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P Criteria for Kummer’s congruences

— . by

L. CarLITz (Durham, N. C.)

1. Kummer ([2]) obtained the well-known congruence for the Euler
numbers

D1 () Busapory = O(mods”) (v =7, p >2)
8=0

by means of the following general result. Let p be a fixed prime > 2.

Then if
o mn OO1

(1.1) Dla— = Y (-1,

n=0 k=0
where the a,, A, are integral (medp), it follows that

R 5
(1.2) PG (:) bpsap_y = O(modp”)  (n >7).
=0

Indeed sinee (1.1) is equivalent to

k

n
a= > 4,00, where 0P = (=1 (%),

k=0 7=0
we have
r n4r{p—1) id
- r
(—1y (;) Upy5p-1) = Z Ay 2 (—1y (s) G'Sﬂs(p_x)
=0 k=0 8=0
n-+r(p-1) k
g (B - P
= Y 4 ) v () ra—py
k=0 =0

and (1.2) follows by Fermat’s theorem.
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I# is natural to ask whether the hypothesis in (1.1) that the 4, are
integral (modp) can be weakened. We shall show that this is indeed the
ease. We prove below that (1.2) holds if and only if

where
(1.8) Ay = 0 (modp™);

it is assumed that the a, are integral (modp).
The series ¢ —1 seems to play a peculiar role in this result. How-
ever we show that if

3

oo
&
g(@) = chmy

=1

where the ¢, are integral (modp), ¢, == 0 (modp) and

where f(#) is a fixed series whose coefficients satisfy (1.2), then the ¢,
satisfy the congruence
r

Z (—1)° (:) Onysp-1y = 0 (modp”)  (n =7)

§=0
if and only if

Oy = 0 (modp™/™).
Finally, we show that if we put
N

a, = Z:j"U,(NJ

§=0

(all N =n)

then the coefficients U™ are uniquely determined and that (1
if and only if

.2) holds

kIUP =

2. We recall that a Hurwitz series ([1]) is one of the form

0 (modp ™y,

"
¥

@1) fa) = D o
0

icm

Oriteria for Kummer's congruences 377

where the a, are integers. For brevity we denote by $ the set of all
geries (2.1) and by 9, the set of series (2.1) in which the a,, are integral
(modp), or, if we prefer, are p-adic integers. Then both $ and 9, are
closed with respect to addition and multiplication. Also if in (2.1) the
leading coefficient a, = 0, Hurwitz showed that

(2.2) f(a) = 0 (modk!).

The statement

]

-
Sogr= o
Oy — =

.EJ"M

n=0,1,2,...).

(modm
is equivalent to
a, = b, (modm)

As a consequence of (2.2) it follows that if f, g (or H,) then f(g) e
9 (or H,). Morevoer if

(2.3) Z (=1,
whete the a, are integral, then
T, Y
a= Dbt =),
n=1

where the b, are integral. Thus for the special series (2.3) the inverse
is also in 9; a similar result holds for 9,.
Now puf

24) M(.k)=[§]+[%]+---, v(k)=[§]+[§]+...,

where [#] is the greatest integer function. Thus p*® is the highest power
of p that divides k!

We shall requive the following result.

THEOREM 1. Put

°_1 ow 2

(1 = Z: —.

Then

25 D=1 () ¢y = 0 (modp™ ) (n =)

§=0
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Proof. By (2.2) and (2.4)
0P = 0 (modp"™).

Hence if r < k/p, (2.5) is obviously true. We may accordingly assume
that r > kfp.
Let D = d/dz. Then (2.5) is equivalent to

(2.6) (DP —DY (¢*—1)* = 0 (modp™'™).
Now since
D(®—1)F = k(e*—1)"e® = K(e®— 1Y+ k(e*—1)",

it follows at once that

n
D'n(ea:_l)k — Zaj(ex__l)lc—77

i=0

where the a; are rational integers that depend on »n and k. In particular, '

for n = p, we have

DP(F—1)f = Zk(—l)k_s (t) PP ‘= 2 (—1)* (?:)bspesa;

) g(_l)k—a(];) Sp;? (j) (¢ —1Y
- ].: (IJC) (e"—1y §(~ 1)k (’s:i) o
-5 (5 =0 i? (— 1) (6"
7=0 £
If we pub
(2.7) uy = ie.w_%ll_)k,

this becomes

2.8) DPu, = 2%,—2(—1)(’) (o—s?.
i=0

8=}
Since

ij(—lf(ﬁ)wj}j](—lr(’;:i)=0 G >1),

8==0 8=1

icm
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is follows that

For j =1 we have

i’(ml)‘(:,) (b—sf’ = ¥ — (k—1)" = 1 (modp),

8=0

while for j = p

;—!Zy'(—w("z) (k—s)? = 1.
5=0

Thus (2.8) becomes

n-—-1

DPoy, = K+ “k~:u+2 CjUp—j,
ppest
where
e, =1, ¢=0(modp) (1<j<n).
Sinee :

Duy, = by up_y s
it follows that

»-1

(2.9) (DP—Dyuy, = Uy_p+p 2 i Ug_j,

i=0
where the d; are rational integers. -
A second application of (2.9) yields

Pp~1

17
2 dy' Upjy
=0

p-1
(DP —DYuy = wp_op+p Z Gw_p_y+ 9",
s i=

where d;, d; are integral. Continuning in this way we get

r p—=1 .
(2.10) (DP — DYty = we_rpt+ 3 0° >, & U__pp—sy
3=1 j=0

where the d are integral.

As noted above we may assume pr >%. Choose ¢ s0 that

r—t)p <k, (r—i+1)p>Fk,

i
%2(_1)** (Z) (k—sf° =0 (modp) (1<j< p).

379
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that is
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) By (2.6) we have
k
(2.11) t=7r— [?j] (D? —D) (¢®—1)* = 0 (modp"~"™).

Hence for r > kfp
Then (2.10) reduces to

. 1)’°
L et (D* — D)' = 0 (mod p" ¥/,
Yug, = ‘11’3 2 dgs)“k—(r—s)v—i-
s=t =0 using (3.3) this becomes
Since ue D it follows thab (F—1)F
2 __ T\ - — r
—DYu, = 0 (modp!). (3.5) A, (D —Dy = 0 (modp") (r =k/p).
Hence by (2.5) and (2.11) On the other hand for all »

(_Dp—-.D)r (_Gx—- l)h =0 (modp'“ [k/p]+”(k)) ’ i (ez__ l)k E sf) (OI‘ $p)

k!
which is the same as (2.6). and consequently
Thig completes the proof of Theorem 1. .
& —1)F
3. Let : (Dp~D)'—(7——)—eSf) (or 9,).
(3.1) f(@) = Z‘ am_' Thus by (3.3) we get
L n! (6“—1)" .
(3.6) A, (D?—DYy — =0 (mod p™/?T)
be an arbitrary series in 9 (or ). Since k

00 for all k. Combining (3.5) with (3.6) it is clear that
& = log((¢*—1)+1) =Z 3—1)k7 oo o qyk
r (e _1) r
=1 (3.7) ZA,C(D” —py 2" = 0 (modp").
it follows that = kt
00 Since
E—1)F
(32) foy = > T =), : ]
= - (0 —Dyfa) = 3 (—1 (7} D+ i)
where the 4, are integral. Thus an arbitrary f(») in H (or Hy,) will always o=
be representable in the form (3.2). s %1 ol
Now assume that the A, satisfy ' = ZW 2 (=1~ (s) Ontrisip—1)1
3.3 Ay = 0 (modp™) (b =0,1,2,...). )
®:3) i ( P 12, ) it follows from (3.4) and (3.7) that
Applying the operator (D —D)" to both sides of (3.2) we get ,
Rl r _
, 5 ey (3.8) D=1 () tnsopy =0 (moap)) (220,
(3.4) (DP—DYf(@) = > 4u(DP —DY
k=0

We have therefore proved that (3.3) implies (3.8).
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We assume now that (3.8) holds for all » =7 = 0. Then (3.4) be-
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For n = r-+r,, h = rp-+7,, this becomes because of (3.12)

comes: i
1
& — — 4,01 = 0 (modp").
(3.9) Z A (D — 1))'( ) = 0 (modp"). Tl P
k=0 Since O = k!, we get
Fus = 0 (modp),
00
" that is
(3.10) (F—1) = ng_
& o Ay = 0 (modp'™™M).
80 that This completes the proof of (3.3).
. We may now state
(3.11) o — Z(_l)u—j (’;) . THEOREM 2. Let
= (e“ 1)
Since (3.14) fla) = Z . 7 = 2
(k) _ b~ ‘
8.12) Ol =0 (k>n), be an arbitrary series €D (or H,). Then
(3.9) implies R
N (3.15) 2(—1)8(:) G agp_yy = O (modp”)
(8.13) Z—k—!—Akz (-—])8( ) ooy = 0 (modp’) (n =7) s=0 .
k=t =9 for all m =7 =0 if and only if
for all N = n+tr(p—1). 4, = 0 (mod p™#)
We now assume that (3.3) holds for k¥ < b and put for all k=
. I 1 t. i tegral, then (3.15) is satisfied if and
h=1p+r, (0 <7< p). only ]1; pa.rtmu ar, if the a, are integr: en ( )
In (8.18) take n = -7y, N = h. Since by (2.5) . (F—1)F
A sl = bt 302
g k=1 Sk
D=1 () oy = 0 (modpr ), where
§=0
. (3.16) 8 = ﬂ p®
it follows from the inductive hypothesis that DIk
and the b, are integral.
Ak 2 (— 1)"’( )vasm -y = 0 (modp") 4 We shall now suppose that in (3.14) @, = A, = 0. There is evi-
dently no less in generality in making this assumption. We shall prove
for all ¥ < h. Hence (3.13) reduces to the following theorem which generalizes Theorem 1.

THEOREM 3. Let

AhZ( 1)~* (”) CM o -1 = 0 (modp"). (4.1) f(a) = 2%;}; _ 211;: (6°
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where

A, = 0 (modp™/™).

Put
hed n
P
@) = Z al) s
=l e
Then

Pyt 1) #upy = 0 (mody™®)  (n > 1),

8=0

where v(k) is defined by (2.4).
It will be convenient to first prove

TrEOREM 4. Let
had e
g@) = > du,

T=1

where the A, are integral (modp) and

(4.2) 4, =0 (modp™™y.

Put

(4.3) ¢ @) = ZA(’“);;T k=1,2,3,..).
n=k

Then

(44) . AP =0 (mod p™/PI+®)),

Proof. We have

ﬁmwi
g(x) = ZZ pm.j(p ) (A'=0).

j=0 n=0

By (4.2)

Apnyy = 0 (modp”),
80 that

= 2 “jgi(“‘m)y

icm
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where

had o
gi{@) = ,;AWHW €D (or Hy)
for j =0,1, ...,p—1. Expanding by the multinomial theorem we get

A
7 (@) = Sl 41 (@) (wgy (#*)).... (27 gy _y (a®)) 1.
B Tl

We seek the highest power of p dividing the term 2™ on the right. The
multinomial coefficient contributes

p(l)— u(ko)—...— ulkp_1),

while
gkt e+ @-kp g

contributes

w(Foy+ 2kt ..+ (p—1) Eyp_y)
and gie contributes u(k,); in addition we have

n—(ky+ 2k + ...+ (Pp—1)k,_,)
?

Thus it will suffice to show that

y(k)~§ )+ (Zﬂo) + % (n—fjki) > [%] +(k).
im1 s} =1

Since .

p-1 -1
y =2 =115 )
this reduces to
p(k)— Zy(ka)Jru(Zﬂ@) 5 Ejkf]zv(k),
F=1 i=1

which ig the same as

(4.5) [g] 4 (Zﬂ@) ~Sv(kﬁ—§ B‘,}] > 0.
i=1 i=1 =1

Acta Arithmetica VI 25
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Since

and

Pe-1

Pp~-1 7)»1‘
1(2: i) v (Y &) = D) v(k),
F= 71

7=l

(4.5) holds. We have therefore completed the proof of (4.4).

Tt is now easy to prove Theorem 3. By (4.1) and (4.3) we-have,

i) = N ap 2

Nk
so that
oo 1)y
WDy = 3 -y L
n=k
By (2.6)
(D?—DY" E——ﬁ—,'l")i =0 (modp" ™) (r = [n/p]),

by (4.4) this becomes

wo) 4@ —or o moap™ ) (r = tiip)-

For all » we have

AB(DP Dy L = 0 (mod p™/PIH),

8o that (4.6) holds for » < [n/p] also. Therefore
(D” —DY ff (@) = 0 (modp""*),
This completes the proof of Theorem 3.

5. If

n

(5:1) f@) =

! (a, = 1),

=]

e ©
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where the a, are integral (or integral (modp)), then the inverse of f(z)
is a series of the same kind;

ad I
Dt d=1),
n.
n=1l

where the d,, are integral (or integral (modp)). (The condition @ = d; =1
can be replaced by the weaker condition a,d, =1, a, 5= 0(modp)).
Thus if g(v) is an arbitrary series in 9 (or H,) it follows that

fAa)
kU

mﬂ/
by—r =

Ay
n!

(5.2) (@) =

42
':\'4 2

0

i

k

il
=

n
where the A4, are integral (or integral (modp)).
For brevity we let & (or ®,) denote the set of series

.
SaZs @ o

n=0

such that

R
(=17 (7) nesipory = 0 (modp)
8=0

for all »n =7 >=0.

Suppose now that f(x) as defined by (5.1) is a fixed series in ® (or &;)
and g(o) is a series defined by (3.2). ‘We seek necessary and sufficient
conditions that g(x) R (or K,)- i

From (5.2) we geb
. DY N - f)
(5.3) (D" —DYg(o) = N 4u(D"— DY =

k=1
By Theorem 3
(D¥—Dy'f¥(z) = 0 (modp™"™),
go that

x
(D”——D)’—f—gl = 0 (modp™*™)  (r = [k/p]).

If we agsume that the coefficients A oceurring in (5.2) satisfy

(5.4) A, = 0(modp™™) (k=1,2,3,...),
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it follows that

%
@
(5.8) A, (D°—D) fl:') = 0 (modp")
for » = [k/p]. Indeed it is evident from (5.4) that (5.5) holds for
r < [kip] also.
Thus (5.3) implies
(D*—Dyg(e) = 0 (modyp"),

which is equivalent to

(5.6) Dy (:) Busopy = 0 (modp”)  (n >r).
§=0
Therefore it follows from (5.4) that g(x)¢® (or K,).
Conversely suppose that (5.6) holds for all n >
show that this implies (5.4).
Assume that (5.4) holds for all k¥ < k, and put

= 0. We shall

h=rptr, (0 <7 <p).
It is clear from (5.2) that
O 1

(5.7) b= ;’F Azl (N =),

=0
where

)= a2

=~ n!

Note that
(5.8) ad =0 (k>n).

From (5.7) we get

N r
P ’(o)e ey = _ %TAkZ< 1 () g

=0 8=0
(N Zn4r(p—1))
and therefore by (5.6)
L. r
(5.9) g}k—!Akgj(-

¢ () a1y = 0 (modp’) (N > n+r(p—1)).
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(5.9) take # = r+7y, N = h. Since by Theorem 3
2( ( )a,ws(p y = 0 (modp™®) (=4,
it follows from the induective hypothesis that
ALZ( 1)*(7) a1y = 0 (zmod ")
for all ¥ << k. Hence (5.9) reduces to

-Ah2(

For n = r-+r,, h = rp+v, this becomes because of (5.8)

( ) a,ws(p y =0 (mod p").

—Ahag‘} 0 (modp");
since af = h! we got

4, = 0 (modp"),
that is

Ay = 0 (modp™™),

This completes the proof of (5.4).

We may now state

THEOREM 5. Let f(x) be a fized series in K& (or K,) of the form (5.1).
Let g(x) be an arbitrary series in O (or Dp) and put

had k
s = 3 4.2,
k=0

so that the A, are necessarily integral (or integral (mod p)). Then g(z) R
(or ) if and only if

A, = 0 (mod p¥/*1)
for all k = 0.
In particular (compare the remark immediately following Theorem 2},
if the a, are integral, then g(2)eR if and only if

ST, @)
g(m)=bo+g;bk o

where s, is defined by (3.16) and the b, are integral.
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6. Let
g z
61 fa@) = Y~
n=0

be an arbitrary series in  (or $,). It follows from (3.1), (3.2) and (3.11)
that
N

N k N
_ 1 1 e i (MmN O v (k\ Az
o mt g I = r Ze ()
=~ - =" &

k

for arbitrary N > n. Thus we have

N
(6.2) 6, = PO (N =),
7=0
where
N A
6.3 ™ _ — 1y (H 2
©3) 7 aE( 1) (J) K
=7

We remark first that for given a,, the numbers U are uniquely
determined by (6.2). Indeed for N fixed and n = 0,1,...,N, (6.2) is
a system of N-+1 equations in the N1 unknowns U{"); the determi-
nant of the system is :

" Gym=10,1,..., N)

which is clearly not zero. Thus (6.3) furnishes the solution of the 8y~
tem (6.2).
In the next place we note that (6.3) implies
(6.4) g — Ai
7 j!
and therefore (6.3) bécomes

(6.5) : W — ZN'(— )6 (’;) U,
k=7

By means of (6.5) all the U™ are easily computed when the U¥ are known.

}Q’lelsen ([3], Chapter 14) uses (6.2) in the cage of integral U™ to
obtain Kummer’s congruence for the a, and thus obtains Kumjmer’s
congruence for the Euler Numbers. However it is by no means necessary

icm

Criteria for Kummer’s congruences 391

to assume that the U™ are integral. Indeed by (6.4) and Theorem 2 we
obtain the following criterion.
- THEOREM 6. Let

e
f(w) =, ay :n_!‘
n

| L\/JS

1l
3

be an arbitrary series in 9 (or 9,) and let U be determined by (6.2).
Then f(z)eR (or R,) if and only if
(6.6) p M TE

is integral (modp).
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