thus for every ¢ there exists an n; such that
(34) W =b,  (n =n).

By (33) we have h,-+%, < L. Putting K = L! we have, for every
nw, h, <L, k, | K, whence
(35) b = bW,
Let M = max(ng, Ny, ..., Ngyr-1). We shall show that, contrary to

assumption (31), for n > M, &M = ¢,
In fact, by (34) we have for n > M

(=L, nz=1,1t>20).

(36) M =b, (0 <i<I+EK).

Assume now that j > L-+K. We obviously have j = tK+4 4, where ¢
is an integer >0, L < i < L+K and according to (35)
(387) bW = b (n =1).

Put m = max (M, n;). By (36) we have

(38) b =" (0 <i< L+K,n > M).

Applying successively formulae (37), (38), (37) and (35) we get for n > M

B =B =b{" =bf™ = b, (j = L+K),

whenoe by (36) it follows at last that for n > M
5(71} — Z,

Remark. One can easily deduce from the lemma proved above
Satz 11 and Satz 12 of [3]. There is no inverse implication, but the argu-
mentation given above is a direct generalization of the method used by
Sehmidt in his proofs.

THEOREM 3. Let f(») = a3” 4 @y a7 A a, be an integer-valued
polynomial with ay > 0. If

1. p = 1(mod?2) or

2. p.= 0(mod?2) and a, is not a rational square,

q.e. d.

then
Timlp Vf(n) = co.
Proof. In view of Lemma 3 and the equality lap Vf(T@) =1, it is
sufficient to show that the set F of all the residues mod 1 of numbers 1/17(_7;),

icm
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n=1,2,... has at least one irrational point of accumulation. We shall
prove more: that the set F is dense in (0,1).
In case 1 put p = 2m-+1, m > 0. As can easily be seen, we have
in the environment of oo
a* V]@ ~Va

1
mtg m—Fk41/2
@ 2) Elgm iR,

On the other hand, by a well-known theorem of the theory of finite

differences (cf. [4], p. 229, th. 221), we have
Ag(z) = Ado¥g® (z+-Okdz), 0<O <1,

where g(x) is an arbitrary real function with the kth derivative contin-
uous in the interval (»,z-+ kdz). Putting

g(w) = ]/]7(;)’

we obtain by a eomparison of the preeeding two formmulae

Az =1,

— 1
A® P/f(m) ~ I/a_o (m;-?) % !mm—k+1/2’

whence for sufficiently large z

m

AVTa) ~ Va3 miat,

P — 1
A" (@) ~ Va, (”“+ ?) (m+1)1gP;

-1

thus

A" V(@) - oo, A™'Vf(z) > 0.

The density of the set F follows immediately in virtue of a theorem
of Ceillag ([1], p. 152). )
In case 2, we have, as can easily be seen

Flo) = v @)+ o (@),

where u and v ave polynomials with coefficients from K(l/;o) and

(397

(39") degreev < degreeu = }degreef, wu(co) = co.
Putting p =2m, u(z) = ¢a” + @, 8™ ' +...+a,, we find from for-

mulae (39) that of = @, whence according to the assumption about
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a, it follows that «, is irrational. In virtue of a well-known theorem of
Weyl, the set of all the residues modl of numbers u(n) (n = 1,2, )
is dense in (0, 1). Since, in view of (39)

Lim (Vf(w) —u(2)) = 0,

the set F has the same property, q.e.d.

Remark. In both cases, 1 and 2, it is easy to give examyples of poly-
nomials f(») such that

(40) lim Ip V¥(n) < oo.

It suffices to assume f, (%) = @, f,(¢) = 22%. The proof of inequal-
ity (40) for the polynomial f;(») is immediate; for the polynomial fe(®)
we use the fact that for an infinite sequence of positive integers =, is
fa(®g) = yi-+1 (y,—integers), whence in view of the expansion

VI +1 = (y,2y)
it follows that
Ip Vfa(m) = 1.
§ 4. LEMmA 4. Let f(n) be an integer-valued polynomial and let

e SN S L]
l/f(n) = uy(n) - ‘%(”l) -+ |u2(n) +.o.+

1|

41
@) wm " o)

where u; are polynomials of a positive degree with rational coefficients and

(42) limw (n) = oo.

Put )
) T—I (n) = 17 To(%) = uo('"‘): Tv ("’) = ”1'(77’)1’#—1(77’)‘f"Tﬂ—z(n)’
(43
U_iln) =0, T,yn) =1, U,(n) = w,(n) U,_y (n)+ U, _,(n),
(44) l/an) = § = [by, by, by, ...], b—positive integers.

Then, for every §j amd n >mn,(j), there emists a k = k (4, n) suech that

(45) A _ T
B.  Tjn)’
W) Gtm = (— 170 gy VTN () =By,

B; Bl

icm®
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Proof. Since the polynomials u; have rational coefficients, there
exists a positive integer m such that
Ti(n) = P(n)jm, Tji(n) = Qn)/m,

where P(n), @(n) are polynomials with integral coefficients.
From formulae (41) and (43) we gef

(47)

) (—1y
(48) T = G T @ U e ) £ T m)
whence in view of (47)
~ P@)| 1 m*
VI = Gy | = G | o) S50 T

Since in view of (42) and (43)
w(n)+ U;_ (n)|Ui(n) — oo,
we have for sufficiently large n
Po|_ 1
Qm)| ~ 2Q%(m)
In virtue of a well-known theorem (cf. [2], Satz 2.14), P(n)/Q(n)

is therefore equal to some convergent of expansion (44). Then, for some £,
equality (45) holds and since
A (—1)f

Vi = 2k .
1= g BBt Bl

(V%T)—

we get also (46) in view of (48).

DrerinitioN. For a given prime p and a given rational number
r % 0 we shall denote by exp(p, r) the exponent with which p comes into
the canonical expansion of 7.

Leymma 5. Suppose we are given a prime p and integers n and h,
both # 0. Let then

P,=h, Py==n, P,=2nP, +hP,_,,
Q»»l = 01 Qo =1, Qx' = ""”‘Qzul"‘th—P

If exp(p, h) > 2exp(p, 2n), then for every integer » =0

(49)

exp(p, P,) = exp(p, n)+vexp(p, 2n),

(50)
exp(p, Q) = vexp(p, 2n).
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Proof by induction with respect to ». For » = 0 the lemma
follows directly from formulae (49).

For »=1 we have P, =2n*+h, @, =2n; thus exp(p,@,).=
exp (p, 2n). Since, by hypothesis,

exp(p, k) > 2exp(p, 2n) = exp(p, 2n?),
it follows that
exp(p, Py} = exp(p, 2n%) = exp(p, n)+exp(p, 2n)

and formulae (50) hold also for » = 1.

Agsume now that the lemma is right for the numbers »—2 and »—1
{» > 2); we shall show its validity for ».

It follows easily from the induetive assumption that

e; = exp(p, 2P, ;) = exp(p, n)+vexp(p, 2n),

€, = exp(p, hP,_,) = exp(p, n)+ (»—2)exp(p, 2n)+ exp(p, h),
es = exp(p, 2nQ),_;) = vexp(p, 2n),

e, = exp(p, h@,_,) = (v—2)exp(p, 2n)+exp(p, h).

In view of the inequality exp(p,h) > 2exp(p,2n) we therefore
have e; < ey, ¢; < 65, whence it follows by (49) thab

eXp(P,P,,) =6, = exp(p, n)+vexp(p, 2n),
exp(p, @) = e, == vexp(p,2n), q. e d.

TeEOREM 4. Suppose we are given an integer h 5 0. Denote by E the
set of all integers m such that h|dn?. We have

(51) limIpVni+h = oo,
s 00
neE

(52) E]]ﬂ’/%’ﬂ'—}z‘ < co,
Ner00

neld

Proof. We begin with a proof of equality (51). Choose an arbitrary g;
we shall show that for sufficiently large n¢ B

pVni+h >g.
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It is easy to verify the identity

1|
{20k N 'n—!— Vnrtn'

l/nz-{—i = N+

from which we immediately obtain

Vit h =n+t ! 5:—.~1—|+...+ ! Lt 1
[2nfh " (20 120k !n. +Vniih

(33)

Put in Lemma 4
2n[h

" en

(v odd < 2¢g—1),

u,
(v even < 2¢g—1).

Comparing polynomials 7,, U, determined for these %, by formulae
(42) and polynomials P,, Q, defined by (49), we find by an easy induction

(54) T, = th—[(vﬂ'-l)/zly U, = Q”h—[("+1)lﬁl7
whence
T, P,
55 e
) A

Assume now that = ¢ B, 2 so large that Va?-+h is irrational, and
(56) ViR h = & = [by, by, .- 1.

In virtue of Lemma 4 for sufficiently large n for each 4 < g there exists
8 k; such that
A, Ty

3 2

Be,  Uns’

i

(87)

., U —_— — 1)Uy Uy_s—By, By,
(68) &y = (— 1) 2 (Y rﬁ+h)+( ) i M it S
! Bi, B,

Since n ¢ E. there exists a prime p such that
(59) exp(p, h) >2exp(p, 2n)
and in virtue of Lemma 5

exp(p, Pyii) = exp(p, )+ (20— 1)exp(p, 2n),

(60) exp(p, Qui_y) = (2i—1)exp(p, 20).
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In view of (55) and (57), we therefore have

Ay, Py
exp(p,—"“) =exp(p, : 1) = exp(p, n)
By, Qi a
and since the fraction Aki/Bki is irreducible, it follows that
exp(p, By) = 0.

On the basis of (54) and (60) we get hence
Ui .
exp (p, ~B——) = exp(p, Usi1) = (2i—1)exp(p, 2n)
ki

—iexp(p, h) = —exp(p, 2n)—i(exp(p, h)—2exp(p, 2n)).

Then, in view of inequality (59), the numbers exp(p, Uy._./By,;) are for
4=1,2,...,9 all different; since Vn?+h is irrational and (58) holds,
the numbers &, ,; have the same property. Since k;+1 > 1 = lap Vn2y h,
at least g different complete quotients occur in the period of expansion
(56); we then have Ip& > g, which completes the proof of (51).

In order to prove formula (52) we shall use Theorem 2. From that
theorem follows the existence of a number N = N (k) such that if for
“positive integers D,, D, and !

VD, = 4/D;,
then IpVD, < ¥.
We shall show that for sufficiently large ne B

0<I<h and IpVD, <12,

(61) IpVnifh <XN.

In fact, since ne B, hl4n?, there exist—as can easily be seen—
integers «, f 5 0 and positive integer x such that

2n = afw, k= ap?.

‘We obviously have

(62)

1Bl < |h).

On the other hand, as can be verified, the following expansions hold for
® =5

a >0, z—even

V(az)*+4a = [av, }o, 2a0];

a >0 even, z—odd

Vl(an)*+4a = [an, }(o—1),1,1, }(a—2), 1,1, } (5—1), Dar];

icm
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a >0 odd, z—odd
V(aw)2+ 4a

= [ex, }(#—1),1,1, 3(az—1), 2, %(a%—l),l,l,%(ﬁ:"l), 2az],
a<<0, x—even

V(ax)?+4a = [lalz—1,1, %(m—4), 1, 2]alz—2];
a << 0 even, s—odd
V(aw)* £ da
= llale—1,1,4(s—3), 2, }(lala—2), 2, $(@—3), 1, 2|ala—2T;
a <0 odd, z—odd

V(z)24-4a

= [lalo—1,1, §(z—3), 2, }(jelz—3), 1, 20— 2, 1, §(ja|z—3), 2,

3(@—3),1, 2|alz—2].
Thus, we always have 1pV(az)*+4a < 12 and formula (61) follows
immediately from (62) and the definition of .

TuEOREM 5. Let f(n) = a*n®+-bni-¢, a,b, e—integers, a >0,
A = b2—4a% £ 0. The inequality

(63) limIpV¥(n) < co
holds if and only if
(64) A14(2a2, b)2.

Proof. We obviously have
— 1T —_—
Vf(n) = o V(2atn+ b2 — A4
and in virtue of Theorem 2 inequality (63) is equivalent to the following

tmIpV(2atn+ b)i— 4 < o.

But in virtue of Theorem 4 the lagt inequality holds if and only if for
some 17,

(65)

A14(2e*n+b)2  for n >mn,.
‘We have
: 2q2 b 2
4(2a2n+b)2 = 4(2a2, b)2 .
(0 = a2, O 15 5 )


GUEST


412 A. Schinzel

Since the arithmetical progression

2a?

2 Y m=0,1,..
Gy ey 0t

whose first term and difference are relatively prime, contains infinitely
many numbers coprime with 4, divigibility (64) is a necessary and suffi-
cient condition of (65) and therefore also of (63), q.e.d.

Theorems 3 and 5 give together a complete solution of the problem P
for polynomials of the second degree (the case A =0 is trivial).

Tn order to obtain by a similar method a complete solution for poly-
nomials of higher degree, it would be necessary to have for l/f(n) an
expansion analogous to (53), i.e. an expansion of form (41) and then to
know whether it is periodical. ,

Now, for polynomials f(n) of the form

a4 L g
an expangion of form (41) is uniquely determined. In fact, let
L N

[ua(n) )

1]
n)+

%y (

Vi) = o)+ oot

[y (m)
and put for 7 <j
1| 1|

et [u;(m) — |wj1(n) )

wy(n) = ui(n)+|—————1—| +

"/’i+1 (’Vb)
Since u,(n) is the unique polynomial g such that lim (l/j%—-g(n))

N—00
=0, we have uy(n) = u(n), where u(n) is defined by formulae (39).
Suppose now that we have determined polynomials g, ..., %;_;1(%);
we easily find

Vi(n)+pi(n)
¢:(n)

where p;, ¢; are polynomials with rational coefficients, and then w;(n)
is uniquely defermined by the conditions

w(n)+pi(n) = go(m)ug(n)+ry(n),

wi(n) =

degree r; < degree ¢;.

The construction of the sequence u;(n) is therefore easy, but the deci-
sion whether the sequence thus determined wu, is periodical presents
a considerable difficulty even for polynomials of degree 4.

Thus, the investigation of the problem P has led us to the following
problem P, :

icm
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Py, To decide whether for a given polynomial f(n) of the form
AW T Lty (m, a, a; are integers, m >2, a#0)
there exist polynomials w; of positive degree with rational coefficients such
that

L
{“2(’"’)

I
.-.Tluk(n)

Vin) = woln) 1@)1 +

(the dash denotes period).
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