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On the distribution with respect to a prime modulus of
the products of primes with a given value of a character

by

O. M. FomeNKO (Krasnodar, USSR)

Notations. We shall use thorough the following notation. The
letter N will denote a number satisfying the condition N > ¢, where ¢,
is sufficiently large; we put » = logN. The letter @ will denote a number
—1< 60 <1; ¢—a positive constant, and &— an arbitrarily small
positive number. For B >0 the symbol 4 < B shows that |4| < ¢B.
For real & the symbol {#} denotes the fractional part of z, i.e. t;he diffe-
rence 22— [z] . We will write expz = €°

The letter n will denote an arbltra.ry fixed mteger >1; ¢ — wil
be a prime number, with ¢g—1 divisible by n. The letter s will denote one
of the numbers 0, 1, ..., 2—1 and # will be a number such that 0 < g < 1;

* u(d) will denote the Mobius function. The symbol y(a) will denote the

character with respect to the modulus ¢ which is different from the main
character; it is known that

exp (2ni tinda) it (¢,9) =1,
x(a) = n

0 if (a,9) =14,

where in this formula, and in the sequel, the index is taken with respect
to the modulus ¢ for a fixed primitive root. We shall assume that (£, ) = 1.
Further, ! will denote a positive integer; w{ runs over all products of I
different prime factors, where indw{® = s (modn). The symbol R{%}(N)
will denote the number of those | which do not exceed N and whose
smallest non-negative remainders with respect to the modgq are smaller
than fBg; hence R{}(N) is the number of all those wf” which do not
exceed N. .

In paper [1] I. M. Vinogradov, using his well-known method of trig-
onometric sums, proves the uniformity of the distribution of primes
with respect to the modulus; the same result is obtained in [2] by elemen-
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tary methods. In [3] the uniformity of the distribution with respect to
g prime modulus of primes with a given value of Legendre Symbol is shown
by elementary methods. In [4], the result of [1] is extended, by investi-
gating the corresponding trigonometric sums, to the case of products
of the same number of different prime factors. The present paper contains
further results in this domain; we investigate problems connected with
the distribution with respect to a prime modulus of the products of a
given number of different primes with a given value of & character. The
investigations are based upon the papers of Vinogradov, especially paper
[4]. The arguments which already appear in Vinogradov’s paper are here
replaced by shorter ones.

LeMMA. Lot 0 <0 <3 0 < o<5 and 0 <y <l—a. Let P be a prod-

uct of primes different from q and not exceeding N°. Then if
D = rﬁé% +ﬂ,

the divisors d of number P which do not ewceed N can be distributed into
< D classes on condition that for all d which belong to a given class the value
2(d) 4s constant. For every class there exisis a ¢ such that the numbers d
from that class satisfy the imequality ¢ < d < ¢'*°. For some of the classes
¢ < N”. For all the remwining classes there exist a positive integer B and
two increasing sequences of positive numbers o and y such that all © belong
to a certain interval g, < & < gy*°, which, in turn, is contained in the in-
terval NY < o < N, and all the numbers d of the class under considera-
tion, each of them taken B times, and only those numbers, can be oblained
if we take the numbers xy with (z,y) =1 from among all the products xy.

Proof. Let v be the greatest integer satisfying the condition
’ QU+ < T
Taking twice the logarithm of both sides of the lagt inequality we get
logr
<——-3
! log(1+¢)

We put b = [r] and consider all the non-increasing sequences ty, ..., &,
which can be obtained by selecting each ¥ from among the numbers
Ty ...y 1, 0. The number of all such sequences will be smaller than

log » "
ylog(1-+¢)
We put
-1 . i
; p=20T gt g o
(P;f"—:l, Fy‘zl if tj=0

icm

Distribution of the products of primes 3217

Each d that does not exceed N is a product of < b prime factors.
Arranging all prime factors of the number d in a decreasing order, and
(if their number A, is smaller than b) putting

Prp1 = oo = Py =1,

we represent d in the form

d=pPa... Vs

Among the sequences t,,...,% there is exactly one sequence which satisfies
the conditions

pm<p <P i >0,

p=p =" i =0,

and we shall say that the number d under consideration is connected
with the sequence

(1) Biyoeestpe
Putting ¢ = ¢, ... p, We have
p<d<<ote.

Let us consider the values d which are connected with sequence (1) with
the condition

@1y <N

Let us split the values d into n classes, defined by the condition indd = s
(modn). Now we assume that ¢ > N”. Let us consider the class of all
those d which are connected with the sequence ty,...,%. Let us denote
by ¢ the smallest integer satisfying the condition ¢, ... g; > N”. Then we
bave ¢ ... <N?, @ <N, N <gy...0 < N, Leb @y q1y ooy
@ty + -y Prorg DO all the valnes g; equal to ¢;. Then putting d' = Py ... Prrp»
A =P g1 Prings & =Dringr1--- Do We split the values d from the
class considered into n’ classes; for each value d from one of these new
classes y(d'), x(d'"), x(d’') will have the same value. For each new
class, the values d'’ will be split into <™ classes, each of them. will consist
of the numbers d’d”’ "' with the condition that among the prime factors
of d'' there are y, factors with index = 0 (modn) where y, is & given num-
Der, u, factors with index = 1(modn) and so on, finally, w,_, factors
with index == n—1(modn). Obviously, ue-+ py+...4 pn-y = ky+ ks.
Bach of the numbers p; (¢ = 0,1, ...,n—1) will then be split into
two integer terms AP and A sueh that the following conditions are
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gatisfied :
I+ A = Ty

WA+ AU =T,

Let & and » run, independently of each other, over the following sets:
& — over the products of %, different primes p, which are connectep
with g;, among which there are exactly A{ primes with indices = 0(modn),
A primes with indices = 1(modn),..., and A" primes with indices
=(n—1)(modn); n —over the products of k, different primes p, which
are connected with g;, and among which there are exactly A primes
with indices = 0(modn), A’ primes with indices = 1(modn),..., and
AY primes with indices = n—1(modmn).

For (&, #) =1 and only in this cage the product &y will coincide
with one of the numbers d”, and the same value d" appears among all

. the products & exactly B times, where

. Ho M1 Moy
B= (a@) (aa”) (zs"-”)'

But the numbers d of the chosen class, each of them taken B times,
can be obta.me'd by putting = d' &,y = nd’’* and choosing from all sy
only those which satisfy the condition (#,y) = 1. We easily obtain

Py @) T0 < oo,

Putting Po=g1...p We get @y < @ < y™°. Moreover, the last interval
is contained in the interval N” <z < N"+°*°. To complete the proof of
the lemma it suffices to notice that

logr 3
73y log(i+c) P < D.

TrgorM 1. Let VN <1 < Nexp(—), o = afg+0/gr, (a,q) =1,

ex.p(r"’°) SISy 4=V1/g+q/N, = 47" Let K be a positive integer
with K < f* and

S=ZK"

k=1

D exp(2miakuf)

wg")gN

Then we have
S < KN(AI—B'_{_NwAZh').

‘ Proof. Let 6 Tun over the set of products consisting of n, different
prime factors which are not equal ¢ and do not exceed N2 Let 2, TUN

over the set of products consisting of % different prime factors which are
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different from ¢ and do not exceed N°?. By the lemma, all the values
of & which do not exceed N can be split into < D classes and for each
class there exists a number @ for which all the values 6 of that class satisfy
the relations:

. .18,
< o<t x(8) =exp (2m7°),
where s, is one of the numbers 0,1, ..., n—1. All the values of 2, can be
split into » classes; for each of them the value of the character is constant
ts
and equal to x(z;) = exp (21ri 71) , where s, is one of the numbers 0,1,...,

n—1.
We shall denote by 2§V the value #,, which belongs to the class for
which

.18y
% (2n) = €Xp (21:@ 7) .

Let us consider the sum

5=33

where & runs over the set of values  from an arbitrary class. At first we
shall consider the class with ¢ > N**. Let us put y = 0.4, ¢ = 0.2 and
apply the lemma. Then there exist a positive integer B and two increasing
sequences of positive integers # and y such that all the values of « satisfy
the condition

> exp(2miaksy)),

dz‘,fl)gN

N0.4 <o < N0.6+0’

and all the values 6 of the class considered, each of them taken B times,
and only those values, can be obtained if from among all the products
zy we take only such that (z,y) = 1. Thus, ’

K
8 < Z ‘ 2 2 2 exp(zniakwyzsfﬂ)L
=1z

v z;fl)

where the summation is extended over the domain for which zyzf? < N
and (z,y) = 1. The next part of our considerations, which leads directly
to the evaluation

8, < EN (4% N0,
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does not differ from the corresponding considerations in the proof of
Theorem 1 in paper [4]. We ghall therefore omit it here. Let us now
congider the case ¢ <{ N The most difficult case is ¢ <X N°% and we shall
consider only this case. We ghall evaluate the sum S, for h =1,2,3,4
(for b =10, by the fact that ¢ < N, wo have 8, < KN and for b >4
we have §;, = 0).

Let D be the product of all primes different from ¢ and not exceeding
N2 Tet @ be the product of all primes which are different from g and
satisfy the condition N**< p < N. For ¢ =1, 2,3, 4, pubting

(2) Z 2 Z oxp (2miakdy, ... yg) = Wy
5 Y116 Vs'l@
1. U<,
*(U1... ¥ g") =exp(2nilsy /1)
we get

-
We=) ) D u(dy) .. (@) exp @riakddym, ... dymy).
& dy|D my>0 dg’|D Mg'>0
ddymy...dg'mgN,

(@, dgmg N mexp (2aitsy fm)
Among all the products ¥y, ...,y of the left-hand side of (2) for a given 4,
the number 0 either appears (s')" times or does not appear at all. We
put

S zz 2 exp (2miakdely),

dz;f DN

_Sin‘ce among all the produets 4,¥,... Yy (for a given &) there may be one
which is equal to 1, and < N**87" of products which are divisible by the
square of a yrime divisor of the number @, we obtain from (2):

(3) s 8 4 (82880 & (81)33?1)4_ (81 Sffl) = W+ 0[Ny

Putting ' =1, 2, 3, 4, we geti a system of four linear equations with four
‘unknowns, ?vhose determinant is different from zero. Thus, for some con-
stants oy (¢ =1,2,3,4,j=1,2,3,4) we find

8 = an Wit 0iaWat ais Wi i, W+ 0 (N09+°),

where i =1, 2, 3, 4.

Now it is obvious that the problem is reduced to the evaluation of
the gum

o
PELZR

k=1
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where s’ =1,2,3,4. We shall restrict our considerations to the case
s’ = 4 (the considerations in the remaining cases are the same). We split
this sum into »’ parts: for each of the parts x(d), x(m;) (j = 1,2,3, 4)
will agsume a constant value. We shall consider only the part

ZK: l 2 20 20 20 20 exp (2miakddy My w.. dymy) E,

k=1 & dj|D my>0 dy|D iy >0
ddymy ... dymy<N
where the summation is extended over the values ¢ of the chosen class,
over the values d; (j=1,2,3,4) with the conditions x(d;) =1, and
over the values m,; with the conditions y(m,) = exp(2wits;/n), x(my) =1
(j = 2,3,4). The remaining #' —1 parts can be considered in a similar
way. For each j =1,2,3,4 all the values d; are distributed among
< D classes (by the lemma), and the values m; (j =1, 2, 3, 4) are distri-
buted among < r classes with the conditions of the form

M1<‘Wl/j<M;', 2Mj <M}<4Mj‘.

Let

. ,
=333 3 Yo D, exp(omickddy ... dymy ... m) |,

= g 3 ™ Mg
8dy...dgmy.. MmN

where z(d) =1 (j=1,2,3,4), z(my) = exp(2nils;/n), x(m;) =1
(j = 2,3,4), and the summation is extended over the values § from
the chosen class, over the values d,, d,, d;, d, with certain condifions
of the form ¢ < d, <FW, ¢ < &, <FOD, o < dy <FO, o < d, <FY,
where FO = (g")*¢ (j =1,2,3,4), and over four classes of values
My, Moy, My, M, With conditions of the form

My <m, <M, My<my<M,, My<m<M;, M, < my < M.

Further considerations, which lead directly to the evaluation
T < EN (A7 N,

are exactly the same as the corresponding considerations in the proof
of Theorem 1 in paper [4]. We shall therefore omit them here. The theorem
is proved.

TaporEM 2. Let VN <1 < Nexp(—1%), o = a/q+0 /g, (a, ) =1,
exp (1) < g < v. Let the symbol Z{)(N) denote the mumber of those values
wf® which do not ewceed N and satisfy the relation {aw{} < B. Then we have

ZENN) = BZEY(N)+ O(N 4y), where Ay = (1/g+g/N)* 1L N0,
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Proof. This theorem easily follows from Theorem 1 by the use of
well-known methods (see, for ingtance, [1] and [4]).

’J.:HEOBEM 3. Let q be a prime nwmber satisfying the condition
exp (1) < ¢ < Nexp(—r®). Then we have

REN(N) = BRE(N)+0(N 4,),
where

Ay = (L)g4g/N)" 54 F-o2+a,

Proof. If we put o =1, & =0, v = Nexp(—~r®) in Theorem 2
we obtain the equality ’

ZH(N) = RY().
The theorem is proved. In the case y(a) = (ﬁ), 1 =1 we obtain the re-
sult of paper [3]. !
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ACTA ARITHMETICA
VI (1961)

On the representation of integers by binary forms
by

D. J. Lewis* (Notre Dame, Ind.) and K. MABLER (Manchester)

Let F(x,y) be a binary form of degree n > 3 with integral coeffi-
cients of height ¢ and with non-zero diseriminant, and let m be an integer
distinet from zero. FL. Davenport and K. F. Roth, in 1955, proved a gen-
eral theorem on Diophantine equations of which the following result
is a particular case.

The equation F(z,y) = m cannot have more than

" (4@ m )P+ exp (643n%)

integral solutions »,Y.

This result is of great interest becanse it gives an explieit upper bound
for the number of solutions. The proof depends on the deep ideas which
Roth introduced into the Thue-Siegel theory of the approximations of
algebraic numbers.

We establish in this paper a better upper bound for the number of
solutions of F(x,y) = m. Our proof does not depend on Roth’s method,
but uses instead the p-adic generalization of the Thue-Siegel theorem
discovered by one of us in 1932. We consider only primitive solutions
2, ¥, i. e. solutions where z and y are relatively prime; but this is not an
essential restriction.

Already in the original paper M, of 1933, it was proved that the equa-
tion F(2,y) = m has not more than

ot—i—l

solutions where ¢ > 0 is a constant independent of m, and ¢ denotes the
number of distinet prime factors of m. Since &t = 0(Im|®) for every
& > 0, this estimate is better than that by Davenport and Roth for all
sufficiently large |m|; but it does not show the dependance on the coeffi-
cients and the degree of F(z,y) of the number of solutions.
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