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1. The most important single result used in the treatment of War-
ing’s Problem and similar problems is Weyl’s inequality. We first recall
this, limiting ourselves to cubic exponential sums of the type

P
1) T = Ze(aw“—}— a2+ a, %),

B=1

where a, a,, a; are real and ¢(0) denotes ¢*™. Let h/g be any rational
approximation to a satisfying

2) (hyq) =1, la—hjgl <q7%
then Weyl’s inequality (') asserts that

3 11 _1
@) IT| < P*(Pi+Pig+Pq ¥)

for any fixed ¢ > 0. In particular, if ¢ lies between fixed multiples of P
and P2, we get the estimate P*/***, and these conditions on ¢ correspond
(roughly) to « being on the ‘minor ares’ in the application to Waring’s
Problem.

The main object of the present paper is to show that Weyl’s inequa-
lity can be extended, without loss of precision, to an exponential sum in
two variables, in which ax® is replaced by af(z,y), where

(4) f@,y) = az®+ baty - cxy?- dy®

is any fixed binary cubic form with integral coefficients and non-zero
diseriminant (2). The inequality does not extend in the same way to

(*) There are many slightly different forms of Weyl's inequality in the litera-
ture. That given here seems to be due to Vinogradov, Izvestiya Akad. Nauk SSSR
21 (1927), pp. 567-578.

(%) The discriminant of the form (4) is the invariant 18abed+ b%*— 4ac®—
— 4db®— 27a%d?.
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cubic forms in more than two wvariables or to forms of higher degree in
two variables (3). Stated formally, our result is:

TraroreM 1. Let f(x,y) be any fived binary cubic form with integral
coefficients and mon-zero discriminant, and let ¢(z,y) be any real poly-
nomial of degree at most 2. Let
P @

De(af(@, 1)+o@, ),
=1

Y=1

() 8 =

@

where 1 < Q < P. Then, subject to (2), we have
3 11 1
(6) |S| < P*(Pi+Pig+Plg )

for any fized ¢ >0.

This theorem enables us to generalize some of the results related
to Waring’s Problem for cubes which are known already, either expli-
citly or implicitly. If a,,..., @3 are any non-zero integers and N is any
integer, it can be proved by a method of Davenport (4) that the equa-
tion
M) . L. agry = N
has infinitely many solutions in integers, provided that the correspond-
ing congruence is soluble to every prime-power modulus. If ¥ =0,
the latter condition is always satisfied and can be omitted. Theorem 1
enables us to replace the pair of terms a,a a,43 in (7) by any binary
cubic form f(z,, #,), and to make similar replacements with other pairs
of terms provided one pair of cubes is retained.

‘We shall prove one result of this kind in moderate detail:

THEOREM 2. Leét ay, ay be mon-gero integers amd let fs, fs, f5 be bin-
ary cubic forms with non-zero discriminants. Then the equation

(8) a1w3+a,2wg—|—f3(w3, Y3) +fu(®s, Ya) -+ S5 (@5, y5) = 0

kas infinitely many primitive solutions in integers, with all the iniegers ar-
bitrarily large.

‘We base our proof of the solubility of (8) in every p-adic field, which
i & necessary part of the proof of Theorem 2, on a theorem of D. J. Le-
wis (see §9).

(*) More recently Dr Birch has shown that our result extends to those forms of
degree % in n variables that are expressible as a linear combination of n kth powers
of real or complex linear forms. If k > 3, or if ¥ = 8 and n > 2, such a represen-
tation is not generally possible.

(*) On Waring’s Problem for cubes, Acta Mathematica 71 (1939), pp. 123-143.
This paper will be referred to as W.P.C.
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Two other results, which can be proved on similar lines, but for which
the p-adie condition cannot be omitted, are as follows:

(a) With the hypotheses of Theorem 1, the equation (8) with an inte-
ger N # 0 on the right has infinitely many solutions provided N is such
that the corresponding congruence is soluble to every prime-power modulus.

(b) With similar hypotheses, the equation
) O3]+ @3+ f (103, Ys) = N

is soluble for almost all those positive integers N for which the correspond-
ing congruence is soluble to every prime-power modulus; that is, the number
of exceptional N between 0 and X is o(X) as X — oco. In particular, the
positive integers represented by the left hand side of (9) have positive density.

‘We are grateful to Dr. B. J. Birch and Professor D. J. Lewis for
helpful comments.

2. In this section we prove Theorem 1 under the additional hypoth-
egis that the diseriminant D of f(», y) is such that —3D is not a square;
the excluded case will be dealt with in § 3.

LeMMA 1. Let

By (#1; Y15 @ay Ya) = 302185+ B (@1 Ya+ oY1) + €Y1Yes
B2, Y15 B2y Ya) = b1 ® 4 6(01Y2 - 029,) 33919
Then for the sum 8 in (5) we have (%)

(10)

(11) I8¢ < P2 > N'min(P, |2aB,| ") min(P, [2aB,|™),
1,1 g, ¥y .

where the summations are over integers of absolute value less than P.

Proof. See Lemma 3.1 of Davenport, Cubic forms in 32 variables,
Phil. Trans. Royal Soc. A, 251 (1959), pp. 193-232 (*), where a similar
result is proved for cubic forms in n variables. The proof is a natural ex-
tension of that used for the original Weyl’s inequality; the bilinear forms
B,, B, arise as the coefficients of # and y in the second difference

F@+o1+@ay Y+ Y1+ Y2) —F(@+ 21, y+71)
— fla+ @3, y+92) +f (@, 9)-

LeMuMa 2. Suppose that —3D is not a square. Then for amy integers
My, My the number of solutions of

(12) By (@15 Y15 B2y Ya) = My,  Bo(y, Y5 @ay Ya) = My

(*) We use ||f]] to denote the difference between 0 and the nearest integer.
() This paper will be referred to as C.F.
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in intogers &y, Yi, not both O, and @g, Ya, 1O both 0, all of absolute value
less than P, is < P° for any fized & >0.

Proof. Let
(18)  A(z,y) = (bo+ oy)2— (3am - by) (e -+ 3dy) = Au*4-Boy + Cy2,
say. The diseriminant of this form is
(14) B —4AC = (be—9ad)®— 4 (b®—Bac) (62— 3bd) = 3D,

and this is not a perfect square. Hence A(x, y) % 0 for integers z,y,

not both 0.
We shall prove that the equations (12) imply that

(15) A(By, Y1) A (@2 Y2) = Almy, —my)
identically in @, Yy, ®a, Yo Write (12) a8 linear equations in &, ¥,
(3aw,+by,) wat+ (b2 4-0y1) Y2 = My,

(b, + 0y) @a+ (0201 + 3dY1) Y = M.

(16)

@

Their determinant is —4(w,,y,), and their solution is
Ay, Y1) @y = — (cavy+ 3dyy) my -+ (b + €yy) My,
A@y, Y1)y = b1y cy1) my— (3aw, + by) My

Put
A = 3am,—bmy, g =bmy—omy, v = ocmy— 3dmy,
50 that
(18) Iy = A(mg, —m,).
Then
(19) A2y, Y1) = pby+ Y1,
(20) A(@y, Y1)Ys = — My — pls.
Hence
(21) Ay, ¥1) (uwy - vyy) = (Mg, — M) @5

On. the other hand, the interchange of @;,y, and @,, ¥, in (19) gives

(22) A (g, Yo) Wy = ptlg+1Ys.

Hence, provided », # 0, the last two equations imply (18). But in
view of the identieal nature of (15), it must hold independently of this
condition. :

In (1B), 4(my, —m,) is & non-zero integer, since A (wy, y;) ¥ 0 and
A(®y,yy) % 0. Also |4 (my, —m,)| < P*. Hence the number of possi-
bilities for 4(w,,y,) and A(z,,y,) as factors of A(m,, —m,) is <F°.
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It A(#,9) i8 a definite form, the number of pairs »,,y, for which
it assumes a particular value is < P*, and similarly for x,,y,, whence
the desired result. If 4(z, y) is indefinite, the same conclusion can still
be drawn, for although the numbers of pairs »,, y, may be infinite, they
fall into < P° classes, and pairs in the same class are related by a power
of the fundamental solution of the Pellian equation X?®— (B*—4A40)¥2
= —4. Thus the number in each class with |;) < P, |y,| < P is < logP,
and the result follows.

Levmva 3. Suppose o satisfies (2). Then for any integer H we have

Hig
D min(P, lemf™") < P+ glogg.
m=H+1
Proof. See Vinogradov, The method of trigonometrical sums in the
theory of numbers (trans. Roth and Davenport), Lemma 8a of Chapter I,
where a slightly more general result is proved.

Proof of Theorem 1 (first case). In the estimate (11) for |S}¢,
we remove from the summation all terms with #; = y; = 0 and all terms
with %, =y, = 0. This gives

I8]* < PP 3V 3V min(P, |2aBy| ) min (P, [2aBy|™).

21, Y %3, Y2

Putting 2B, = m, and 2B, = m, and using the result of Lemma 2, we
obtain

23) 8 < PC4P* 3! Smin(P, amy| ) min (P, [amg ),

my My
the summations being over |m,| < P2, |m,| < P?. The last double sum
factorizes, giving
I8t < PP+ { 3 min(P, lam| ™)}

Div-idi‘ng the inner sum into blocks of at most ¢ consecutive terms, and
applying Lemma 3 to each, we infer that this sum is

<(P*q~'+1)(P+qlogg),
agd this gives (6). (Note that we can suppose logg < 3logP, since other-
wise (6) is trivial.)
3. We turn to the case in which —3D is a perfect square, but not 0.

It is necessary to modify Lemma 2.

LevwmA 4. Suppose that —3D is a square, not 0. Then the conclusion
of Lemma 2 holds with the following emceptions: (i) if my/ms has one of two
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special values, the number of solutions of (12) is < P'*°, (i) if my = my =10
the number of solutions is < P2

Proof. The quadratic form A(z,y) now factorizes rationally, but
the factors are distinet (i.e. not proportional). The proof of Lemma 2
remaing valid if m,, m, are such that A(mg, —m,) 7 0.

Suppose that 4(mg, —m;) =0 but that m,, m, are not both 0;
this means that mq/m, has one of two special values. By (15) we ecan
suppose without loss of generality that 4 (2, y,) = 0. Suppose first that
my % 0. Then 3aw,+by, # 0, for if 3aw,~+by, = 0 then bw,+cy, # 0
by (18), contrary to the supposition that 4 (a,, y,) = 0. Since the deter-
minant of (16), (17) is 0, these equations are inconsistent unless

my _ baitey
My B 36%171’}" b% )

Now (16) can be written
(amy+ byy) (Mo @yt MeY,) = m;.

This gives < P° possibilities for each factor. Since ,/y, is limited to two
values from A(#;,y,) = 0, we obtain < P* possibilities for a,,y, and
< P'+° possibilities for @,,y,. There is a similar argument if m, 7 0.

Suppose finally that m, = m, = 0. Then d(@,y,) =0 by (19),
(20), and similarly 4(z,, 4,) = 0. Bach of @, [y, #,/ys has only two possi-
bilities, giving < P? solutions.

Proof of Theorem 1 (second case). We have to add two additio-
nal terms on the right of (23), corresponding to the two additional cases in
Lemma 4. The additional term arising from m; = m, = 0 is < P°. The
other term is

< PP Y min (P, flamy| ) min (P, amy| "),
™y, My
where the summation is over m,, m, for which m,/m, has one of two
special values. We can take m, = 0. Replacing the second minimum by P,
we obtain

< P4 3 min (P, ||lamy)| ™)
my

< P*(Plg 1) (P qlogg).
Since (P*q~'+4-1)(P-qlogq) > P?, this is
< P*{(Pq +1)(P+qlogg))
giving the same result as before. This completes the proof.
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It does not seem to be possible to extend the proof of Theorem 1
to cover the case D = 0. A form with D = 0, if non-degenerate, is trans-
formable rationally into X’Y. The corresponding exponential sum is
easily estimated if the summation is over a rectangle in the X, ¥ plane,
but that is not the hypothesis of Theorem 1.

4. Preliminaries to the proof of Theorem 2. We are concerned
with the integral solutions of (8). The first step is to choose =& real
solution of the equation without the last term:

(24) a8+ ay B+ fi(Eay na) +falfy 1) = 0

with all the unknowns different from 0. By changing signs of variables,
we can suppose that &, ..., 5, are all positive. We next e¢hoose a 6-dimen-
sional box B:

(25)

5;<m7<5;' =1,...,4), (1=3,4)

containing the point (&, ..., n,) and having its sides sufficiently small
to satisfy a later condition (Lemma 15).

Let P be a large positive number and let 9 (P) denote the num-
ber of integer solutions of (8) satisfying

ny <Yy <y

(26) EP<a < &P (j=1,...,4),
(27) nP<y<m'P (j=3,4),

4 4 1 1
(28) P <x; <2P5, P35 <y,<2Ps.

We establish ultimately an asymptotic formula for ¥ (P) as P — oo,
namely 9(P) ~ CP®"®, where ¢ >0 depends only on the equation (8)
and on the choice of the box B. This proves Theorem 2.

Corresponding to each term in (8) we define an exponential sum,
as follows:

(29) Ty(a) = Y elana)) (j=1,2),
(26)

(30) Sia) = D elafi@,y) (G =34),
(26),(27)

(31) Ula) = D) elafs(ms, ¥s) -

Then ®

(32) N(P) = [Ty(a)Tofa) S3(a) Sa(@)T(a)da.
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We adopt substantially the same subdivision of the range of inte-
gration as in W.P.C. . .

Tet 6 be a fixed small positive number. For each pair of integers
h, ¢ with
(33)

4
(hyq) =1, 1<Q<P5(1—0):
the magjor arc My, ; consists of the interval

la—R/g| < g'P70.

1<h<gq,

(34)

Tf o ig nob in any major are, there exists h, ¢ satisfying (34) and
psi-d q <P,

We define the proper minor arcs w' to consist of those a for which

(35) P < g PP

and the dmproper minor arcs m’ to congist of those o for which

4
(36) P < g <P

5. The proper minor arcs.

Lemuva 5. Let f(m,y) be a binary cubic form with integer coefficients,
of discriminant D = 0. Then the number of solutions of

f('”; 'IJ) =f(ml7y’)

in integers, all of absolute value less than P, is <P for any fived ¢ > 0.

Proof ("). It suffices to prove the result for the equation f(o-- @,
y+y,) = flo—»y, y—v1), and this can be written

(38)  (Bamy+byy) @22 (bwy 4 oyy) oy + (owy + 3y ) y? = —f (@1, ¥1)-

The quadratic form on the left has diseriminant 44 (w,, ¥,) by (13), and
the diseriminant of A(w,,y,) itself is — 3D by (14).

Buppose first that — 3D is not a squave, so that 4 (=, y,) # 0 for
integers #,, ¥, not both 0. If f(w,,y,) # 0, the equation (38) determines
@, y with < P* possibilities, by the argument uged in the proof of Lemma 2.
If f(®y,¥1) = 0 then »,,y, are restricted to < P possibilities and for
each of these (38) gives < P possibilities for », y. Hence the result.

87)

(") We could deduce the result from Mahler’s theorem (Math. Ann. 107 (1933),
Pp. 691-730 and 108 (1934), pp. 37-55; Folgerung 2 on pp. 82-53) that the num-
ber of representations of m by an irreducible binary cubic is < m® But this theorem
is of a much deeper character than Lemma 5.
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Suppose now that — 3D is a square, not 0, so that 4(z,, y,) facto-
rizes rationally. The preceding argument still applies if A(w,, ¥,) 5= 0.
I A(wy,4;) =0, then z,,y, are restricted to < P possibilities, and for
each of these (38) gives < P possibilities for @,y (independently of whether
f(®,, ¥,) = 0 or not). This completes the proof.

LeMMA 6. We have

1 I
[1T,(a) U(a)2da< P,
[

Proof. The integral represents the number of solutions of
a8} + f5 (@5, Ys) = ay a7+ 5 (@5, v5)

subject to (26) and (28) for both sets of variables. More simply, we write
the equation as
(39)
with

ar’ +f(y, 2) = ax” +f(y', )

4 4
FP<a<&'P, |yl<Ps |4 <DPs,

and the same for «', %', 2. We follow the lines of Lemma 1 of W.P.C.
The number of solutions with # = a” is < P-(P**)*** by Lemma 5.
Hence we can suppose ' >x. With ' = z-+12, (39) becomes

(40) at(3a*+ 3zt + ) +f(y', #') = f(y, 2).

Plainly 3P% < |f(y, 2)|+ |f(y’, #')] < P®", so that 0 < t < P,

Let o(m) denote the number of representations of m by f(y, 2), and
let R(f, m) denote the number of representations of m by the left hand
side of (40). Then the number of solutions of (40) is

DemR@, m) <[} Y Ret, m)} .
t,m 1 t,m

L m

We have Y o2(m) < P**** by Lemma 5, so the above is
m

< (BB Y R, mlf,

i,m

(41)

on using the bound for f.
The lagt double sum is the number of solutions of

at (37 4 32,8) +f (1, 1) = 6(305+ 35,1) +F (¥, 2),

in the same ranges as before. If #, = #,, there are < P possibilities
for #,, and < PP possibilities for ¢, and < (P**)*** possibilities for

Acta Arithmetica VI 33
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91, %1, Yz, %2 DY Lemma 5, making altogether P**°. If », 5= m,, we observe
that 9,2, Ys, #s can be chosen in < (PY%y* ways, and that they
determine the factors of

3““9”1'—5”2)(”1“!‘502‘{‘”
in < P® ways. Hence

4 16
ZREU; m) <€ P4 (PE)'P° < P+
t,m

On substitution in (41), this gives the result stated.
LemmA 7. We have
91 | 4
[ 1T3(a) Ta(a) S(@) S4(a) U(a)| da < P2,
w
Proof. The sum T,(a) in (29) can be estimated by the original Weyl's
inequality (3), and on using (34) and (35), which hold in m’, we obtain

3
Ty (a)] < Ps™°.

The double sum S;(a) can be estimated by Theorem 1, and in the same
way we obtain ’

3
185 (a) < PT*°.
Hence the integral of the enunciation is

1

< P5 [ 11,(0) 8,() U () da

0

<P s, { 1T @D (@ 2of.

The first integral here is < P*** by Lemma 5, and the second is < P®/5+
by Lemma 6. Hence the result.

6. The improper minor arcs. We require some lemmas from
W.P.C. and from C.F. Those quoted from the former were proved. there
for the sums T,(a), T,(a) without the coefficients a,, a,, but remain
valid since a,, ¢, are constants. The lemmas are not restricted to a in
w"’, and indeed they find their main application on the major ares (§ 7).

Levmma 8. Suppose that

’ h
(42) a=‘a‘+ﬂa ‘ﬂ‘<q‘1P—2_a’ (hy @) =1, qul—d'
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Then, for j =1, 2,

(43) Ty(a) = ¢ 8(h, D L) +OE ),
where
[4
(44) 8i(h, q) = De(haz*le) (=1,2),
&P
(45) L) = [ efagtde  (=1,2).

5P

Proof. This is Lemma 7 of W.P. C., except that there a sum was
used in place of the integral I;(8). The difference between the sum and
the integral is O(1).

LevMa 9. We have

(46) S gl<d G =1,2),
G=1,2).

Proof. (46) is Lemma 2 of W. P. C. The first part of (47) is trivial,
the second is easily found on integrating by parts.
TEMma 10. With the hypotheses (42) we have, for j =3, 4,

(47) IZ;(8)] < min(P, P*|8|™)

(48) 8;(a) = ¢728;(k, ) L;(B)+ O (8P g™+ 0(1),
where
g 4q
(49) 8i(h, ) = 3 Ye(hfy@, 9)la) (=34,
&P P
(50) L@ = [ [ elffile,p)dzdy (G =3,4),
E}P rz}P

and where S, is an upper bound for the absolute value of amy sum of the
type

8 &G (hfie, y)F e
(51) S, q,1,7) = Zzg(w_—tﬂ)

z=1 y=1 q

Proof. This is the case n = 2 of Lemma 5.5 of C. F., except that
the definition of S, differs from that of the number T used. there. The new
definition (which costs a factor P*) is justified by the argument of Lemma
5.6 of C.F.
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LevmA 11. We have
3 e
(62) 8 < ¢ - ’

and in particular (taking 1 =1 = 0 in (51)),

(83) 18;(R, g)] < " =3,4).

Proof. Apply Theorem 1 to the sum (51) with P =@ = ¢ and
with a = h/q.
Levma 12. We have

[ IT4(@) T (0) 84(a) 84( 0) U(a) | da < P+,

Proof. We recall that m” is defined by (34), (36). By Lemmas 8,
9, for a in m" we have

1 P 2t
|IT5(a)| < g 3 min(P, P~2||~")+ ¢¢*
< min(2, P71,
By Lemmas 10, 11 we have

1
185(0)] < g P PG

1
< ¢ PR

As for U(a), we note that Theorem 1 is applicable to this sum, with
P*® ag the range of each variable, and gives

43
1T(a)] < (P
Thus the integrand in the enunciation is

212

< g3 IDJ'.H(PZ, P—4ﬁ—2)q~lP4P§+d.
Integration over || < ¢~'P~* gives

5 1
—r 4284 4248
g3 P ,

and then summation for & and for ¢ with ¢ < P'~* gives the result
stated. .

7. The .ml'ijf)r ares. Lemma 8 gives approximations to T(a),
T,(a) on an individual major arc M, ;, and Lemma 10 gives approxima~
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tions to 8;(a), §,(a). Asregards U(a) we can apply Lemma 10 with P*°
in place of P, since ¢ <P§‘l“’) and

4
Bl < ¢ P < g (B5) T
Thus on My, ,

(54) U(a) = ¢~*84(h, ) I (B)+ O (B ),

where S;(h, ¢) is defined as in (49), but

aP4is 2pd/s

(55) L) = [ [ elbf:@, y)dwdy.

P45 p4is

We denote by V(a) the integrand in (32) and by ¥*(a, k, g) the
product of the main ferms in the approximations, valid on MWy, 4, al-
ready found for the factors of V(a). Thus

5 5
(56) Ve by @) = [ [ 8, 9) [[1:6)-
§=1 j=1
Lemma 13. Let I denote the aggregate of the magjor arcs. Then
L 61
m{V(a)da = Y Y [V*a,h,qdet0o(Ps).

— h=1
. <P4(1 8)/5 P By, q

Proof. The main terms in the approximations (43), (48), (54) are
respectively estimated by

1 5 = _1 4
¢ min(P, P77, ¢ 2P, ¢ (P,
and the error terms by

1 1

4
Piteg,  psttag,

&+,

It is easily deduced that, on My 4,
V(@)= V*(a, b, )] < P5* g smin(P?, P46
+P* g min(, PR,

Integration for § over |f] < ¢ 'P~>"%, then summation over k and over

q <P‘§u"’) lead to the estimate stated.
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8. Completion of the analytical argument. It follows from (32)
and Lemmas 7, 12, 13 that

23,
(57) ey = > Al [ IB+OET),
qut(l—d)/s |m<q-lp—-2—d
‘where
q 5
(58) A =g" D[]8,
(hf'&j‘:ﬂj”l
and
5
(39) g =[[LB.
J=1
By Lemmas 9, 11 we have
2 31e -1
(60) 14() < ¢ *q(@™) (@) < g5
Thus the ‘singular series’
(61) G = DA
g==1

is absolutely convergent. Its sum depends only on the coefficients in
equation (8).
LeMuA 14. We have

28 2 s
(62) NEP) =P [ J)ay+0(Ps7),
1y1<p®
where ) ’
(63) IJ@) = [e(rF (o, ..., ) dwy...dy,
B
and
(64) F(@y, -y Ya) = oy @}t ay 03+ f3 (03, ¥s)--Ful@a, ¥a),

and B is the 6-dimensional box (25).

Proof. We begin by contracting the range of integration in (B7)
to |B] < P, Since

(85) I(§)] < min(P*, P~*8-%) P'P5

22
by (59), (47), (50), (55), the change in the integral is < P57~ and is
negligible.
The range for § is now independent of ¢. By (60), (65) we can extend

Weyl's inequality and Waring's problem 519

the summation over ¢ to oo and neglect the error introduced. We now
have

WE)=6G [ T(B)dB-+0(P3").

1Bl<P—3+6

4 4
We put @; = Pxj, y; =Py; for j <4 and a; = PSaj, y; = Py;
in the integrals I,(f),..., I;(f). Putting also g = Py, we obtain

23
[ 1Bag=Ps [ Ji()dy,
1Bl <P—3-+0 iy1<P?
‘where

Jiy) = f doy...dy, ffg(y(F+P_§fs(157 ys)))d‘”sdys
B 11

with F as in (64). Plainly we can omit the integration over z;, ys with
a negligible error, thus obtaining the result stated.
LEMMA 15. If the bow B in (25) s chosen sufficiently small, but inde-
pendent of P, then
im [ J(y)dy =J,
P00 i <ps
exists, and J, > 0.
Proof. See Lemma 6.2 of C.F., where the result is proved for & gen-

. eral cubic form. The point (&, ..., 7,) inside B must be a non-singular

solution of (24), but this condition is satisfied because & = 0.
LevMMA 16. We have

2; 23
(66) N(P) = J,P5G+0(PD).
Proof. Lemmag 14, 15.

9. The singular series. Plainly © >0 from (66); it remains to
Do proved that & >0. Once this is established we have YW (P) ~ J,&SP*F,
as asserted in § 4.

It follows from well-known general arguments (°) that the following
condition iy sufficient to ensure that S > 0: for every prime p the equation
(8) has a non-singular solution in the p-adic field. It remains to prove this
result. Since the two first partial derivatives of a binary eubic form
(of non-zero discriminant) cannot vanish unless both variables vanish,
it will be enough to prove the existence of a non-trivial solution of (8)
in every p-adie field.

(®) See § 7 of C. F.
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We base the proof on a theorem of D. J. Lewis (°), and it will appear
incidentally that the result holds for any equation like (8) which con-
taing 7 or more variables. The theorem of Lewis is as follows.

LeMMA 17. If K is a complete field under a non-Archimedean valu-
ation, then every equation of the form

(67) oAt e =0 (n=7),

with the ¢; in K, has a non-trivial solution in K.

We need also the following classical regult.

LEMMA 18. A binary cubie form with coefficients in a field 2 of char-
acteristic 0 and with discriminant D # 0 can be ewpressed identically (of-
ter possibly a preliminary unimodular change of variables) as

Rz ay)*+ 8 (z+ By)?,

where o, B and R, S are conjugaie pairs of elements of the field .Q(V —3D).
Proof. With the usual notation, f(z, y) has the quadratic covariant
A, y) of (13), and by a preliminary change of variables we can ensure
that 4 == 0.
The desired identity is equivalent fo

R+8 =a,
(68) Ra-+8p = }b,
Ra2+8p% = e,

Ra*+8p° = d.

These equations imply
RS(a—f)2 = —}4,
RS (a+p)(a—B)* = —3B,

RSap(a—p)* = ~}0,
whence

o4pf=BJA, af=0C/A.
Thus a, f are conjugate elements of Q(l/l 3D), since — 3D = B*—4AC0,

and the same is true of B, § by the first two equations in (68). It is easily

verified that the values of a, p, B, S determined in this way satisfy all
the equations (68).

LeMMA 19. With the hypotheses of Theorem 2, the equation (8) has & non-
trivial solution in every p-adic field.

(*) Cubic congruences, Michigan Math. Journ. 4 (1957), pp. 85-95, Theorem 2.

icm
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Proof. Let 2, denote the p-adic field. By Lemma 18, the equation
(8) is equivalent fo (67) with n =8,

Gy = @y, Cy = Oy, 63 = Ry, ¢, =83, ete,,
and
Ry = @1y By = By, ¥ = Uyt @Yy, & = T3+ PY,, ete.
The coefficients and variables are now in the field £, obtained from £,
by adjoining () V—3D;, V—3D,, V—3D,, where D;, D,, D, are the
discriminants of fs, fq, fs-

It may be of interest to note (though the faet is not important for
our argument) that 2, can be derived from Q, by at most two quadratic
extensions. For fthere are only three distinet quadratic extensions of
2,,, namely by adjoining Vp or Va or Vap, where a is a particular p-adic
unit which is not a square, and any two of these extensions inelude the
third.

The field £, satisfies the requirements of Lemma 17, and hence (8)
has a solution with @, ..., ¥; in ;. From such a solution we can derive
one in £, by the following device (**). Suppose first that €, is simply
& quadratic extension of Q, and that @, ..., y; are in £, but not in Q,.
The conjugates @, ...,y; in £, relative to 2, provide another solution
of (8). The linear combination

Uy DXLy ..y UY5 DY

will satisty (8) if u, v satisfy an equation of the form Hu?v+4H'wv? = 0,
where H, H' are conjugates in ;. Taking u=H', v = —H (or 4 =1,
9 =1if H=H' =0), we obtain a solution of (8) which, apart from
a factor of proportionality, lies in Q,,.

A gimilar argument applies if Q] is a double quadratic extension of
0,; we first derive a solution in the intermediate field and then repeat
the argument.

This proves Lemma 19, and so completes the proof of Theorem 2.

(%) p may be 3, but that does not affect the argument.
(1) The argument is not mew; see D. J. Lewis, Cubic forms over algebraic
number fields, Mathematika 4 (1957), pp. 97-101.
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