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On the problem of Gauss
by

0. M. FomeNko (Krasnodar, USSR)

Notation. For B >0 the symbol 4 < B will denote that [4[/B
< const. For real o the symbol {a} will denote the fractional part of a;
next: [a] = a—{a}, (&) = min({a}, 1—{a}), expx = ¢". The letter ¢ will
denote an arbitrarily small positive number.

It ;s known that Gauss investigated the asymptotic behaviour of

sums Y h(—t), where h(—t) denotes the number of classes of purely
t=1

radical quadratic forms of the negative determinant —i. The best estima-
tion of the remainder term in this problem has been obtained by I. M. Vi-
nogradov. In paper {1] he showed it to be of the order '

N0+ where =

and in paper [2] he lowered it to

N116+s

In an analogous way one can show that the remainder term in the
asymptotic formula which expresses the number of integer points of the
domain #*+y*+2* < a® is of the order a''/*+".

Paper [2] gives some indications for further lowering of the esti-
maition of the order of remainder terms in these two important problems.
Following these indications we shall show that one can obtain the follow-
ing orders:

NT01/1020+e and 701510+

We shall follow the methods of papers [1] and [2] replacing the con-
siderations of those papers by shorter arguments. The following lemma,
proved in [1], will be useful for our purpose:

LemMA. Let A, q and r be real numbers satisfying the relations A > 0,
r—q >0; let k be an integer > 2 and let x = 2. Next, let f(x) be o real
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function defined on the interval g <o <71, differentiable k times and sai-
isfying the relation

A7 < (@) < A7
Then:

. Ly [ (r— @)\ -
Z exp (2mif ()} < (r—¢) (A Ve2) . ( T*) +(r—q) 2/”).
g<asr )
We shall denote by N*** the order of the remainder term in the
problem of Gauss. From the considerations of paper [1] it follows that
it sufficies to estimate the expression

B = Z O Wi,
NMowm]
where
<VTs <Vii-n
2 Wm,z, Wm,m = 2 exp (21Wm, ..:I._‘J_)7
z>Vntl vV,
the number C,, dependes only on m, Op < Zn, 4 =n°"" and
1/m it w47

Z =
Ty lmd i omo> A4

Tt is shown in paper [2] that for m < Va
W < mVn+Vn(logn);

for m > Vn we have a trivial evaluation W <€ n. Let us now estlma.te B.
We have :

<na—0.5
m l/n

< n;
m>0
«nd5

mvVn
2 Am5<n’

mends—0a

v 0
AZ
ms>n0.8
7 < n® if o > §, which will be assumed throughout. Thus
0.5

Z‘ Zn Vn(logn)® < Va(logn) -+ Va(logn)?

m=l

- < ,nz(l-—a)

icm
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It follows that
B = B,+0(n%)
‘where
<n2'5"3“ <m <m
2imVn —
2 O Z 2 T P (23 Vi (dmo —u3)).
mona—0.5 UZ—M gy 24 3m2) Jam

The sum B, may be split into < logn sums Uy of the form

Uy = Z sz 2 2mml/'n2 oxp (2mi Mmﬂ——uz))

m>My

where M, and M are integers with
pa—0s <My< M < 25—-3«1’ MQI/gMo.

It is more convenient to replace the inequalities which give the doma.m
of summation with respect to » and » by

mP—ut =0, m—ov3=0, 4dmo—u’—3m®>0.
‘We observe that

M 33 ‘
22

=1

”@ <M <M M2 M M? M
PRSP PP
m>VIEM ¥=—M yoy3EM f1=0 8=0 &
m o T A 112y
R=2C ——&Eexp 9mi Va(dmo—u?) +

™ dmy—
2

(mP—ut—s m—ov—s§ dmy— o —s
+2m( 537 Yyt >3 2ot 33 3703)).

Let U,y x, D0 the part of the sum Uy which corresponds to a given
¥y, %oy ky. It is shown in [2] thab

—4 1/2-+-8' mt
UM;kbkzka < M~ Zym T kg k3 2,

<O S oxp (2mi(— byt 2 — Ty BM+Vn (2 —0)))

a- 3| 2 — ;

s> M2 U>—M

Ty = (30 s min 1, Tk )
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and

DTS Ty gy < WP (logm).

Fy kg kg

For our next considerations we shall need the evaluation of the sum

< oxp (omiV m(Ve— V)

Kul,u = Z

e>1M2

(2= ) (2~ ")

for integer u, and w where —M < uy < M, —M < w <, M. By putting
t = o’ —ui we shall restrict ourselves to the case § = () (the case t < 0
can be reduced to the cage t > 0 in an obvious way). Tor ¢ = 0 we easily
obtain

K%u < M
For ¢ >0, as it is shown in [2], we have
MY 1
1) Kuw< bRk + nAER e

Another estimation of K, , will also be convenient. It is shown in [1]
that ‘

Kul,u =K1’41’u+ 0 (M-—I.E,nwl/dt-—l/z)’

where
— o2 M2) .
o N 1k exp (2w (ew) )
uy = =" T
w> 2T V2 (zw”‘ui)(‘zw—uz)l/f’(zw)’
and

== l/ﬁ(l/z~u';’-—1/z——u2)
with z, defined by the relation

[ (Pw) = —w.

Next, we ghall evaluate the sum.

=t
B == 2 exp (27iF (w))

w>q
where ¢ = —f' (4M%); r = —f (2M*), F(w) = f(2w)+we,. We find

Vat| M < r—q < Vot M
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Putting

Voot

we easily find that
1 1
gy <
Since M < t€ M7, t/MP < E—E& < t/M’, we have

Mak 1 MSIB—-I
W=D =1 < P (w) < DT

Under suitable restrictions concerning ¢ we may assume that r—gq — oo
a8 n— oo. Let us apply our lemma to the sum E. After the reduction we
get:

e D 2gln—2)x

ROk

(k= D200=2) b= 1)/ e2)
MO—3E=5)](=~2)

E<

If follows easily that
SO 2) =) 20=2) g (et e 8)] 2
@) K""l:’“ < JOx—k—16)/2(x—2) Y O*—12)2%

Let us first consider the part 2, of 0 defined as:
< < Ry |2 —Togu? [3 M+ ]/'n(z—-u"’)))'

2 ‘2 eXp 2m z—u’

2>2M% uxz—h

(the definition of h is given below; now we shall mention that b < M).
‘We have

Q,< ns-/z(h1/2+n1/sh3/2/M5/4)'
Let Q' = 2—8,. Then
<O 2% exp (ami{ — ey 2MF — kg 320+ V(o — o)) .

&=2 Z‘Z z—u

>332 U>h
Dividing interval h < u < M into intervals h<u <
L3hy ooy, [MR]h < v < M we represent Q' in the form
[M 2]
Q=2 ) O,

I=1

< 2h, 2h<u <
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where

| exp (2 (— Ty w2 4T 3U 4V (s — ) |
" T )

= | =

e>2M?  uslh

and ' < h.
We find

Qu < MVQu,

where

bl glhop-ot
=3 Y &
= 7 Uy

w > u>lh

For t = 0 the number of solutions of ' —u; = ¢ will be < h. For a given
£ > 0 the number of solutions of u— u, = £ will be < &, and. the value of
t = (u;+ &°—u} which corresponds to this & will satisfy the relation

2héE <t < 2(1+3)hé.

The part of @y which corresponds to the given £ >0 will be < hEy .
Thus (we apply the evaluation (1) to the first suim, and evaluation l('2)
to the second sum):

%)
tn<mare s I
b=l

N4 (Ihg) 1
U + TR 5)112) -+

n ,n(u—zlc)lri(n—Z)(-lk;)(u»zlc)(z(u—z) n(u—rl)/4n(lh£)(x—4)/2n
el YO 6k—16)]2(4—2) " g OR=12)/E% )
=[in =2 ‘

<B4 AL 2R3y, ~3nf2 o0

moe A2 i +

’[b("—Zk) 14(2—2) l(u—zk)/z(u-—z)h(ax— 2o~ d) [ (#--2) %(“‘.4)/4“ l(,,__ﬂ 121 # (3K
e ) R T "=

the numerical value of # will become in ]
o clear in the gequel. N hoy
eadily find the estimation of . We have: * o e shall

Q' MR By 9018y (620} fB(~2) e 28/ Ae~3) ri(ne-2) +

"} n(n-—-lj)/ﬂu h(n—xl) M”l’l 2/n .
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Let us make the first and the last texrm of the same order. To do that
we pub .
b= MA—DGr—9) n—(u—4)/z(an—4)]_
Now we have
pf LB R

~1/2 | 1B 1[4, —32/4 — 2k) (B(~2) 7, (x—2K) [4(x—2) ¥/ (¥—2,
—3FE Mh./+n/h/'n # g ) 0 (=2) k(=2

R<

‘whence

y PRVET . R
Uy < Ml ZM( S +Mh—1/.+,nl/ah1/4n—-sml4+

Ll T B(s=2) o288l Mk/(»—z)) ,
Let M < A™' = n!° Then

1/873/2
3  Uu< nIIW'( G A

+ ple—2k) /s(n—z)'h(x—zk) /4(2—2) Mk/(u-z)) .

Now we ghall find the values of a for which we have the inequality
WMV L nt
After some computations we get
a0 _1/16(x—1).

The inequality
pF2RB(e—2) (= 2R [4(x—2) M2 < ne

holds if :

11 8kx— 203124
az—— 5 .

16 16(ds* -+ (k—12) x+8)

From the two inequalities for « we see that the best results are ob-
tained for k = 8. In this case

11 1 701
>

*Z 16 4080 1020

Let us put « = 701/1020. Now it is easy to show that we can take, for
instance, # = 0,001, Comparing the first and the third term in parentheses
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in (3) we see that the first term is negligible as compared with the third.
Thus, for M < 47"

Uy < ,n701'/1020+x~.
We easily see that the same result holds also for M > A7 Hence

B < ,'7/’101/1020-{—91

Thus, as is shown in [1], one can obtain

~

B 47
.}J =) = 217(3)

9
N3/2 . :__2 N'{' 0 (N7UI[1020 H) .

i=1
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Local relation of Gauss sums
by

T. KuBoTra (Nagoya, Japan)

Among many other important properties of Gauss sums it.is known
that the Gauss sum 7(y) of a congruence character y of an algebraic number
field F is essentially the same thing as the constant factor w(y) appearing
in the functional equation of Hecke’s L-function defined by the charac-
ter y. Thus interpreted, the Gauss sum z(y) is very naturally decomposed
into its local components z,(x), where p means a finite or infinite place
of F' (see Hasse [4]). We call 7,(x) a local Gauss sum. The aim of the present
note is to investigate some arithmetic attributes of the local Gauss sum.

Let us first congider the factor set

7y (%) 75 ()
T (29)

between local Gauss sums. It is well known that in many cases such
a factor set becomes a so-called Jacobi sum (Hasse [3], Weil [7]). But,
in the general case of local Gauss sums, in particular in the case where
the conductors of y, y are divisible by a higher power of p, there is no so
simple expression of j,(x,y) as ordinary Jacobi sums. ‘We shall prove,
however, the formulas (5), (12) of §1, which show that j,(x,%) is in
every case transformed into a generalized Jacobi sum.

In § 2, we deal with the explicit determination of the value of j,(x, v),
restricting y, ¢ to quadratic characters. In general, the problem of this
kind necessarily concerns a ‘“‘Grossencharakter’” (Weil [7]). But, if x,
are quadratic, then the square of the generalized Jacobi sum j,(x, )
is a natural number which is easily determined and the sign of j,(x, v)
itself is, as the formula (16) of § 2 shows, given by the quadratic norm
residue symbol.

The formula (16) is equivalent to a splitting formula (17) of the
quadratic norm residue symbol. For prime ideals prime to 2, the formula
(16) (or equivalently (17)) is easily proved by a simple computation, and
for prime ideals dividing 2, (17) is an almost immediate consequence of

Jpltsw) =
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