Karl K. Norton

374

- icm[©]
- ACTA ARITHMETICA VI (1961)

- [8] Einige neuere Bedingungen für die Existenz ungerader vollkommener Zahlen, Journ. Reine Angew. Math. 192 (1953), pp. 24-34.
- [9] Barkley Rosser, Explicit bounds for some functions of prime numbers, Amer. Journ. Math. 63 (1941), pp. 211-232.
 - [10] Karl Prachar, Primzahlverteilung, Berlin 1957.

Recu par la Rédaction le 20.3.1960

Criteria for Kummer's congruences

by

L. CARLITZ (Durham, N. C.)

1. Kummer ([2]) obtained the well-known congruence for the Euler numbers

$$\sum_{s=0}^r \; (-1)^s {r \choose s} E_{n+s(p-1)} \equiv 0 \pmod{p^r} \qquad (n \geqslant r, \; p > 2)$$

by means of the following general result. Let p be a fixed prime $\geqslant 2$. Then if

(1.1)
$$\sum_{n=0}^{\infty} a_n \frac{x^n}{n!} = \sum_{k=0}^{\infty} A_k (e^x - 1)^k,$$

where the a_n , A_k are integral (mod p), it follows that

(1.2)
$$\sum_{s=0}^{r} (-1)^{s} {r \choose s} a_{n+s(\nu-1)} \equiv 0 \pmod{p^{r}} \quad (n \geqslant r).$$

Indeed since (1.1) is equivalent to

$$a_n = \sum_{k=0}^n A_k C_n^{(k)}, \quad ext{where} \quad C_n^{(k)} = \sum_{j=0}^k \left(-1
ight)^{k-j} inom{k}{j} j^n,$$

we have

$$\begin{split} \sum_{s=0}^{r} (-1)^{s} \binom{r}{s} a_{n+s(p-1)} &= \sum_{k=0}^{n+r(p-1)} A_{k} \sum_{s=0}^{r} (-1)^{s} \binom{r}{s} C_{n+s(p-1)}^{(k)} \\ &= \sum_{k=0}^{n+r(p-1)} A_{k} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n} (1-j^{p-1})^{r} \end{split}$$

and (1.2) follows by Fermat's theorem.

It is natural to ask whether the hypothesis in (1.1) that the A_k are integral (mod p) can be weakened. We shall show that this is indeed the case. We prove below that (1.2) holds if and only if

$$\sum_{n=0}^{\infty} a_n \frac{x^n}{n!} = \sum_{k=0}^{\infty} A_k \frac{(e^x - 1)^k}{k!},$$

where

$$(1.3) A_k \equiv 0 \pmod{p^{[k/p]}};$$

it is assumed that the a_n are integral (mod p).

The series e^x-1 seems to play a peculiar role in this result. However we show that if

$$g(x) = \sum_{n=1}^{\infty} c_n \frac{x^n}{n!},$$

where the c_n are integral (mod p), $c_1 \not\equiv 0 \pmod{p}$ and

$$g(x) = \sum_{k=1}^{\infty} C_k \frac{f^k(x)}{k!},$$

where f(x) is a fixed series whose coefficients satisfy (1.2), then the c_n satisfy the congruence

$$\sum_{s=0}^r (-1)^s inom{r}{s} c_{n+s(p-1)} \equiv 0 \; (\operatorname{mod} p^r) \;\;\;\; (n \geqslant r)$$

if and only if

$$C_k \equiv 0 \, (\bmod p^{[k/p]}).$$

Finally, we show that if we put

$$a_n = \sum_{i=0}^N j^n U_i^{(N)}$$
 (all $N \geqslant n$)

then the coefficients $U_j^{(N)}$ are uniquely determined and that (1.2) holds if and only if

$$k! U_k^{(k)} \equiv 0 \pmod{p^{\lfloor k/p \rfloor}}.$$

2. We recall that a Hurwitz series ([1]) is one of the form

$$f(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!},$$

where the a_n are integers. For brevity we denote by \mathfrak{H} the set of all series (2.1) and by \mathfrak{H}_p the set of series (2.1) in which the a_n are integral (mod p), or, if we prefer, are p-adic integers. Then both \mathfrak{H} and \mathfrak{H}_p are closed with respect to addition and multiplication. Also if in (2.1) the leading coefficient $a_n = 0$, Hurwitz showed that

$$(2.2) f^k(x) \equiv 0 \pmod{k!}.$$

The statement

$$\sum_{n=0}^{\infty} a_n \frac{x^n}{n!} \equiv \sum_{n=0}^{\infty} b_n \frac{x^n}{n!} \pmod{m}$$

is equivalent to

$$a_n \equiv b_n \pmod{m}$$
 $(n = 0, 1, 2, \ldots).$

As a consequence of (2.2) it follows that if f, $g \in \mathfrak{H}$ (or \mathfrak{H}_p) then $f(g) \in \mathfrak{H}$ (or \mathfrak{H}_p). Morevoer if

(2.3)
$$y = \sum_{n=1}^{\infty} a_n \frac{x^n}{n!} \quad (a_1 = 1),$$

where the a_n are integral, then

$$x=\sum_{n=1}^{\infty}b_n\frac{y^n}{n!} \quad (b_1=1),$$

where the b_n are integral. Thus for the special series (2.3) the inverse is also in \mathfrak{H} ; a similar result holds for \mathfrak{H}_p .

Now put

(2.4)
$$\mu(k) = \left[\frac{k}{p}\right] + \left[\frac{k}{p^2}\right] + \dots, \quad \nu(k) = \left[\frac{k}{p^2}\right] + \left[\frac{k}{p^3}\right] + \dots,$$

where [x] is the greatest integer function. Thus $p^{\mu(k)}$ is the highest power of p that divides k!

We shall require the following result.

THEOREM 1. Put

$$(e^x-1)^k = \sum_{n=k}^{\infty} C_n^{(k)} \frac{x^k}{n!}.$$

Then

(2.5)
$$\sum_{s=0}^{r} (-1)^{s} {r \choose s} C_{n+s(p-1)}^{(k)} \equiv 0 \pmod{p^{r+r(k)}} \quad (n \geqslant r).$$

Proof. By (2.2) and (2.4)

$$C_n^{(k)} \equiv 0 \; (\bmod p^{\mu(k)}).$$

Hence if $r \leq k/p$, (2.5) is obviously true. We may accordingly assume that r > k/p.

Let D = d/dx. Then (2.5) is equivalent to

$$(2.6) (D^{p}-D)^{r}(e^{x}-1)^{k} \equiv 0 \pmod{p^{r+\nu(k)}}.$$

Now since

$$D(e^{x}-1)^{k} = k(e^{x}-1)^{k-1}e^{x} = k(e^{x}-1)^{k-1} + k(e^{x}-1)^{k},$$

it follows at once that

$$D^n(e^x-1)^k = \sum_{j=0}^n a_j(e^x-1)^{k-j},$$

where the a_i are rational integers that depend on n and k. In particular, for n = p, we have

$$\begin{split} D^p(e^x-1)^k &= \sum_{s=0}^k (-1)^{k-s} \binom{k}{s} D^p e^{sx} = \sum_{s=0}^k (-1)^{k-s} \binom{k}{s} s^p e^{sx} \\ &= \sum_{s=0}^k (-1)^{k-s} \binom{k}{s} s^p \sum_{j=0}^s \binom{s}{j} (e^x-1)^j \\ &= \sum_{j=0}^k \binom{k}{j} (e^x-1)^j \sum_{s=j}^k (-1)^{k-s} \binom{k-j}{s-j} s^p \\ &= \sum_{j=0}^p \binom{k}{j} (e^x-1)^{k-j} \sum_{s=j}^j (-1)^s (k-s)^p \,. \end{split}$$

If we put

(2.7)
$$u_k = \frac{(e^x - 1)^k}{k!},$$

this becomes

(2.8)
$$D^{p}u_{k} = \sum_{s=0}^{p} \frac{u_{k-j}}{j!} \sum_{s=0}^{j} (-1)^{s} {j \choose s} (k-s)^{p}.$$

Since

$$\sum_{s=0}^{j} (-1)^{s} \binom{j}{s} s = j \sum_{s=1}^{j} (-1)^{s} \binom{j-1}{s-1} = 0 \quad (j > 1),$$

$$\frac{1}{j!} \sum_{s=0}^{j} (-1)^{s} {j \choose s} (k-s)^{p} \equiv 0 \pmod{p} \quad (1 < j < p).$$

For j = 1 we have

$$\sum_{s=0}^{1} (-1)^{s} {1 \choose s} (k-s)^{p} = k^{p} - (k-1)^{p} \equiv 1 \pmod{p},$$

while for i = p

$$\frac{1}{p!} \sum_{s=0}^{p} (-1)^{s} \binom{p}{s} (k-s)^{p} = 1.$$

Thus (2.8) becomes

$$D^p u_k = k^p u_k + u_{k-p} + \sum_{j=1}^{p-1} c_j u_{k-j},$$

where

$$c_1 \equiv 1, \quad c_j \equiv 0 \pmod{p} \quad (1 < j < p).$$

Since

$$Du_k = ku_k + u_{k-1},$$

it follows that

$$(2.9) (D^{p}-D)u_{k} = u_{k-p} + p \sum_{j=0}^{p-1} d_{j}u_{k-j},$$

where the d_i are rational integers.

A second application of (2.9) yields

$$(D^p-D)^2u_k=u_{k-2p}+p\sum_{j=0}^{p-1}d_j'u_{k-p-j}+p^2\sum_{j=0}^{p-1}d_j''u_{k-j},$$

where d'_i, d''_i are integral. Continuing in this way we get

$$(2.10) (D^p - D)^r u_k = u_{k-rp} + \sum_{s=1}^r p^s \sum_{i=0}^{p-1} d_i^{(s)} u_{k-(r-s)p-i},$$

where the $d_i^{(s)}$ are integral.

As noted above we may assume pr > k. Choose t so that

$$(r-t)p \leq k, \quad (r-t+1)p > k,$$

that is

$$(2.11) t = r - \left[\frac{k}{p}\right].$$

Then (2.10) reduces to

$$(D^p-D)^r u_k = \sum_{s=t}^r p^s \sum_{j=0}^{p-1} d_j^{(s)} u_{k-(r-s)p-j}.$$

Since $u_k \in \mathfrak{H}$ it follows that

$$(D^p - D)^r u_k \equiv 0 \pmod{p^t}.$$

Hence by (2.5) and (2.11)

$$(D^{p}-D)^{r}(e^{x}-1)^{k}\equiv 0 \; (\operatorname{mod} p^{r-[k/p]+\mu(k)}),$$

which is the same as (2.6).

This completes the proof of Theorem 1.

3. Let

$$f(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$$

be an arbitrary series in \mathfrak{H} (or \mathfrak{H}_p). Since

$$x = \log((e^x - 1) + 1) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (e^x - 1)^k,$$

it follows that

(3.2)
$$f(w) = \sum_{k=0}^{\infty} A_k^{\frac{n}{2}} \frac{(e^x - 1)^k}{k!} \quad (A_0 = a_0),$$

where the A_k are integral. Thus an arbitrary f(x) in \mathfrak{H} (or \mathfrak{H}_p) will always be representable in the form (3.2).

Now assume that the A_k satisfy

(3.3)
$$A_k \equiv 0 \pmod{p^{[k/p]}} \quad (k = 0, 1, 2, ...).$$

Applying the operator $(D^p-D)^r$ to both sides of (3.2) we get

(3.4)
$$(D^{p}-D)^{r}f(x) = \sum_{k=0}^{\infty} A_{k}(D^{p}-D)^{r} \frac{(e^{x}-1)^{k}}{k!}.$$

By (2.6) we have

$$(D^p-D)^r(e^x-1)^k\equiv 0\ (\mathrm{mod}\,p^{r-\nu(k)}).$$

Hence for $r \geqslant k/p$

$$(D^p-D)^r \frac{(e^x-1)^k}{k!} \equiv 0 \; (\text{mod } p^{r-[k/p]});$$

using (3.3) this becomes

(3.5)
$$A_k(D^p - D)^r \frac{(e^x - 1)^k}{k!} \equiv 0 \; (\text{mod } p^r) \quad (r \geqslant k/p).$$

On the other hand for all r

$$\frac{1}{k!} (e^x - 1)^k \in \mathfrak{H} \text{ (or } \mathfrak{H}_p)$$

and consequently

$$(D^p-D)^r\frac{(e^x-1)^k}{k!}\in\mathfrak{H}$$
 (or \mathfrak{H}_p).

Thus by (3.3) we get

(3.6)
$$A_k(D^p - D)^r \frac{(e^x - 1)^k}{k!} \equiv 0 \; (\text{mod } p^{[k/p]})$$

for all k. Combining (3.5) with (3.6) it is clear that

(3.7)
$$\sum_{k=1}^{\infty} A_k (D^p - D)^r \frac{(e^x - 1)^k}{k!} \equiv 0 \; (\text{mod } p^r).$$

Since

$$\begin{split} (D^{\nu}-D)^{r}f(x) &= \sum_{s=0}^{r} (-1)^{r-s} {r \choose s} D^{r+s(\nu-1)}f(x) \\ &= \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{s=0}^{r} (-1)^{r-s} {r \choose s} a_{n+r+s(\nu-1)}, \end{split}$$

it follows from (3.4) and (3.7) that

(3.8)
$$\sum_{s=0}^{r} (-1)^{s} {r \choose s} a_{n+s(p-1)} \equiv 0 \; (\operatorname{mod} p^{r}) \quad (n \geqslant r).$$

We have therefore proved that (3.3) implies (3.8).

We assume now that (3.8) holds for all $n \ge r \ge 0$. Then (3.4) becomes

(3.9)
$$\sum_{k=0}^{\infty} A_k (D^p - D)^r \frac{(e^x - 1)^k}{k!} \stackrel{\text{def}}{=} 0 \; (\text{mod } p^r).$$

Put

(3.10)
$$(e^x - 1)^k = \sum_{n=k}^{\infty} C_n^{(k)} \frac{x^n}{n!},$$

so that

(3.11)
$$C_n^{(k)} = \sum_{j=0}^k (-1)^{k-j} {k \choose j} j^n.$$

Since

(3.12)
$$C_n^{(k)} = 0 (k > n),$$

(3.9) implies

$$(3.13) \qquad \sum_{k=0}^{N} \frac{1}{k!} A_k \sum_{s=0}^{r} (-1)^s {r \choose s} C_{n+s(p-1)}^{(k)} \equiv 0 \; (\text{mod } p^r) \qquad (n \geqslant r)$$

for all $N \geqslant n + r(p-1)$.

We now assume that (3.3) holds for k < h and put

$$h = rp + r_0 \quad (0 \leqslant r_0 < p).$$

In (3.13) take $n = r + r_0$, N = h. Since by (2.5)

$$\sum_{s=0}^{r} (-1)^{r-s} {r \choose s} C_{n+s(p-1)}^{(k)} \equiv 0 \pmod p^{r+r(k)},$$

it follows from the inductive hypothesis that

$$\frac{1}{k!} A_k \sum_{s=0}^r (-1)^{r-s} \binom{r}{s} C_{n+s(p-1)}^{(k)} \equiv 0 \; (\bmod \, p')$$

for all k < h. Hence (3.13) reduces to

$$\frac{1}{h!}A_h\sum_{s=0}^r (-1)^{r-s} {r \choose s} C_{n+s(p-1)}^{(h)} \equiv 0 \ (\operatorname{mod} p^r).$$

For $n = r + r_0$, $h = rp + r_0$, this becomes because of (3.12)

$$\frac{1}{h!} A_h C_h^{(h)} \equiv 0 \pmod{p'}.$$

Since $C_h^{(h)} = h!$, we get

$$A_h \equiv 0 \pmod{p^r},$$

that is

$$A_h \equiv 0 \, (\bmod p^{[(h/p)]}).$$

This completes the proof of (3.3).

We may now state

THEOREM 2. Let

(3.14)
$$f(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!} = \sum_{k=0}^{\infty} A_k \frac{(e^x - 1)^k}{k!}$$

be an arbitrary series $\in \mathfrak{H}$ (or \mathfrak{H}_p). Then

(3.15)
$$\sum_{s=0}^{r} (-1)^{s} {r \choose s} a_{n+s(p-1)} \equiv 0 \pmod{p^{r}}$$

for all $n \ge r \ge 0$ if and only if

$$A_k = 0 \pmod{p^{\lfloor k/p \rfloor}}$$

for all $k \geqslant 0$.

In particular, if the a_n are integral, then (3.15) is satisfied if and only if

$$f(x) = b_0 + \sum_{k=1}^{\infty} b_k \frac{(e^x - 1)^k}{s_k},$$

where

$$(3.16) s_k = \prod_{p \mid k} p^{*(k)}$$

and the b_k are integral.

4. We shall now suppose that in (3.14) $a_0 = A_0 = 0$. There is evidently no less in generality in making this assumption. We shall prove the following theorem which generalizes Theorem 1.

THEOREM 3. Let

(4.1)
$$f(x) = \sum_{n=1}^{\infty} a_n \frac{x^n}{n!} = \sum_{k=1}^{\infty} A_k \frac{(e^x - 1)^k}{k!},$$

where

$$A_k \equiv 0 \; (\bmod p^{[k/p]}).$$

Put

$$f^k(x) = \sum_{n=k}^{\infty} a_n^{(k)} \frac{x^n}{n!}.$$

Then

$$\sum_{s=0}^r \left(-1\right)^s {r \choose s} \, a_{n+s(p-1)}^{(k)} \equiv 0 \; (\operatorname{mod} p^{r+\nu(k)}) \qquad (n \geqslant r),$$

where v(k) is defined by (2.4).

It will be convenient to first prove

THEOREM 4. Let

$$g(x) = \sum_{n=1}^{\infty} A_n \frac{x^n}{n!},$$

where the A_n are integral (mod p) and

$$(4.2) A_n \equiv 0 \pmod{p^{\lfloor n/p \rfloor}}.$$

Put

(4.3)
$$g^{k}(x) = \sum_{n=1}^{\infty} A_{n}^{(k)} \frac{x^{n}}{n!} \quad (k = 1, 2, 3, ...).$$

Then

$$(4.4) A_n^{(k)} \equiv 0 \; (\text{mod } p^{(n/p) + \nu(k)}),$$

Proof. We have

$$g(x) = \sum_{i=0}^{p-1} \sum_{n=0}^{\infty} A_{pn+i} \frac{x^{pn+i}}{(pn+j)!} \quad (A = 0).$$

By (4.2)

$$A_{pn+j} \equiv 0 \; (\bmod \, p^n),$$

so that

$$g(x) = \sum_{j=0}^{p-1} x^j g_j(x^p),$$

$$g_j(x) = \sum_{n=0}^{\infty} A_{pn+j} \frac{x^n}{(pn+j)!} \epsilon \mathfrak{H} \text{ (or } \mathfrak{H}_p)$$

for $j=0,1,\ldots,p-1$. Expanding by the multinomial theorem we get

$$g^k(x) = \sum_{\substack{k_0 + \dots + k_{p-1} = k}} \frac{k!}{k_0! \dots k_{p-1}!} (g_0(x^p))^{k_0} (xg_1(x^p))^{k_1} \dots (x^{p-1}g_{p-1}(x^p))^{k_{p-1}}.$$

We seek the highest power of p dividing the term x^n on the right. The multinomial coefficient contributes

$$\mu(k) - \mu(k_0) - \ldots - \mu(k_{p-1})$$
,

while

$$x^{k_1+2k_2+\cdots+(p-1)k_{p-1}}$$

contributes

$$\mu(k_1+2k_2+\ldots+(p-1)k_{p-1})$$

and $g_0^{k_0}$ contributes $\mu(k_0)$; in addition we have

$$\frac{n-(k_1+2k_2+\ldots+(p-1)k_{p-1})}{p}.$$

Thus it will suffice to show that

$$\mu(k) - \sum_{i=1}^{p-1} \mu(k_i) + \mu\left(\sum_{i=1}^{p-1} jk_i\right) + \frac{1}{p}\left(n - \sum_{i=1}^{p-1} jk_i\right) \geqslant \left[\frac{n}{p}\right] + \nu(k).$$

Since .

$$rac{1}{p}\left(n-\sum_{i=1}^{p-1}jk_i
ight)=\left[rac{n}{p}
ight]-\left[rac{1}{p}\sum_{i=1}^{p-1}jk_i
ight],$$

this reduces to

$$\mu(k) - \sum_{j=1}^{p-1} \mu(k_j) + \mu\left(\sum_{j=1}^{p-1} jk_j\right) - \left[\frac{1}{p} \sum_{j=1}^{p-1} jk_j\right] \geqslant \nu(k),$$

which is the same as

$$(4.5) \left[\frac{k}{p}\right] + \nu \left(\sum_{j=1}^{p-1} jk_j\right) - \sum_{j=1}^{p-1} \nu(k_j) - \sum_{j=1}^{p-1} \left[\frac{k_j}{p}\right] \geqslant 0.$$

Acta Arithmetica VI

Since

$$\left[\frac{k}{p}\right] \geqslant \sum_{j=1}^{p-1} \left[\frac{k_j}{p}\right]$$

and

$$u\left(\sum_{j=1}^{p-1}jk_j\right)\geqslant v\left(\sum_{j=1}^{p-1}k_j\right)\geqslant \sum_{j=1}^{p-1}v(k_j),$$

(4.5) holds. We have therefore completed the proof of (4.4). It is now easy to prove Theorem 3. By (4.1) and (4.3) we have

$$f^{k}(x) = \sum_{n=k}^{\infty} A_{n}^{(k)} \frac{(e^{x}-1)^{n}}{n!},$$

so that

$$(D^{p}-D)^{r}f^{k}(x) = \sum_{n=1}^{\infty} A_{n}^{(k)}(D^{p}-D)^{r} \frac{(e^{x}-1)^{n}}{n!}.$$

By (2.6)

$$(D^p-D)^rrac{(e^x-1)^n}{n!}\equiv 0\ (\mathrm{mod}\ p^{r-\lceil n/p
ceil}) \ \ \ \ (r\geqslant \lceil n/p\,
ceil),$$

by (4.4) this becomes

$$(4.6) A_n^{(k)} (D^p - D)^r \frac{(e^x - 1)^n}{n!} \equiv 0 \pmod{p^{r+r(k)}} (r \geqslant [\dot{n}/p]).$$

For all r we have

$$A_n^{(k)}(D^p-D)^r \frac{(e^x-1)^n}{n!} \equiv 0 \; (\text{mod } p^{[n/p]+v(k)}),$$

so that (4.6) holds for $r < \lfloor n/p \rfloor$ also. Therefore

$$(D^{p}-D)^{r}f^{k}(x) \equiv 0 \pmod{p^{r+\nu(k)}}.$$

This completes the proof of Theorem 3.

5. If

(5.1)
$$f(x) = \sum_{n=1}^{\infty} a_n \frac{x^n}{n!} \quad (a_1 = 1),$$

where the a_n are integral (or integral (mod p)), then the inverse of f(x) is a series of the same kind;

$$\sum_{n=1}^{\infty} d_n \frac{x^n}{n!} \quad (d_1 = 1),$$

where the d_n are integral (or integral (mod p)). (The condition $a=d_1=1$ can be replaced by the weaker condition $a_1d_1=1,\ a_1\not\equiv 0\,(\text{mod }p)$). Thus if g(x) is an arbitrary series in $\mathfrak H$ (or $\mathfrak H_p$) it follows that

(5.2)
$$g(x) = \sum_{n=0}^{\infty} b_n \frac{x^n}{n!} = \sum_{k=0}^{\infty} A_k \frac{f^k(x)}{k!},$$

where the A_k are integral (or integral (mod p)).

For brevity we let \Re (or \Re_p) denote the set of series

$$\sum_{n=0}^{\infty} c_n \frac{x^n}{n!} \epsilon \, \mathfrak{H} \quad (\text{or } \mathfrak{H}_p)$$

such that

$$\sum_{s=0}^r (-1)^s \binom{r}{s} c_{n+s(p-1)} \equiv 0 \,\, (\bmod \, p^r)$$

for all $n \geqslant r \geqslant 0$.

Suppose now that f(x) as defined by (5.1) is a fixed series in \Re (or \Re_p) and g(x) is a series defined by (5.2). We seek necessary and sufficient conditions that $g(x) \in \Re$ (or \Re_p).

From (5.2) we get

(5.3)
$$(D^{p}-D)^{r}g(x) = \sum_{k=1}^{\infty} A_{k}(D^{p}-D)^{r}\frac{f^{k}(x)}{k!}.$$

By Theorem 3

$$(D^{\nu}-D)^{r}f^{k}(x)\equiv 0\ (\operatorname{mod} p^{r+\nu(k)}),$$

so that

$$(D^p-D)^rrac{f^k(x)}{k!}\equiv 0\ (\operatorname{mod} p^{r-\lceil k/p
ceil}) \qquad (r\geqslant \lceil k/p
ceil).$$

If we assume that the coefficients A_k occurring in (5.2) satisfy

(5.4)
$$A_k \equiv 0 \pmod{p^{(k/p)}} \quad (k = 1, 2, 3, ...),$$

it follows that

(5.5)
$$A_k(D^p - D)_-^r \frac{f^k(x)}{k!} \equiv 0 \pmod{p^r}$$

for $r \geqslant \lceil k/p \rceil$. Indeed it is evident from (5.4) that (5.5) holds for $r < \lceil k/p \rceil$ also.

Thus (5.3) implies

$$(D^p - D)^r g(x) \equiv 0 \pmod{p^r},$$

which is equivalent to

(5.6)
$$\sum_{s=0}^{r} (-1)^{s} \binom{r}{s} b_{n+s(p-1)} \equiv 0 \pmod{p^{r}} \quad (n \geqslant r).$$

Therefore it follows from (5.4) that $g(x) \in \Re$ (or \Re_n).

Conversely suppose that (5.6) holds for all $n \ge r \ge 0$. We shall show that this implies (5.4).

Assume that (5.4) holds for all k < h, and put

$$h = rp + r_0 \quad (0 \leqslant r_0 < p).$$

It is clear from (5.2) that

(5.7)
$$b_n = \sum_{k=1}^{N} \frac{1}{k!} A_k a_n^{(k)} \quad (N \geqslant n),$$

where

$$f^k(x) = \sum_{n=1}^{\infty} a_n^{(k)} \frac{x^n}{n!}.$$

Note that

(5.8)
$$a_n^{(k)} = 0 \quad (k > n).$$

From (5.7) we get

$$\sum_{s=0}^{r} (-1)^{s} {r \choose s} b_{n+s(p-1)} = \sum_{k=0}^{N} \frac{1}{k!} A_{k} \sum_{s=0}^{r} (-1)^{s} {r \choose s} a_{n+s(p-1)}^{(k)}$$

$$(N \geqslant n + r(p-1))$$

and therefore by (5.6)

$$(5.9) \quad \sum_{k=0}^{N} \frac{1}{k!} A_k \sum_{s=0}^{r} (-1)^s {r \choose s} a_{n+s(p-1)}^{(k)} \equiv 0 \pmod{p^r} \quad (N \geqslant n+r(p-1)).$$

In (5.9) take $n = r + r_0$, N = h. Since by Theorem 3

$$\sum_{s=0}^{r} (-1)^{s} {r \choose s} a_{n+s(p-1)}^{(k)} \equiv 0 \pmod{p^{r+r(k)}} \quad (n \geqslant r),$$

it follows from the inductive hypothesis that

$$\frac{1}{k!} A_k \sum_{s=0}^r (-1)^s \binom{r}{s} a_{n+s(p-1)}^{(k)} \equiv 0 \; (\text{mod } p^r)$$

for all k < h. Hence (5.9) reduces to

$$\frac{1}{h!} A_h \sum_{s=0}^r (-1)^s {r \choose s} a_{n+s(p-1)}^{(k)} \equiv 0 \pmod{p^r}.$$

For $n = r + r_0$, $h = rp + r_0$ this becomes because of (5.8)

$$\frac{1}{h!}A_ha_h^{(h)}\equiv 0\ (\mathrm{mod}\,p^r);$$

since $a_h^{(h)} = h!$ we get

$$A_{h} \equiv 0 \, (\bmod \, p^{r}),$$

that is

$$A_h \equiv 0 \; (\operatorname{mod} p^{[h/p]}).$$

This completes the proof of (5.4).

We may now state

THEOREM 5. Let f(x) be a fixed series in \Re (or \Re_p) of the form (5.1). Let g(x) be an arbitrary series in \Re (or \Re_p) and put

$$g(x) = \sum_{k=0}^{\infty} A_k \frac{f^k(x)}{k!},$$

so that the A_k are necessarily integral (or integral (mod p)). Then $g(x) \in \Re$ (or \Re) if and only if

$$A_k \equiv 0 \; (\bmod \, p^{[k/p]})$$

for all $k \geqslant 0$.

In particular (compare the remark immediately following Theorem 2), if the a_n are integral, then $g(x) \in \Re$ if and only if

$$g(x) = b_0 + \sum_{k=1}^{\infty} b_k \frac{f^k(x)}{s_k},$$

where s_k is defined by (3.16) and the b_k are integral.

6. Let

$$f(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$$

be an arbitrary series in \mathfrak{H} (or \mathfrak{H}_p). It follows from (3.1), (3.2) and (3.11) that

$$a_n = \sum_{k=0}^N rac{1}{k!} A_k \sum_{j=0}^k (-1)^{k-j} inom{k}{j} j^n = \sum_{j=0}^N j^n \sum_{k=j}^N (-1)^{k-j} inom{k}{j} rac{A_k}{k!}$$

for arbitrary $N \geqslant n$. Thus we have

(6.2)
$$a_n = \sum_{j=0}^{N} j^n U_j^{(N)} \qquad (N \geqslant n),$$

where

(6.3)
$$U_j^{(N)} = \sum_{k=j}^{N} (-1)^{k-j} {k \choose j} \frac{A_k}{k!}.$$

We remark first that for given a_n , the numbers $U_i^{(N)}$ are uniquely determined by (6.2). Indeed for N fixed and $n=0,1,\ldots,N$, (6.2) is a system of N+1 equations in the N+1 unknowns $U_i^{(N)}$; the determinant of the system is

$$|j^n|$$
 $(j, n = 0, 1, ..., N)$

which is clearly not zero. Thus (6.3) furnishes the solution of the system (6.2).

In the next place we note that (6.3) implies

$$U_i^{(j)} = \frac{A_i}{i!}$$

and therefore (6.3) becomes

(6.5)
$$U_j^{(N)} = \sum_{k=j}^{N} (-1)^{k-j} {k \choose j} U_k^{(k)}.$$

By means of (6.5) all the $U_i^{(N)}$ are easily computed when the $U_k^{(k)}$ are known. Nielsen ([3], Chapter 14) uses (6.2) in the case of integral $U_j^{(N)}$ to obtain Kummer's congruence for the a_n and thus obtains Kummer's congruence for the Euler Numbers. However it is by no means necessary

to assume that the $U_{j}^{(N)}$ are integral. Indeed by (6.4) and Theorem 2 we obtain the following criterion.

THEOREM 6. Let

$$f(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$$

be an arbitrary series in $\mathfrak H$ (or $\mathfrak H_p$) and let $U_i^{(N)}$ be determined by (6.2). Then $f(x) \in \mathfrak R$ (or $\mathfrak R_p$) if and only if

$$(6.6) p^{r(k)} U_k^{(k)}$$

is integral (mod p).

References

[1] A. Hurwitz, Über die Entwickelungskoefficienten der lemniskatischen Funktionen, Mathematische Werke, vol. 2. pp. 342-373, Basel 1933.

[2] E. E. Kummer, Über eine allgemeine Ergenschaft der rational Entwickelungs-koefficienten einer bestimmten Gattung analytischer Funktionen, Journal für die reine und angewandte Mathematik 41 (1851), pp. 368-372.

[3] N. Nielsen, Traité élémentaire des nombres de Bernoulli, Paris 1923.

DUKE UNIVERSITY

Recu par la Rédaction le 25.6.1960